Resolved conflicts fmtomoUtils
This commit is contained in:
commit
ddb1ad4a15
95
QtPyLoT.py
95
QtPyLoT.py
@ -43,8 +43,10 @@ from obspy import UTCDateTime
|
||||
from pylot.core.read.data import Data
|
||||
from pylot.core.read.inputs import FilterOptions, AutoPickParameter
|
||||
from pylot.core.pick.autopick import autopickevent
|
||||
from pylot.core.read.io import picks_from_evt
|
||||
from pylot.core.loc.nll import locate as locateNll
|
||||
from pylot.core.util.defaults import FILTERDEFAULTS
|
||||
from pylot.core.util.defaults import FILTERDEFAULTS, COMPNAME_MAP,\
|
||||
AUTOMATIC_DEFAULTS
|
||||
from pylot.core.util.errors import FormatError, DatastructureError, \
|
||||
OverwriteError
|
||||
from pylot.core.util.connection import checkurl
|
||||
@ -87,7 +89,7 @@ class MainWindow(QMainWindow):
|
||||
self.dispComponent = str(settings.value("plotting/dispComponent", "Z"))
|
||||
if settings.value("data/dataRoot", None) is None:
|
||||
dirname = QFileDialog().getExistingDirectory(
|
||||
caption='Choose data root ...')
|
||||
caption='Choose data root ...')
|
||||
settings.setValue("data/dataRoot", dirname)
|
||||
settings.sync()
|
||||
|
||||
@ -110,14 +112,16 @@ class MainWindow(QMainWindow):
|
||||
# load and display waveform data
|
||||
self.dirty = False
|
||||
self.loadData()
|
||||
self.loadWaveformData()
|
||||
self.updateFilterOptions()
|
||||
if self.loadWaveformData():
|
||||
self.updateFilterOptions()
|
||||
else:
|
||||
sys.exit(0)
|
||||
|
||||
def setupUi(self):
|
||||
|
||||
try:
|
||||
self.startTime = min(
|
||||
[tr.stats.starttime for tr in self.data.wfdata])
|
||||
[tr.stats.starttime for tr in self.data.wfdata])
|
||||
except:
|
||||
self.startTime = UTCDateTime()
|
||||
|
||||
@ -354,7 +358,10 @@ class MainWindow(QMainWindow):
|
||||
settings = QSettings()
|
||||
return settings.value("data/dataRoot")
|
||||
|
||||
def loadData(self, fname=None):
|
||||
def loadAutoPicks(self):
|
||||
self.loadData(type='auto')
|
||||
|
||||
def loadData(self, fname=None, type='manual'):
|
||||
if not self.okToContinue():
|
||||
return
|
||||
if fname is None:
|
||||
@ -368,10 +375,10 @@ class MainWindow(QMainWindow):
|
||||
filter=filt)
|
||||
fname = fname[0]
|
||||
else:
|
||||
fname = unicode(action.data().toString())
|
||||
fname = str(action.data().toString())
|
||||
self.setFileName(fname)
|
||||
self.data += Data(self, evtdata=self.getFileName())
|
||||
self.updatePicks()
|
||||
self.updatePicks(type=type)
|
||||
self.drawPicks()
|
||||
|
||||
def getLastEvent(self):
|
||||
@ -403,6 +410,8 @@ class MainWindow(QMainWindow):
|
||||
|
||||
else:
|
||||
raise DatastructureError('not specified')
|
||||
if not self.fnames:
|
||||
return None
|
||||
return self.fnames
|
||||
except DatastructureError as e:
|
||||
print(e)
|
||||
@ -431,13 +440,14 @@ class MainWindow(QMainWindow):
|
||||
print('warning: {0}'.format(e))
|
||||
directory = os.path.join(self.getRoot(), self.getEventFileName())
|
||||
file_filter = "QuakeML file (*.xml);;VELEST observation file format (*.cnv);;NonLinLoc observation file (*.obs)"
|
||||
fname = QFileDialog.getSaveFileName(self, 'Save event data ...',
|
||||
directory, file_filter)
|
||||
fname, selected_filter = QFileDialog.getSaveFileName(self, 'Save event data ...',
|
||||
directory, file_filter)
|
||||
|
||||
fbasename, exform = os.path.splitext(fname[0])
|
||||
fbasename, exform = os.path.splitext(fname)
|
||||
|
||||
if not exform and selected_filter:
|
||||
exform = selected_filter.split('*')[1][:-1]
|
||||
|
||||
if not exform:
|
||||
exform = file_filter[0].split('*')[1][:-1]
|
||||
return fbasename, exform
|
||||
|
||||
settings = QSettings()
|
||||
@ -455,7 +465,7 @@ class MainWindow(QMainWindow):
|
||||
ret = msgBox.exec_()
|
||||
if ret == QMessageBox.Save:
|
||||
self.getData().resetPicks()
|
||||
self.saveData()
|
||||
return self.saveData()
|
||||
elif ret == QMessageBox.Cancel:
|
||||
return False
|
||||
try:
|
||||
@ -524,17 +534,23 @@ class MainWindow(QMainWindow):
|
||||
def loadWaveformData(self):
|
||||
if self.fnames and self.okToContinue():
|
||||
self.setDirty(True)
|
||||
self.data.setWFData(self.fnames)
|
||||
ans = self.data.setWFData(self.fnames)
|
||||
elif self.fnames is None and self.okToContinue():
|
||||
self.data.setWFData(self.getWFFnames())
|
||||
self.plotWaveformData()
|
||||
ans = self.data.setWFData(self.getWFFnames())
|
||||
if ans:
|
||||
self.plotWaveformData()
|
||||
return ans
|
||||
else:
|
||||
return ans
|
||||
|
||||
def plotWaveformData(self):
|
||||
zne_text = {'Z': 'vertical', 'N': 'north-south', 'E': 'east-west'}
|
||||
comp = self.getComponent()
|
||||
title = 'section: {0} components'.format(zne_text[comp])
|
||||
alter_comp = COMPNAME_MAP[comp]
|
||||
wfst = self.getData().getWFData().select(component=comp)
|
||||
self.getPlotWidget().plotWFData(wfdata=wfst, title=title)
|
||||
wfst += self.getData().getWFData().select(component=alter_comp)
|
||||
self.getPlotWidget().plotWFData(wfdata=wfst, title=title, mapping=False)
|
||||
self.draw()
|
||||
plotDict = self.getPlotWidget().getPlotDict()
|
||||
pos = plotDict.keys()
|
||||
@ -569,6 +585,7 @@ class MainWindow(QMainWindow):
|
||||
else:
|
||||
self.getData().resetWFData()
|
||||
self.plotWaveformData()
|
||||
self.drawPicks()
|
||||
|
||||
def adjustFilterOptions(self):
|
||||
fstring = "Filter Options ({0})".format(self.getSeismicPhase())
|
||||
@ -615,8 +632,8 @@ class MainWindow(QMainWindow):
|
||||
else:
|
||||
self.updateStatus('Filter loaded ... '
|
||||
'[{0}: {1} Hz]'.format(
|
||||
self.getFilterOptions().getFilterType(),
|
||||
self.getFilterOptions().getFreq()))
|
||||
self.getFilterOptions().getFilterType(),
|
||||
self.getFilterOptions().getFreq()))
|
||||
if self.filterAction.isChecked():
|
||||
self.filterWaveformData()
|
||||
|
||||
@ -673,8 +690,7 @@ class MainWindow(QMainWindow):
|
||||
self.logDockWidget.setWidget(self.listWidget)
|
||||
self.addDockWidget(Qt.LeftDockWidgetArea, self.logDockWidget)
|
||||
self.addListItem('loading default values for local data ...')
