Included rotation of seismograms using Obspys stream.rotation for a more reliable estimation of source spectra.

This commit is contained in:
Ludger Küperkoch 2015-12-03 14:57:44 +01:00
parent 77ad274f8f
commit d6ae82e070

View File

@ -12,7 +12,7 @@ from obspy.core import Stream, UTCDateTime
from pylot.core.pick.utils import getsignalwin, crossings_nonzero_all
from pylot.core.util.utils import getPatternLine
from scipy.optimize import curve_fit
from scipy import integrate
from scipy import integrate, signal
from pylot.core.read.data import Data
class Magnitude(object):
@ -200,7 +200,7 @@ class WApp(Magnitude):
class M0Mw(Magnitude):
'''
Method to calculate seismic moment Mo and moment magnitude Mw.
Requires results of class w0fc for calculating plateau w0
Requires results of class calcsourcespec for calculating plateau w0
and corner frequency fc of source spectrum, respectively. Uses
subfunction calcMoMw.py. Returns modified dictionary of picks including
Dc-value, corner frequency fc, seismic moment Mo and
@ -212,17 +212,12 @@ class M0Mw(Magnitude):
picks = self.getpicks()
nllocfile = self.getNLLocfile()
wfdat = self.getwfstream()
# get vertical component data only
zdat = wfdat.select(component="Z")
if len(zdat) == 0: # check for other components
zdat = wfdat.select(component="3")
self.picdic = None
for key in picks:
if picks[key]['P']['weight'] < 4:
# select waveform
selwf = zdat.select(station=key)
# get hypocentral distance of station
# from NLLoc-location file
selwf = wfdat.select(station=key)
if len(key) > 4:
Ppattern = '%s ? ? ? P' % key
elif len(key) == 4:
@ -230,15 +225,22 @@ class M0Mw(Magnitude):
elif len(key) < 4:
Ppattern = '%s ? ? ? P' % key
nllocline = getPatternLine(nllocfile, Ppattern)
# get hypocentral distance, station azimuth and
# angle of incidence from NLLoc-location file
delta = float(nllocline.split(None)[21])
az = float(nllocline.split(None)[22])
inc = float(nllocline.split(None)[24])
# call subfunction to estimate source spectrum
# and to derive w0 and fc
[w0, fc] = calcsourcespec(selwf, picks[key]['P']['mpp'], \
self.getiplot(), self.getinvdir())
self.getinvdir(), az, inc, self.getiplot())
if w0 is not None:
# call subfunction to calculate Mo and Mw
[Mo, Mw] = calcMoMw(selwf, w0, self.getrho(), self.getvp(), \
zdat = selwf.select(component="Z")
if len(zdat) == 0: # check for other components
zdat = selwf.select(component="3")
[Mo, Mw] = calcMoMw(zdat, w0, self.getrho(), self.getvp(), \
delta, self.getinvdir())
else:
Mo = None
@ -276,131 +278,180 @@ def calcMoMw(wfstream, w0, rho, vp, delta, inv):
def calcsourcespec(wfstream, onset, iplot, inventory):
def calcsourcespec(wfstream, onset, inventory, azimuth, incidence, iplot):
'''
Subfunction to calculate the source spectrum and to derive from that the plateau
(usually called omega0) and the corner frequency assuming Aki's omega-square
source model. Has to be derived from instrument corrected displacement traces,
thus restitution and integration necessary!
thus restitution and integration necessary! Integrated traces have to be rotated
into ray-coordinate system ZNE => LQT!
'''
print ("Calculating source spectrum ....")
fc = None
w0 = None
data = Data()
z_copy = wfstream.copy()
[corzdat, restflag] = data.restituteWFData(inventory, z_copy)
wf_copy = wfstream.copy()
[cordat, restflag] = data.restituteWFData(inventory, wf_copy)
if restflag == 1:
# integrate to displacment
corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
z_copy[0].data = corintzdat
tr = z_copy[0]
# get window after P pulse for
# calculating source spectrum
if tr.stats.sampling_rate <= 100:
winzc = tr.stats.sampling_rate
elif tr.stats.sampling_rate > 100 and \
tr.stats.sampling_rate <= 200:
winzc = 0.5 * tr.stats.sampling_rate
elif tr.stats.sampling_rate > 200 and \
tr.stats.sampling_rate <= 400:
winzc = 0.2 * tr.stats.sampling_rate
elif tr.stats.sampling_rate > 400:
winzc = tr.stats.sampling_rate
tstart = UTCDateTime(tr.stats.starttime)
tonset = onset.timestamp -tstart.timestamp
impickP = tonset * tr.stats.sampling_rate
wfzc = tr.data[impickP : impickP + winzc]
# get time array
t = np.arange(0, len(tr) * tr.stats.delta, tr.stats.delta)
# calculate spectrum using only first cycles of
# waveform after P onset!
zc = crossings_nonzero_all(wfzc)
if np.size(zc) == 0 or len(zc) <= 3:
print ("Something is wrong with the waveform, "
"no zero crossings derived!")