|
||||
home = os.path.expanduser("~")
|
||||
autopick_parameter = AutoPickParameter('%s/.pylot/autoPyLoT_local.in' % home)
|
||||
autopick_parameter = AutoPickParameter(AUTOMATIC_DEFAULTS)
|
||||
self.addListItem(str(autopick_parameter))
|
||||
|
||||
# Create the worker thread and run it
|
||||
@ -718,29 +734,12 @@ class MainWindow(QMainWindow):
|
||||
self.getPicks(type=type)[station] = stat_picks
|
||||
return rval
|
||||
|
||||
def updatePicks(self):
|
||||
evt = self.getData().getEvtData()
|
||||
picks = {}
|
||||
for pick in evt.picks:
|
||||
phase = {}
|
||||
station = pick.waveform_id.station_code
|
||||
try:
|
||||
onsets = picks[station]
|
||||
except KeyError as e:
|
||||
print(e)
|
||||
onsets = {}
|
||||
mpp = pick.time
|
||||
lpp = mpp + pick.time_errors.upper_uncertainty
|
||||
epp = mpp - pick.time_errors.lower_uncertainty
|
||||
spe = pick.time_errors.uncertainty
|
||||
phase['mpp'] = mpp
|
||||
phase['epp'] = epp
|
||||
phase['lpp'] = lpp
|
||||
phase['spe'] = spe
|
||||
|
||||
onsets[pick.phase_hint] = phase.copy()
|
||||
picks[station] = onsets.copy()
|
||||
self.picks.update(picks)
|
||||
def updatePicks(self, type='manual'):
|
||||
picks = picks_from_evt(evt=self.getData().getEvtData())
|
||||
if type == 'manual':
|
||||
self.picks.update(picks)
|
||||
elif type == 'auto':
|
||||
self.autopicks.update(picks)
|
||||
|
||||
def drawPicks(self, station=None, picktype='manual'):
|
||||
# if picks to draw not specified, draw all picks available
|
||||
@ -811,12 +810,12 @@ class MainWindow(QMainWindow):
|
||||
if self.getData() is not None:
|
||||
if not self.getData().isNew():
|
||||
self.setWindowTitle(
|
||||
"PyLoT - processing event %s[*]" % self.getData().getID())
|
||||
"PyLoT - processing event %s[*]" % self.getData().getID())
|
||||
elif self.getData().isNew():
|
||||
self.setWindowTitle("PyLoT - New event [*]")
|
||||
else:
|
||||
self.setWindowTitle(
|
||||
"PyLoT - seismic processing the python way[*]")
|
||||
"PyLoT - seismic processing the python way[*]")
|
||||
self.setWindowModified(self.dirty)
|
||||
|
||||
def tutorUser(self):
|
||||
@ -854,7 +853,7 @@ class MainWindow(QMainWindow):
|
||||
def helpHelp(self):
|
||||
if checkurl():
|
||||
form = HelpForm(
|
||||
'https://ariadne.geophysik.ruhr-uni-bochum.de/trac/PyLoT/wiki')
|
||||
'https://ariadne.geophysik.ruhr-uni-bochum.de/trac/PyLoT/wiki')
|
||||
else:
|
||||
form = HelpForm(':/help.html')
|
||||
form.show()
|
||||
|
125
autoPyLoT.py
125
autoPyLoT.py
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import argparse
|
||||
import glob
|
||||
@ -55,9 +56,9 @@ def autoPyLoT(inputfile):
|
||||
|
||||
if parameter.hasParam('datastructure'):
|
||||
datastructure = DATASTRUCTURE[parameter.getParam('datastructure')]()
|
||||
dsfields = {'root' :parameter.getParam('rootpath'),
|
||||
'dpath' :parameter.getParam('datapath'),
|
||||
'dbase' :parameter.getParam('database')}
|
||||
dsfields = {'root': parameter.getParam('rootpath'),
|
||||
'dpath': parameter.getParam('datapath'),
|
||||
'dbase': parameter.getParam('database')}
|
||||
|
||||
exf = ['root', 'dpath', 'dbase']
|
||||
|
||||
@ -86,7 +87,7 @@ def autoPyLoT(inputfile):
|
||||
ttpat = parameter.getParam('ttpatter')
|
||||
# pattern of NLLoc-output file
|
||||
nllocoutpatter = parameter.getParam('outpatter')
|
||||
maxnumit = 3 # maximum number of iterations for re-picking
|
||||
maxnumit = 3 # maximum number of iterations for re-picking
|
||||
else:
|
||||
locflag = 0
|
||||
print(" !!! ")
|
||||
@ -94,7 +95,6 @@ def autoPyLoT(inputfile):
|
||||
print("!!No source parameter estimation possible!!")
|
||||
print(" !!! ")
|
||||
|
||||
|
||||
# multiple event processing
|
||||
# read each event in database
|
||||
datapath = datastructure.expandDataPath()
|
||||
@ -115,7 +115,7 @@ def autoPyLoT(inputfile):
|
||||
picksExport(picks, 'NLLoc', phasefile)
|
||||
|
||||
# For locating the event the NLLoc-control file has to be modified!
|
||||
evID = event[string.rfind(event, "/") + 1 : len(events) - 1]
|
||||
evID = event[string.rfind(event, "/") + 1: len(events) - 1]
|
||||
nllocout = '%s_%s' % (evID, nllocoutpatter)
|
||||
# create comment line for NLLoc-control file
|
||||
modifyInputFile(ctrf, nllocroot, nllocout, phasef, ttpat)
|
||||
@ -129,21 +129,21 @@ def autoPyLoT(inputfile):
|
||||
# get stations with bad onsets
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
|
||||
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
|
||||
# get NLLoc-location file
|
||||
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
|
||||
if len(glob.glob(locsearch)) > 0:
|
||||
# get latest NLLoc-location file if several are available
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
else:
|
||||
print("autoPyLoT: No NLLoc-location file available!")
|
||||
print("No source parameter estimation possible!")
|
||||
@ -152,9 +152,9 @@ def autoPyLoT(inputfile):
|
||||
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
|
||||
if len(glob.glob(locsearch)) > 0:
|
||||
# get latest file if several are available
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nlloccounter = 0
|
||||
while len(badpicks) > 0 and nlloccounter <= maxnumit:
|
||||
while len(badpicks) > 0 and nlloccounter <= maxnumit:
|
||||
nlloccounter += 1
|
||||
if nlloccounter > maxnumit:
|
||||
print("autoPyLoT: Number of maximum iterations reached, stop iterative picking!")
|
||||
@ -169,28 +169,28 @@ def autoPyLoT(inputfile):
|
||||
locate(nlloccall, ctrfile)
|
||||
print("autoPyLoT: Iteration No. %d finished." % nlloccounter)
|
||||
# get updated NLLoc-location file
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
# check for bad picks
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter, \
|
||||
len(badpicks)))
|
||||
len(badpicks)))
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No more bad onsets found, stop iterative picking!")
|
||||
nlloccounter = maxnumit
|
||||
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
# get network moment magntiude
|
||||
netMw = []
|
||||
for key in finalpicks.getpicdic():
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
for key in finalpicks.getpicdic():
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
netMw = np.median(netMw)
|
||||
print("Network moment magnitude: %4.1f" % netMw)
|
||||
else:
|
||||
@ -202,13 +202,18 @@ def autoPyLoT(inputfile):
|
||||
if hasattr(finalpicks, 'getpicdic'):
|
||||
if finalpicks.getpicdic() is not None:
|
||||
writephases(finalpicks.getpicdic(), 'HYPO71', hypo71file)
|
||||
data.applyEVTData(finalpicks.getpicdic())
|
||||
else:
|
||||
writephases(picks, 'HYPO71', hypo71file)
|
||||
data.applyEVTData(picks)
|
||||
else:
|
||||
writephases(picks, 'HYPO71', hypo71file)
|
||||
data.applyEVTData(picks)
|
||||
fnqml = '%s/autoPyLoT' % event
|
||||
data.exportEvent(fnqml)
|
||||
|
||||
endsplash = '''------------------------------------------\n'
|
||||
-----Finished event %s!-----\n'
|
||||
-----Finished event %s!-----\n'
|
||||
------------------------------------------'''.format \
|
||||
(version=_getVersionString()) % evID
|
||||
print(endsplash)
|
||||
@ -218,8 +223,8 @@ def autoPyLoT(inputfile):
|
||||
# single event processing
|
||||
else:
|
||||
data.setWFData(glob.glob(os.path.join(datapath, parameter.getParam('eventID'), '*')))
|
||||
print("Working on event "), parameter.getParam('eventID')
|
||||
print data
|
||||
print("Working on event {0}".format(parameter.getParam('eventID')))
|
||||
print(data)
|
||||
|
||||
wfdat = data.getWFData() # all available streams
|
||||
##########################################################
|
||||
@ -245,21 +250,21 @@ def autoPyLoT(inputfile):
|
||||
# get stations with bad onsets
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
|
||||
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
|
||||
# get NLLoc-location file
|
||||
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
|
||||
if len(glob.glob(locsearch)) > 0:
|
||||
# get latest NLLOc-location file if several are available
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
else:
|
||||
print("autoPyLoT: No NLLoc-location file available!")