print ("No calculation of source spectrum possible!")
plotflag = 0
else:
plotflag = 1
index = min([3, len(zc) - 1])
calcwin = (zc[index] - zc[0]) * z_copy[0].stats.delta
iwin = getsignalwin(t, tonset, calcwin)
xdat = tr.data[iwin]
zdat = cordat.select(component="Z")
if len(zdat) == 0:
zdat = cordat.select(component="3")
cordat_copy = cordat.copy()
# get equal time stamps and lengths of traces
# necessary for rotation of traces
tr0start = cordat_copy[0].stats.starttime
tr0start = tr0start.timestamp
tr0end = cordat_copy[0].stats.endtime
tr0end = tr0end.timestamp
tr1start = cordat_copy[1].stats.starttime
tr1start = tr1start.timestamp
tr1end = cordat_copy[1].stats.endtime
tr1end = tr1end.timestamp
tr2start = cordat_copy[2].stats.starttime
tr2start = tr2start.timestamp
tr2end = cordat_copy[0].stats.endtime
tr2end = tr2end.timestamp
trstart = UTCDateTime(max([tr0start, tr1start, tr2start]))
trend = UTCDateTime(min([tr0end, tr1end, tr2end]))
cordat_copy.trim(trstart, trend)
minlen = min([len(cordat_copy[0]), len(cordat_copy[1]), len(cordat_copy[2])])
cordat_copy[0].data = cordat_copy[0].data[0:minlen]
cordat_copy[1].data = cordat_copy[1].data[0:minlen]
cordat_copy[2].data = cordat_copy[2].data[0:minlen]
try:
# rotate into LQT (ray-coordindate-) system using Obspy's rotate
# L: P-wave direction
# Q: SV-wave direction
# T: SH-wave direction
LQT=cordat_copy.rotate('ZNE->LQT',azimuth, incidence)
ldat = LQT.select(component="L")
if len(ldat) == 0:
# yet Obspy's rotate can not handle channels 3/2/1
ldat = LQT.select(component="Z")
# fft
fny = tr.stats.sampling_rate / 2
l = len(xdat) / tr.stats.sampling_rate
n = tr.stats.sampling_rate * l # number of fft bins after Bath
# find next power of 2 of data length
m = pow(2, np.ceil(np.log(len(xdat)) / np.log(2)))
N = int(np.power(m, 2))
y = tr.stats.delta * np.fft.fft(xdat, N)
Y = abs(y[: N/2])
L = (N - 1) / tr.stats.sampling_rate
f = np.arange(0, fny, 1/L)
# integrate to displacement
# unrotated vertical component (for copmarison)
inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None, \
zdat[0].stats.delta))
# rotated component Z => L
Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None, \
ldat[0].stats.delta))
# remove zero-frequency and frequencies above
# corner frequency of seismometer (assumed
# to be 100 Hz)
fi = np.where((f >= 1) & (f < 100))
F = f[fi]
YY = Y[fi]
# get plateau (DC value) and corner frequency
# initial guess of plateau
w0in = np.mean(YY[0:100])
# initial guess of corner frequency
# where spectral level reached 50% of flat level
iin = np.where(YY >= 0.5 * w0in)
Fcin = F[iin[0][np.size(iin) - 1]]
# get window after P pulse for
# calculating source spectrum
if zdat[0].stats.sampling_rate <= 100:
winzc = zdat[0].stats.sampling_rate
elif zdat[0].stats.sampling_rate > 100 and \
zdat[0].stats.sampling_rate <= 200:
winzc = 0.5 * zdat[0].stats.sampling_rate
elif zdat[0].stats.sampling_rate > 200 and \
zdat[0].stats.sampling_rate <= 400:
winzc = 0.2 * zdat[0].stats.sampling_rate
elif zdat[0].stats.sampling_rate > 400:
winzc = zdat[0].stats.sampling_rate
tstart = UTCDateTime(zdat[0].stats.starttime)
tonset = onset.timestamp -tstart.timestamp
impickP = tonset * zdat[0].stats.sampling_rate
wfzc = Ldat[impickP : impickP + winzc]
# get time array
t = np.arange(0, len(inttrz) * zdat[0].stats.delta, \
zdat[0].stats.delta)
# calculate spectrum using only first cycles of
# waveform after P onset!
zc = crossings_nonzero_all(wfzc)
if np.size(zc) == 0 or len(zc) <= 3:
print ("calcsourcespec: Something is wrong with the waveform, "
"no zero crossings derived!")
print ("No calculation of source spectrum possible!")