|
||||
print("No source parameter estimation possible!")
|
||||
@ -268,9 +273,9 @@ def autoPyLoT(inputfile):
|
||||
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
|
||||
if len(glob.glob(locsearch)) > 0:
|
||||
# get latest file if several are available
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nlloccounter = 0
|
||||
while len(badpicks) > 0 and nlloccounter <= maxnumit:
|
||||
while len(badpicks) > 0 and nlloccounter <= maxnumit:
|
||||
nlloccounter += 1
|
||||
if nlloccounter > maxnumit:
|
||||
print("autoPyLoT: Number of maximum iterations reached, stop iterative picking!")
|
||||
@ -285,28 +290,28 @@ def autoPyLoT(inputfile):
|
||||
locate(nlloccall, ctrfile)
|
||||
print("autoPyLoT: Iteration No. %d finished." % nlloccounter)
|
||||
# get updated NLLoc-location file
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
# check for bad picks
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter, \
|
||||
len(badpicks)))
|
||||
len(badpicks)))
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No more bad onsets found, stop iterative picking!")
|
||||
nlloccounter = maxnumit
|
||||
|
||||
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
# get network moment magntiude
|
||||
netMw = []
|
||||
for key in finalpicks.getpicdic():
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
for key in finalpicks.getpicdic():
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
netMw = np.median(netMw)
|
||||
print("Network moment magnitude: %4.1f" % netMw)
|
||||
else:
|
||||
@ -318,19 +323,24 @@ def autoPyLoT(inputfile):
|
||||
if hasattr(finalpicks, 'getpicdic'):
|
||||
if finalpicks.getpicdic() is not None:
|
||||
writephases(finalpicks.getpicdic(), 'HYPO71', hypo71file)
|
||||
data.applyEVTData(finalpicks.getpicdic())
|
||||
else:
|
||||
writephases(picks, 'HYPO71', hypo71file)
|
||||
data.applyEVTData(picks)
|
||||
else:
|
||||
writephases(picks, 'HYPO71', hypo71file)
|
||||
|
||||
data.applyEVTData(picks)
|
||||
fnqml = '%s/%s/autoPyLoT' % (datapath, parameter.getParam('eventID'))
|
||||
data.exportEvent(fnqml)
|
||||
|
||||
endsplash = '''------------------------------------------\n'
|
||||
-----Finished event %s!-----\n'
|
||||
-----Finished event %s!-----\n'
|
||||
------------------------------------------'''.format \
|
||||
(version=_getVersionString()) % parameter.getParam('eventID')
|
||||
print(endsplash)
|
||||
if locflag == 0:
|
||||
print("autoPyLoT was running in non-location mode!")
|
||||
|
||||
|
||||
endsp = '''####################################\n
|
||||
************************************\n
|
||||
*********autoPyLoT terminates*******\n
|
||||
@ -338,7 +348,9 @@ def autoPyLoT(inputfile):
|
||||
************************************'''.format(version=_getVersionString())
|
||||
print(endsp)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from pylot.core.util.defaults import AUTOMATIC_DEFAULTS
|
||||
# parse arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description='''autoPyLoT automatically picks phase onset times using higher order statistics,
|
||||
@ -348,8 +360,7 @@ if __name__ == "__main__":
|
||||
action='store',
|
||||
help='''full path to the file containing the input
|
||||
parameters for autoPyLoT''',
|
||||
default=os.path.join(os.path.expanduser('~'), '.pylot',
|
||||
'autoPyLoT.in')
|
||||
default=AUTOMATIC_DEFAULTS
|
||||
)
|
||||
parser.add_argument('-v', '-V', '--version', action='version',
|
||||
version='autoPyLoT ' + __version__,
|
||||
|
@ -1,2 +1,2 @@
|
||||
P
|
||||
S bandpass 4 0.5 5.0
|
||||
P bandpass 4 2.0 20.0
|
||||
S bandpass 4 2.0 15.0
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
from __future__ import print_function
|
||||
|
||||
"""
|
||||
makePyLoT -- build and install PyLoT
|
||||
|
||||
@ -123,7 +125,7 @@ USAGE
|
||||
except KeyboardInterrupt:
|
||||
cleanUp(verbose)
|
||||
return 0
|
||||
except Exception, e:
|
||||
except Exception as e:
|
||||
if DEBUG or TESTRUN:
|
||||
raise e
|
||||
indent = len(program_name) * " "
|
||||
@ -139,7 +141,7 @@ def buildPyLoT(verbosity=None):
|
||||
"\n"
|
||||
" Current working directory: {1}\n"
|
||||
).format(system, os.getcwd())
|
||||
print msg
|
||||
print(msg)
|
||||
if system.startswith(('win', 'microsoft')):
|
||||
raise CLIError(
|
||||
"building on Windows system not tested yet; implementation pending")
|
||||
|
@ -1 +1 @@
|
||||
a31e-dirty
|
||||
1508-dirty
|
||||
|
@ -4,8 +4,9 @@ import numpy as np
|
||||
from pylot.core.active import seismicshot
|
||||
from pylot.core.active.surveyUtils import cleanUp
|
||||
|
||||
|
||||
class Survey(object):
|
||||
def __init__(self, path, sourcefile, receiverfile, useDefaultParas = False):
|
||||
def __init__(self, path, sourcefile, receiverfile, useDefaultParas=False):
|
||||
'''
|
||||
The Survey Class contains all shots [type: seismicshot] of a survey
|
||||
as well as the aquisition geometry and the topography.
|
||||
@ -37,7 +38,7 @@ class Survey(object):
|
||||
|
||||
shot_dict = {}
|
||||
shotlist = self.getShotlist()
|
||||
for shotnumber in shotlist: # loop over data files
|
||||
for shotnumber in shotlist: # loop over data files
|
||||
# generate filenames and read manual picks to a list
|
||||
obsfile = self._obsdir + str(shotnumber) + '_pickle.dat'
|
||||
if obsfile not in shot_dict.keys():
|
||||
@ -47,7 +48,7 @@ class Survey(object):
|
||||
|
||||
self.data = shot_dict
|
||||
print ("Generated Survey object for %d shots" % len(shotlist))
|
||||
print ("Total number of traces: %d \n" %self.countAllTraces())
|
||||
print ("Total number of traces: %d \n" % self.countAllTraces())
|
||||
|
||||
def _removeAllEmptyTraces(self):
|
||||
filename = 'removeEmptyTraces.out'
|
||||
@ -58,11 +59,11 @@ class Survey(object):
|
||||
if count == 0: outfile = open(filename, 'w')
|
||||
count += 1
|
||||
outfile.writelines('shot: %s, removed empty traces: %s\n'
|
||||
%(shot.getShotnumber(), removed))
|
||||
print ("\nremoveEmptyTraces: Finished! Removed %d traces" %count)
|
||||
% (shot.getShotnumber(), removed))
|
||||
print ("\nremoveEmptyTraces: Finished! Removed %d traces" % count)
|
||||
if count > 0:
|
||||
print ("See %s for more information "
|
||||
"on removed traces."%(filename))
|
||||
"on removed traces." % (filename))
|
||||
outfile.close()
|
||||
|
||||
def _updateShots(self):
|
||||
@ -70,7 +71,8 @@ class Survey(object):
|
||||
Removes traces that do not exist in the dataset for any reason.
|
||||
'''
|
||||
filename = 'updateShots.out'
|
||||
count = 0; countTraces = 0
|
||||
count = 0;
|
||||
countTraces = 0
|
||||
for shot in self.data.values():
|
||||
del_traceIDs = shot.updateTraceList()
|
||||
if len(del_traceIDs) > 0:
|
||||
@ -79,13 +81,13 @@ class Survey(object):
|
||||
countTraces += len(del_traceIDs)
|
||||
outfile.writelines("shot: %s, removed traceID(s) %s because "
|
||||
"they were not found in the corresponding stream\n"
|
||||
%(shot.getShotnumber(), del_traceIDs))
|
||||
% (shot.getShotnumber(), del_traceIDs))
|
||||
|
||||
print ("\nupdateShots: Finished! Updated %d shots and removed "
|
||||
"%d traces" %(count, countTraces))
|
||||
"%d traces" % (count, countTraces))
|
||||
if count > 0:
|
||||
print ("See %s for more information "
|
||||
"on removed traces."%(filename))
|
||||
"on removed traces." % (filename))
|
||||
outfile.close()
|
||||
|
||||
def setArtificialPick(self, traceID, pick):
|
||||
@ -96,9 +98,9 @@ class Survey(object):
|
||||
for shot in self.data.values():
|
||||
shot.setPick(traceID, pick)
|
||||
|
||||
def setParametersForShots(self, cutwindow = (0, 0.2), tmovwind = 0.3, tsignal = 0.03, tgap = 0.0007):
|
||||
def setParametersForShots(self, cutwindow=(0, 0.2), tmovwind=0.3, tsignal=0.03, tgap=0.0007):
|
||||
if (cutwindow == (0, 0.2) and tmovwind == 0.3 and
|
||||
tsignal == 0.03 and tgap == 0.0007):
|
||||
tsignal == 0.03 and tgap == 0.0007):
|
||||
print ("Warning: Standard values used for "
|
||||
"setParamters. This might not be clever.")
|
||||
# CHANGE this later. Parameters only needed for survey, not for each shot.
|
||||
@ -107,12 +109,12 @@ class Survey(object):
|
||||
shot.setTmovwind(tmovwind)
|
||||
shot.setTsignal(tsignal)
|
||||
shot.setTgap(tgap)
|
||||
shot.setOrder(order = 4)
|
||||
shot.setOrder(order=4)
|
||||
print ("setParametersForShots: Parameters set to:\n"
|
||||
"cutwindow = %s, tMovingWindow = %f, tsignal = %f, tgap = %f"
|
||||
%(cutwindow, tmovwind, tsignal, tgap))
|
||||
% (cutwindow, tmovwind, tsignal, tgap))
|
||||
|
||||
def setManualPicksFromFiles(self, directory = 'picks'):
|
||||
def setManualPicksFromFiles(self, directory='picks'):
|
||||
'''
|
||||
Read manual picks from *.pck files in a directory.
|
||||
The * must be identical with the shotnumber.
|
||||
@ -135,7 +137,10 @@ class Survey(object):
|
||||
|
||||
def plotDiffs(self):
|
||||
import matplotlib.pyplot as plt
|
||||
diffs = []; dists = []; mpicks = []; picks = []
|
||||
diffs = [];
|
||||
dists = [];
|
||||
mpicks = [];
|
||||
picks = []
|
||||
diffsDic = self.getDiffsFromManual()
|
||||
for shot in self.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
@ -144,22 +149,22 @@ class Survey(object):
|
||||
mpicks.append(shot.getManualPick(traceID))
|
||||
picks.append(shot.getPick(traceID))
|
||||
diffs.append(diffsDic[shot][traceID])
|
||||
|
||||
|
||||
labelm = 'manual picks'
|
||||
labela = 'automatic picks'
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
sc_a = ax.scatter(dists, picks, c = '0.5', s=10, edgecolors='none', label = labela, alpha = 0.3)
|
||||
sc = ax.scatter(dists, mpicks, c = diffs, s=5, edgecolors='none', label = labelm)
|
||||
sc_a = ax.scatter(dists, picks, c='0.5', s=10, edgecolors='none', label=labela, alpha=0.3)
|
||||
sc = ax.scatter(dists, mpicks, c=diffs, s=5, edgecolors='none', label=labelm)
|
||||
cbar = plt.colorbar(sc, fraction=0.05)
|
||||
cbar.set_label(labelm)
|
||||
ax.set_xlabel('Distance [m]')
|
||||
ax.set_ylabel('Time [s]')
|
||||
ax.text(0.5, 0.95, 'Plot of all MANUAL picks', transform=ax.transAxes, horizontalalignment='center')
|
||||
|
||||
def plotHist(self, nbins = 20, ax = None):
|
||||
def plotHist(self, nbins=20, ax=None):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
diffs = []
|
||||
@ -170,48 +175,51 @@ class Survey(object):
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getPickFlag(traceID) == 1 and shot.getManualPickFlag(traceID) == 1:
|
||||
diffs.append(self.getDiffsFromManual()[shot][traceID])
|
||||
hist = plt.hist(diffs, nbins, histtype = 'step', normed = True, stacked = True)
|
||||
hist = plt.hist(diffs, nbins, histtype='step', normed=True, stacked=True)
|
||||
plt.title('Histogram of the differences between automatic and manual pick')
|
||||
plt.xlabel('Difference in time (auto - manual) [s]')
|
||||
return diffs
|
||||
|
||||
def pickAllShots(self, windowsize, HosAic = 'hos', vmin = 333, vmax = 5500, folm = 0.6):
|
||||
def pickAllShots(self, windowsize, HosAic='hos', vmin=333, vmax=5500, folm=0.6):
|
||||
'''
|
||||
Automatically pick all traces of all shots of the survey.
|
||||
'''
|
||||
from datetime import datetime
|
||||
starttime = datetime.now()
|
||||
count = 0; tpicksum = starttime - starttime
|
||||
count = 0;
|
||||
tpicksum = starttime - starttime
|
||||
|
||||
for shot in self.data.values():
|
||||
tstartpick = datetime.now(); count += 1
|
||||
tstartpick = datetime.now();
|
||||
count += 1
|
||||
for traceID in shot.getTraceIDlist():
|
||||
distance = shot.getDistance(traceID) # receive distance
|
||||
distance = shot.getDistance(traceID) # receive distance
|
||||
|
||||
pickwin_used = shot.getCut()
|
||||
cutwindow = shot.getCut()
|
||||
|
||||
# for higher distances use a linear vmin/vmax to cut out late/early regions with high noise
|
||||
if distance > 5.:
|
||||
pwleft = distance/vmax ################## TEST
|
||||
pwright = distance/vmin
|
||||
pwleft = distance / vmax ################## TEST
|
||||
pwright = distance / vmin
|
||||
if pwright > cutwindow[1]:
|
||||
pwright = cutwindow[1]
|
||||
pickwin_used = (pwleft, pwright)
|
||||
|
||||
shot.setPickwindow(traceID, pickwin_used)
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
|
||||
shot.setSNR(traceID)
|
||||
#if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
# if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
shot.removePick(traceID)
|
||||
|
||||
# set epp and lpp if SNR > 1 (else earllatepicker cant set values)
|
||||
if shot.getSNR(traceID)[0] > 1:
|
||||
shot.setEarllatepick(traceID)
|
||||
|
||||
tpicksum += (datetime.now() - tstartpick); tpick = tpicksum/count
|
||||
tpicksum += (datetime.now() - tstartpick);
|
||||
tpick = tpicksum / count
|
||||
tremain = (tpick * (len(self.getShotDict()) - count))
|
||||
tend = datetime.now() + tremain
|
||||
progress = float(count) / float(len(self.getShotDict())) * 100
|
||||
@ -220,7 +228,7 @@ class Survey(object):
|
||||
ntraces = self.countAllTraces()
|
||||
pickedtraces = self.countAllPickedTraces()
|
||||
print('Picked %s / %s traces (%d %%)\n'
|
||||
%(pickedtraces, ntraces, float(pickedtraces)/float(ntraces)*100.))