plotflag = 0
else:
plotflag = 1
index = min([3, len(zc) - 1])
calcwin = (zc[index] - zc[0]) * zdat[0].stats.delta
iwin = getsignalwin(t, tonset, calcwin)
xdat = Ldat[iwin]
# use of implicit scipy otimization function
fit = synthsourcespec(F, w0in, Fcin)
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [w0in, Fcin])
w01 = optspecfit[0]
fc1 = optspecfit[1]
print ("w0fc: Determined w0-value: %e m/Hz, \n"
"Determined corner frequency: %f Hz" % (w01, fc1))
# fft
fny = zdat[0].stats.sampling_rate / 2
l = len(xdat) / zdat[0].stats.sampling_rate
# number of fft bins after Bath
n = zdat[0].stats.sampling_rate * l
# find next power of 2 of data length
m = pow(2, np.ceil(np.log(len(xdat)) / np.log(2)))
N = int(np.power(m, 2))
y = zdat[0].stats.delta * np.fft.fft(xdat, N)
Y = abs(y[: N/2])
L = (N - 1) / zdat[0].stats.sampling_rate
f = np.arange(0, fny, 1/L)
# use of conventional fitting
[w02, fc2] = fitSourceModel(F, YY.real, Fcin, iplot)
# remove zero-frequency and frequencies above
# corner frequency of seismometer (assumed
# to be 100 Hz)
fi = np.where((f >= 1) & (f < 100))
F = f[fi]
YY = Y[fi]
# get plateau (DC value) and corner frequency
# initial guess of plateau
w0in = np.mean(YY[0:100])
# initial guess of corner frequency
# where spectral level reached 50% of flat level
iin = np.where(YY >= 0.5 * w0in)
Fcin = F[iin[0][np.size(iin) - 1]]
# get w0 and fc as median
w0 = np.median([w01, w02])
fc = np.median([fc1, fc2])
print("w0fc: Using w0-value = %e m/Hz and fc = %f Hz" % (w0, fc))
# use of implicit scipy otimization function
fit = synthsourcespec(F, w0in, Fcin)
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [w0in, Fcin])
w01 = optspecfit[0]
fc1 = optspecfit[1]
print ("calcsourcespec: Determined w0-value: %e m/Hz, \n"
"Determined corner frequency: %f Hz" % (w01, fc1))
if iplot > 1:
f1 = plt.figure()
plt.subplot(2,1,1)
# show displacement in mm
plt.plot(t, np.multiply(tr, 1000), 'k')
if plotflag == 1:
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
plt.title('Seismogram and P Pulse, Station %s-%s' \
% (tr.stats.station, tr.stats.channel))
else:
plt.title('Seismogram, Station %s-%s' \
% (tr.stats.station, tr.stats.channel))
plt.xlabel('Time since %s' % tr.stats.starttime)
plt.ylabel('Displacement [mm]')
# use of conventional fitting
[w02, fc2] = fitSourceModel(F, YY.real, Fcin, iplot)
if plotflag == 1:
plt.subplot(2,1,2)
plt.loglog(f, Y.real, 'k')
plt.loglog(F, YY.real)
plt.loglog(F, fit, 'g')
plt.loglog([fc, fc], [w0/100, w0], 'g')
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
% (w0, fc))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]')
plt.grid()
plt.show()
raw_input()
plt.close(f1)
# get w0 and fc as median
w0 = np.median([w01, w02])
fc = np.median([fc1, fc2])
print("calcsourcespec: Using w0-value = %e m/Hz and fc = %f Hz" % (w0, fc))
except TypeError as er:
raise TypeError('''{0}'''.format(er))
if iplot > 1:
f1 = plt.figure()
tLdat = np.arange(0, len(Ldat) * zdat[0].stats.delta, \
zdat[0].stats.delta)
plt.subplot(2,1,1)
# show displacement in mm
p1, = plt.plot(t, np.multiply(inttrz, 1000), 'k')
p2, = plt.plot(tLdat, np.multiply(Ldat, 1000))
plt.legend([p1, p2], ['Displacement', 'Rotated Displacement'])
if plotflag == 1:
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
plt.title('Seismogram and P Pulse, Station %s-%s' \
% (zdat[0].stats.station, zdat[0].stats.channel))
else:
plt.title('Seismogram, Station %s-%s' \
% (zdat[0].stats.station, zdat[0].stats.channel))
plt.xlabel('Time since %s' % zdat[0].stats.starttime)
plt.ylabel('Displacement [mm]')
if plotflag == 1:
plt.subplot(2,1,2)
plt.loglog(f, Y.real, 'k')
plt.loglog(F, YY.real)
plt.loglog(F, fit, 'g')
plt.loglog([fc, fc], [w0/100, w0], 'g')
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
% (w0, fc))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]')
plt.grid()
plt.show()
raw_input()
plt.close(f1)
return w0, fc
@ -474,8 +525,13 @@ def fitSourceModel(f, S, fc0, iplot):
STD.append(stddc + stdFC)
# get best found w0 anf fc from minimum
fc = fc[np.argmin(STD)]
w0 = w0[np.argmin(STD)]
if len(STD) > 0:
fc = fc[np.argmin(STD)]
w0 = w0[np.argmin(STD)]
elif len(STD) == 0:
fc = fc0
w0 = max(S)
print("fitSourceModel: best fc: %fHz, best w0: %e m/Hz" \
% (fc, w0))