|
||||
% (pickedtraces, ntraces, float(pickedtraces) / float(ntraces) * 100.))
|
||||
|
||||
def cleanBySPE(self, maxSPE):
|
||||
for shot in self.data.values():
|
||||
@ -237,7 +245,7 @@ class Survey(object):
|
||||
if shot.getPickFlag(traceID) == 1:
|
||||
spe.append(shot.getSymmetricPickError(traceID))
|
||||
spe.sort()
|
||||
plt.plot(spe, label = 'SPE')
|
||||
plt.plot(spe, label='SPE')
|
||||
plt.ylabel('Symmetric Pickerror')
|
||||
plt.legend()
|
||||
|
||||
@ -255,7 +263,7 @@ class Survey(object):
|
||||
shot.removePick(traceID)
|
||||
else:
|
||||
numpicks += 1
|
||||
print('Recovered %d picks'%numpicks)
|
||||
print('Recovered %d picks' % numpicks)
|
||||
|
||||
def setArtificialPick(self, traceID, pick):
|
||||
for shot in self.data.values():
|
||||
@ -265,13 +273,13 @@ class Survey(object):
|
||||
def countAllTraces(self):
|
||||
numtraces = 0
|
||||
for shot in self.getShotlist():
|
||||
for rec in self.getReceiverlist(): ### shot.getReceiverlist etc.
|
||||
for rec in self.getReceiverlist(): ### shot.getReceiverlist etc.
|
||||
numtraces += 1
|
||||
return numtraces
|
||||
|
||||
def getShotlist(self):
|
||||
filename = self.getPath() + self.getSourcefile()
|
||||
srcfile = open(filename,'r')
|
||||
srcfile = open(filename, 'r')
|
||||
shotlist = []
|
||||
for line in srcfile.readlines():
|
||||
line = line.split()
|
||||
@ -281,7 +289,7 @@ class Survey(object):
|
||||
|
||||
def getReceiverlist(self):
|
||||
filename = self.getPath() + self.getReceiverfile()
|
||||
recfile = open(filename,'r')
|
||||
recfile = open(filename, 'r')
|
||||
reclist = []
|
||||
for line in recfile.readlines():
|
||||
line = line.split()
|
||||
@ -318,8 +326,8 @@ class Survey(object):
|
||||
pickedTraces += 1
|
||||
info_dict[shot.getShotnumber()] = {'numtraces': numtraces,
|
||||
'picked traces': [pickedTraces,
|
||||
'%2.2f %%'%(float(pickedTraces) /
|
||||
float(numtraces) * 100)],
|
||||
'%2.2f %%' % (float(pickedTraces) /
|
||||
float(numtraces) * 100)],
|
||||
'mean SNR': np.mean(snrlist),
|
||||
'mean distance': np.mean(dist)}
|
||||
|
||||
@ -330,7 +338,7 @@ class Survey(object):
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
return shot
|
||||
|
||||
def exportFMTOMO(self, directory = 'FMTOMO_export', sourcefile = 'input_sf.in', ttFileExtension = '.tt'):
|
||||
def exportFMTOMO(self, directory='FMTOMO_export', sourcefile='input_sf.in', ttFileExtension='.tt'):
|
||||
def getAngle(distance):
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
@ -338,18 +346,22 @@ class Survey(object):
|
||||
return angle
|
||||
|
||||
count = 0
|
||||
fmtomo_factor = 1000 # transforming [m/s] -> [km/s]
|
||||
LatAll = []; LonAll = []; DepthAll = []
|
||||
fmtomo_factor = 1000 # transforming [m/s] -> [km/s]
|
||||
LatAll = [];
|
||||
LonAll = [];
|
||||
DepthAll = []
|
||||
srcfile = open(directory + '/' + sourcefile, 'w')
|
||||
srcfile.writelines('%10s\n' %len(self.data)) # number of sources
|
||||
srcfile.writelines('%10s\n' % len(self.data)) # number of sources
|
||||
for shotnumber in self.getShotlist():
|
||||
shot = self.getShotForShotnumber(shotnumber)
|
||||
ttfilename = str(shotnumber) + ttFileExtension
|
||||
(x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
|
||||
srcfile.writelines('%10s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z)) # lat, lon, depth
|
||||
LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
|
||||
srcfile.writelines('%10s\n' %1) #
|
||||
srcfile.writelines('%10s %10s %10s\n' %(1, 1, ttfilename))
|
||||
(x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
|
||||
srcfile.writelines('%10s %10s %10s\n' % (getAngle(y), getAngle(x), (-1) * z)) # lat, lon, depth
|
||||
LatAll.append(getAngle(y));
|
||||
LonAll.append(getAngle(x));
|
||||
DepthAll.append((-1) * z)
|
||||
srcfile.writelines('%10s\n' % 1) #
|
||||
srcfile.writelines('%10s %10s %10s\n' % (1, 1, ttfilename))
|
||||
ttfile = open(directory + '/' + ttfilename, 'w')
|
||||
traceIDlist = shot.getTraceIDlist()
|
||||
traceIDlist.sort()
|
||||
@ -359,8 +371,10 @@ class Survey(object):
|
||||
pick = shot.getPick(traceID) * fmtomo_factor
|
||||
delta = shot.getSymmetricPickError(traceID) * fmtomo_factor
|
||||
(x, y, z) = shot.getRecLoc(traceID)
|
||||
ttfile.writelines('%20s %20s %20s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z, pick, delta))
|
||||
LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
|
||||
ttfile.writelines('%20s %20s %20s %10s %10s\n' % (getAngle(y), getAngle(x), (-1) * z, pick, delta))
|
||||
LatAll.append(getAngle(y));
|
||||
LonAll.append(getAngle(x));
|
||||
DepthAll.append((-1) * z)
|
||||
count += 1
|
||||
ttfile.close()
|
||||
srcfile.close()
|
||||
@ -393,7 +407,7 @@ class Survey(object):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def plotAllShots(self, rows = 3, columns = 4, mode = '3d'):
|
||||
def plotAllShots(self, rows=3, columns=4, mode='3d'):
|
||||
'''
|
||||
Plots all shots as Matrices with the color corresponding to the traveltime for each receiver.
|
||||
IMPORTANT NOTE: Topography (z - coordinate) is not considered in the diagrams!
|
||||
@ -408,8 +422,8 @@ class Survey(object):
|
||||
figPerSubplot = columns * rows
|
||||
|
||||
index = 1
|
||||
#shotnames = []
|
||||
#shotnumbers = []
|
||||
# shotnames = []
|
||||
# shotnumbers = []
|
||||
|
||||
# for shot in self.data.values():
|
||||
# shotnames.append(shot.getShotname())
|
||||
@ -419,24 +433,24 @@ class Survey(object):
|
||||
|
||||
for shotnumber in self.getShotlist():
|
||||
if index <= figPerSubplot:
|
||||
#ax = fig.add_subplot(3,3,i, projection = '3d', title = 'shot:'
|
||||
#+str(shot_dict[shotnumber].getShotnumber()), xlabel = 'X', ylabel = 'Y', zlabel = 'traveltime')
|
||||
#shot_dict[shotnumber].plot3dttc(ax = ax, plotpicks = True)
|
||||
# ax = fig.add_subplot(3,3,i, projection = '3d', title = 'shot:'
|
||||
# +str(shot_dict[shotnumber].getShotnumber()), xlabel = 'X', ylabel = 'Y', zlabel = 'traveltime')
|
||||
# shot_dict[shotnumber].plot3dttc(ax = ax, plotpicks = True)
|
||||
ax = fig.add_subplot(rows, columns, index)
|
||||
if mode == '3d':
|
||||
self.getShot(shotnumber).matshow(ax = ax, colorbar = False, annotations = True, legend = False)
|
||||
self.getShot(shotnumber).matshow(ax=ax, colorbar=False, annotations=True, legend=False)
|
||||
elif mode == '2d':
|
||||
self.getShot(shotnumber).plot2dttc(ax)
|
||||
self.getShot(shotnumber).plotmanual2dttc(ax)
|
||||
index += 1
|
||||
if index > figPerSubplot:
|
||||
fig.subplots_adjust(left = 0, bottom = 0, right = 1, top = 1, wspace = 0, hspace = 0)
|
||||
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
|
||||
fig = plt.figure()
|
||||
index = 1
|
||||
|
||||
fig.subplots_adjust(left = 0, bottom = 0, right = 1, top = 1, wspace = 0, hspace = 0)
|
||||
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
|
||||
|
||||
def plotAllPicks(self, plotRemoved = False, colorByVal = 'log10SNR', ax = None, cbar = None, refreshPlot = False):
|
||||
def plotAllPicks(self, plotRemoved=False, colorByVal='log10SNR', ax=None, cbar=None, refreshPlot=False):
|
||||
'''
|
||||
Plots all picks over the distance between source and receiver. Returns (ax, region).
|
||||
Picks can be checked and removed by using region class (pylot.core.active.surveyPlotTools.regions)
|
||||
@ -488,8 +502,8 @@ class Survey(object):
|
||||
spe.append(shot.getSymmetricPickError(traceID))
|
||||
|
||||
color = {'log10SNR': snrlog,
|
||||
'pickerror': pickerror,
|
||||
'spe': spe}
|
||||
'pickerror': pickerror,
|
||||
'spe': spe}
|
||||
self.color = color
|
||||
if refreshPlot is False:
|
||||
ax, cbar = self.createPlot(dist, pick, color[colorByVal], label='%s' % colorByVal)
|
||||
@ -501,7 +515,7 @@ class Survey(object):
|
||||
ax.legend()
|
||||
return ax
|
||||
|
||||
def createPlot(self, dist, pick, inkByVal, label, ax = None, cbar = None):
|
||||
def createPlot(self, dist, pick, inkByVal, label, ax=None, cbar=None):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
cm = plt.cm.jet
|
||||
@ -526,19 +540,19 @@ class Survey(object):
|
||||
|
||||
def _update_progress(self, shotname, tend, progress):
|
||||
sys.stdout.write('Working on shot %s. ETC is %02d:%02d:%02d [%2.2f %%]\r' % (shotname,
|
||||
tend.hour,
|
||||
tend.minute,
|
||||
tend.second,
|
||||
progress))
|
||||
tend.hour,
|
||||
tend.minute,
|
||||
tend.second,
|
||||
progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
def saveSurvey(self, filename = 'survey.pickle'):
|
||||
def saveSurvey(self, filename='survey.pickle'):
|
||||
import cPickle
|
||||
cleanUp(self)
|
||||
outfile = open(filename, 'wb')
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved Survey to file %s'%(filename))
|
||||
print('saved Survey to file %s' % (filename))
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
|
@ -2,11 +2,12 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'abs', inputfileref = 'vgridsref.in'):
|
||||
|
||||
def vgrids2VTK(inputfile='vgrids.in', outputfile='vgrids.vtk', absOrRel='abs', inputfileref='vgridsref.in'):
|
||||
'''
|
||||
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
|
||||
'''
|
||||
R = 6371. # earth radius
|
||||
R = 6371. # earth radius
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
number, delta, start, vel = _readVgrid(inputfile)
|
||||
@ -14,12 +15,14 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
nR, nTheta, nPhi = number
|
||||
dR, dTheta, dPhi = delta
|
||||
sR, sTheta, sPhi = start
|
||||
|
||||
|
||||
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
|
||||
|
||||
nPoints = nR * nTheta * nPhi
|
||||
|
||||
nX = nPhi; nY = nTheta; nZ = nR
|
||||
nX = nPhi;
|
||||
nY = nTheta;
|
||||
nZ = nR
|
||||
|
||||
sZ = sR - R
|
||||
sX = _getDistance(sPhi)
|
||||
@ -36,17 +39,21 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET STRUCTURED_POINTS\n')
|
||||
|
||||
outfile.writelines('DIMENSIONS %d %d %d\n' %(nX, nY, nZ))
|
||||
outfile.writelines('ORIGIN %f %f %f\n' %(sX, sY, sZ))
|
||||
outfile.writelines('SPACING %f %f %f\n' %(dX, dY, dZ))
|
||||
outfile.writelines('DIMENSIONS %d %d %d\n' % (nX, nY, nZ))
|
||||
outfile.writelines('ORIGIN %f %f %f\n' % (sX, sY, sZ))
|
||||
outfile.writelines('SPACING %f %f %f\n' % (dX, dY, dZ))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
if absOrRel == 'abs':
|
||||
<<<<<<< HEAD
|
||||
outfile.writelines('SCALARS velocity float %d\n' %(1))
|
||||
if absOrRel == 'relDepth':
|
||||
outfile.writelines('SCALARS velocity2depthMean float %d\n' %(1))
|
||||
=======
|
||||
outfile.writelines('SCALARS velocity float %d\n' % (1))
|
||||
>>>>>>> 37f9292c39246b327d3630995ca2521725c6cdd7
|
||||
elif absOrRel == 'rel':
|
||||
outfile.writelines('SCALARS velChangePercent float %d\n' %(1))
|
||||
outfile.writelines('SCALARS velChangePercent float %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
pointsPerR = nTheta * nPhi
|
||||
@ -55,6 +62,7 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
if absOrRel == 'abs':
|
||||
print("Writing velocity values to VTK file...")
|
||||
for velocity in vel:
|
||||
<<<<<<< HEAD
|
||||
outfile.writelines('%10f\n' %velocity)
|
||||
elif absOrRel == 'relDepth':
|
||||
print("Writing velocity values to VTK file relative to mean of each depth...")
|
||||
@ -69,34 +77,38 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
for vel in veldepth:
|
||||
outfile.writelines('%10f\n' %(vel - velmean))
|
||||
veldepth = []
|
||||
=======
|
||||
outfile.writelines('%10f\n' % velocity)
|
||||
>>>>>>> 37f9292c39246b327d3630995ca2521725c6cdd7
|
||||
elif absOrRel == 'rel':
|
||||
nref, dref, sref, velref = _readVgrid(inputfileref)
|
||||
nR_ref, nTheta_ref, nPhi_ref = nref
|
||||
if not len(velref) == len(vel):
|
||||
print('ERROR: Number of gridpoints mismatch for %s and %s'%(inputfile, inputfileref))
|
||||
print('ERROR: Number of gridpoints mismatch for %s and %s' % (inputfile, inputfileref))
|
||||
return
|
||||
#velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
||||
# velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
||||
velrel = []
|
||||
for velocities in zip(vel, velref):
|
||||
v, vref = velocities
|
||||
if not vref == 0:
|
||||
velrel.append((v - vref) / vref * 100)
|
||||
else:
|
||||
velrel.append(0)
|
||||
velrel.append(0)
|
||||
|
||||
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
|
||||
print('ERROR: Dimension mismatch of grids %s and %s'%(inputfile, inputfileref))
|
||||
print('ERROR: Dimension mismatch of grids %s and %s' % (inputfile, inputfileref))
|
||||
return
|
||||
print("Writing velocity values to VTK file...")
|
||||
for velocity in velrel:
|
||||
outfile.writelines('%10f\n' %velocity)
|
||||
print('Pertubations: min: %s %%, max: %s %%'%(min(velrel), max(velrel)))
|
||||
outfile.writelines('%10f\n' % velocity)
|
||||
print('Pertubations: min: %s %%, max: %s %%' % (min(velrel), max(velrel)))
|
||||
|
||||
outfile.close()
|
||||
print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
|
||||
print("Wrote velocity grid for %d points to file: %s" % (nPoints, outputfile))
|
||||
return
|
||||
|
||||
def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
|
||||
def rays2VTK(fnin, fdirout='./vtk_files/', nthPoint=50):
|
||||
'''
|
||||
Writes VTK file(s) for FMTOMO rays from rays.dat
|
||||
|
||||
@ -113,12 +125,12 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
while True:
|
||||
raynumber += 1
|
||||
firstline = infile.readline()
|
||||
if firstline == '': break # break at EOF
|
||||
if firstline == '': break # break at EOF
|
||||
raynumber = int(firstline.split()[0])
|
||||
shotnumber = int(firstline.split()[1])
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
if rayValid == 0:
|
||||
print('Invalid ray number %d for shot number %d'%(raynumber, shotnumber))
|
||||
print('Invalid ray number %d for shot number %d' % (raynumber, shotnumber))
|
||||
continue
|
||||
nRayPoints = int(infile.readline().split()[0])
|
||||
if not shotnumber in rays.keys():
|
||||
@ -127,14 +139,15 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
for index in range(nRayPoints):
|
||||
if index % nthPoint is 0 or index == (nRayPoints - 1):
|
||||
rad, lat, lon = infile.readline().split()
|
||||
rays[shotnumber][raynumber].append([_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
||||
rays[shotnumber][raynumber].append(
|
||||
[_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
||||
else:
|
||||
dummy = infile.readline()
|
||||
|
||||
infile.close()
|
||||
|
||||
for shotnumber in rays.keys():
|
||||
fnameout = fdirout + 'rays%03d.vtk'%(shotnumber)
|
||||
fnameout = fdirout + 'rays%03d.vtk' % (shotnumber)
|
||||
outfile = open(fnameout, 'w')
|
||||
|
||||
nPoints = 0
|
||||
@ -143,32 +156,33 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
nPoints += 1
|
||||
|
||||
# write header
|
||||
#print("Writing header for VTK file...")
|
||||
print("Writing shot %d to file %s" %(shotnumber, fnameout))
|
||||
# print("Writing header for VTK file...")
|
||||
print("Writing shot %d to file %s" % (shotnumber, fnameout))
|
||||
outfile.writelines('# vtk DataFile Version 3.1\n')
|
||||
outfile.writelines('FMTOMO rays\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
#print("Writing coordinates to VTK file...")
|
||||
# print("Writing coordinates to VTK file...")
|
||||
for raynumber in rays[shotnumber].keys():
|
||||
for raypoint in rays[shotnumber][raynumber]:
|
||||
outfile.writelines('%10f %10f %10f \n' %(raypoint[0], raypoint[1], raypoint[2]))
|
||||
outfile.writelines('%10f %10f %10f \n' % (raypoint[0], raypoint[1], raypoint[2]))
|
||||
|
||||
outfile.writelines('LINES %15d %15d\n' %(len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
||||
outfile.writelines('LINES %15d %15d\n' % (len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
||||
|
||||
# write indices
|
||||
#print("Writing indices to VTK file...")
|
||||
# print("Writing indices to VTK file...")
|
||||
count = 0
|
||||
for raynumber in rays[shotnumber].keys():
|
||||
outfile.writelines('%d ' %(len(rays[shotnumber][raynumber])))
|
||||
outfile.writelines('%d ' % (len(rays[shotnumber][raynumber])))
|
||||
for index in range(len(rays[shotnumber][raynumber])):
|
||||
outfile.writelines('%d ' %(count))
|
||||
outfile.writelines('%d ' % (count))
|
||||
count += 1
|
||||
outfile.writelines('\n')
|
||||
|
||||
|
||||
def _readVgrid(filename):
|
||||
def readNumberOfPoints(filename):
|
||||
fin = open(filename, 'r')
|
||||
@ -179,7 +193,7 @@ def _readVgrid(filename):
|
||||
nPhi = int(vglines[1].split()[2])
|
||||
|
||||
print('readNumberOf Points: Awaiting %d grid points in %s'
|
||||
%(nR*nTheta*nPhi, filename))
|
||||
% (nR * nTheta * nPhi, filename))
|
||||
fin.close()
|
||||
return nR, nTheta, nPhi
|
||||
|
||||
@ -206,10 +220,11 @@ def _readVgrid(filename):
|
||||
return sR, sTheta, sPhi
|
||||
|
||||
def readVelocity(filename):
|
||||
'''
|
||||
'''
|
||||
Reads in velocity from vgrids file and returns a list containing all values in the same order
|
||||
'''
|
||||
vel = []; count = 0
|
||||
vel = [];
|
||||
count = 0
|
||||
fin = open(filename, 'r')
|
||||
vglines = fin.readlines()
|
||||
|
||||
@ -218,7 +233,7 @@ def _readVgrid(filename):
|
||||
if count > 4:
|
||||
vel.append(float(line.split()[0]))
|
||||
|
||||
print("Read %d points out of file: %s" %(count - 4, filename))
|
||||
print("Read %d points out of file: %s" % (count - 4, filename))
|
||||
return vel
|
||||
|
||||
# Theta, Phi in radians, R in km
|
||||
@ -235,23 +250,25 @@ def _readVgrid(filename):
|
||||
start = (sR, sTheta, sPhi)
|
||||
return number, delta, start, vel
|
||||
|
||||
|
||||
def _generateGrids(number, delta, start):
|
||||
nR, nTheta, nPhi = number
|
||||
dR, dTheta, dPhi = delta
|
||||
sR, sTheta, sPhi = start
|
||||
|
||||
|
||||
eR = sR + (nR - 1) * dR
|
||||
ePhi = sPhi + (nPhi - 1) * dPhi
|
||||
eTheta = sTheta + (nTheta - 1) * dTheta
|
||||
|
||||
thetaGrid = np.linspace(sTheta, eTheta, num = nTheta)
|
||||
phiGrid = np.linspace(sPhi, ePhi, num = nPhi)
|
||||
rGrid = np.linspace(sR, eR, num = nR)
|
||||
thetaGrid = np.linspace(sTheta, eTheta, num=nTheta)
|
||||
phiGrid = np.linspace(sPhi, ePhi, num=nPhi)
|
||||
rGrid = np.linspace(sR, eR, num=nR)
|
||||
|
||||
return (thetaGrid, phiGrid, rGrid)
|
||||
|
||||
def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
outputfile = 'vgrids_cb.in', ampmethod = 'linear', rect = (None, None)):
|
||||
|
||||
def addCheckerboard(spacing=10., pertubation=0.1, inputfile='vgrids.in',
|
||||
outputfile='vgrids_cb.in', ampmethod='linear', rect=(None, None)):
|
||||
'''
|
||||
Add a checkerboard to an existing vgrids.in velocity model.
|
||||
|
||||
@ -261,13 +278,14 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
:param: pertubation, pertubation (default: 0.1 = 10%)
|
||||
type: float
|
||||
'''
|
||||
def correctSpacing(spacing, delta, disttype = None):
|
||||
|
||||
def correctSpacing(spacing, delta, disttype=None):
|
||||
if spacing > delta:
|
||||
spacing_corr = round(spacing / delta) * delta
|
||||
elif spacing < delta:
|
||||
spacing_corr = delta
|
||||
print('The spacing of the checkerboard of %s (%s) was corrected to '
|
||||
'a value of %s to fit the grid spacing of %s.' %(spacing, disttype, spacing_corr, delta))
|
||||
'a value of %s to fit the grid spacing of %s.' % (spacing, disttype, spacing_corr, delta))
|
||||
return spacing_corr
|
||||
|
||||
def linearAmp(InCell):
|
||||
@ -282,7 +300,7 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
else:
|
||||
return 0
|
||||
|
||||
def ampFunc(InCell, method = 'linear', rect = None):
|
||||
def ampFunc(InCell, method='linear', rect=None):
|
||||
if method == 'linear':
|
||||
return linearAmp(InCell)
|
||||
if method == 'rect' and rect is not None:
|
||||
@ -290,7 +308,7 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
else:
|
||||
print('ampFunc: Could not amplify cb pattern')
|
||||
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
number, delta, start, vel = _readVgrid(inputfile)
|
||||
@ -298,16 +316,16 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
nR, nTheta, nPhi = number
|
||||
dR, dTheta, dPhi = delta
|
||||
sR, sTheta, sPhi = start
|
||||
|
||||
|
||||
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
|
||||
|
||||
nPoints = nR * nTheta * nPhi
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
outfile.writelines('%10s %10s \n' % (1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
|
||||
spacR = correctSpacing(spacing, dR, '[meter], R')
|
||||
spacTheta = correctSpacing(_getAngle(spacing), dTheta, '[degree], Theta')
|
||||
@ -315,7 +333,8 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
|
||||
count = 0
|
||||
evenOdd = 1
|
||||
even = 0; odd = 0
|
||||
even = 0;
|
||||
odd = 0
|
||||
|
||||
# In the following loop it is checked whether the positive distance from the border of the model
|
||||
# for a point on the grid divided by the spacing is even or odd and then pertubated.
|
||||
@ -326,21 +345,21 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
# The amplification factor ampFactor comes from a linear relationship and ranges between 0 (cell border)
|
||||
# and 1 (cell middle)
|
||||
for radius in rGrid:
|
||||
rInCell = (radius - sR - dR/2) / spacR
|
||||
rInCell = (radius - sR - dR / 2) / spacR
|
||||
ampR = ampFunc(rInCell, ampmethod, rect)
|
||||
if np.floor(rInCell) % 2:
|
||||
evenOddR = 1
|
||||
else:
|
||||
evenOddR = -1
|
||||
for theta in thetaGrid:
|
||||
thetaInCell = (theta - sTheta - dTheta/2) / spacTheta
|
||||
thetaInCell = (theta - sTheta - dTheta / 2) / spacTheta
|
||||
ampTheta = ampFunc(thetaInCell, ampmethod, rect)
|
||||
if np.floor(thetaInCell) % 2:
|
||||
evenOddT = 1
|
||||
else:
|
||||
evenOddT = -1
|
||||
for phi in phiGrid:
|
||||
phiInCell = (phi - sPhi - dPhi/2) / spacPhi
|
||||
phiInCell = (phi - sPhi - dPhi / 2) / spacPhi
|
||||
ampPhi = ampFunc(phiInCell, ampmethod, rect)
|
||||
if np.floor(phiInCell) % 2:
|
||||
evenOddP = 1
|
||||
@ -351,19 +370,20 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
evenOdd = evenOddR * evenOddT * evenOddP * ampFactor
|
||||
velocity += evenOdd * pertubation * velocity
|
||||
|
||||
outfile.writelines('%10s %10s\n'%(velocity, decm))
|
||||
outfile.writelines('%10s %10s\n' % (velocity, decm))
|
||||
count += 1
|
||||
|
||||
progress = float(count) / float(nPoints) * 100
|
||||
_update_progress(progress)
|
||||
|
||||
print('Added checkerboard to the grid in file %s with a spacing of %s and a pertubation of %s %%. '
|
||||
'Outputfile: %s.'%(inputfile, spacing, pertubation*100, outputfile))
|
||||
'Outputfile: %s.' % (inputfile, spacing, pertubation * 100, outputfile))
|
||||
outfile.close()
|
||||
|
||||
def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
boxvelocity = 1.0, inputfile = 'vgrids.in',
|
||||
outputfile = 'vgrids_box.in'):
|
||||
|
||||
def addBox(x=(None, None), y=(None, None), z=(None, None),
|
||||
boxvelocity=1.0, inputfile='vgrids.in',
|
||||
outputfile='vgrids_box.in'):
|
||||
'''
|
||||
Add a box with constant velocity to an existing vgrids.in velocity model.
|
||||
|
||||
@ -380,7 +400,7 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
type: float
|
||||
'''
|
||||
R = 6371.
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
theta1 = _getAngle(y[0])
|
||||
@ -392,23 +412,23 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
|
||||
print('Adding box to grid with theta = (%s, %s), phi = (%s, %s), '
|
||||
'r = (%s, %s), velocity = %s [km/s]'
|
||||
%(theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
|
||||
|
||||
% (theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
|
||||
|
||||
number, delta, start, vel = _readVgrid(inputfile)
|
||||
|
||||
nR, nTheta, nPhi = number
|
||||
dR, dTheta, dPhi = delta
|
||||
sR, sTheta, sPhi = start
|
||||
|
||||
|
||||
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
|
||||
|
||||
nPoints = nR * nTheta * nPhi
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
outfile.writelines('%10s %10s \n' % (1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
|
||||
count = 0
|
||||
for radius in rGrid:
|
||||
@ -430,20 +450,22 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
if rFlag * thetaFlag * phiFlag is not 0:
|
||||
velocity = boxvelocity
|
||||
|
||||
outfile.writelines('%10s %10s\n'%(velocity, decm))
|
||||
outfile.writelines('%10s %10s\n' % (velocity, decm))
|
||||
count += 1
|
||||
|
||||
progress = float(count) / float(nPoints) * 100
|
||||
_update_progress(progress)
|
||||
|
||||
print('Added box to the grid in file %s. '
|
||||
'Outputfile: %s.'%(inputfile, outputfile))
|
||||
'Outputfile: %s.' % (inputfile, outputfile))
|
||||
outfile.close()
|
||||
|
||||
|
||||
def _update_progress(progress):
|
||||
sys.stdout.write("%d%% done \r" % (progress) )
|
||||
sys.stdout.write("%d%% done \r" % (progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
|
||||
def _getAngle(distance):
|
||||
'''
|
||||
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
|
||||
@ -453,9 +475,9 @@ def _getAngle(distance):
|
||||
angle = distance * 180. / (PI * R)
|
||||
return angle
|
||||
|
||||
|
||||
def _getDistance(angle):
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
distance = angle / 180 * (PI * R)
|
||||
return distance
|
||||
|
||||
|
@ -3,6 +3,7 @@ import sys
|
||||
import numpy as np
|
||||
from scipy.interpolate import griddata
|
||||
|
||||
|
||||
class SeisArray(object):
|
||||
'''
|
||||
Can be used to interpolate missing values of a receiver grid, if only support points were measured.
|
||||
@ -15,6 +16,7 @@ class SeisArray(object):
|
||||
Supports vtk output for sources and receivers.
|
||||
Note: Source and Receiver files for FMTOMO will be generated by the Survey object (because traveltimes will be added directly).
|
||||
'''
|
||||
|
||||
def __init__(self, recfile):
|
||||
self.recfile = recfile
|
||||
self._receiverlines = {}
|
||||
@ -35,7 +37,7 @@ class SeisArray(object):
|
||||
'''
|
||||
for receiver in self._receiverlist:
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
lineID = int(receiver.split()[1])
|
||||
if not lineID in self._receiverlines.keys():
|
||||
self._receiverlines[lineID] = []
|
||||
self._receiverlines[lineID].append(traceID)
|
||||
@ -132,7 +134,7 @@ class SeisArray(object):
|
||||
if traceID2 < traceID1:
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" % (traceID1, traceID2)
|
||||
|
||||
def _checkCoordDirection(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
@ -144,14 +146,15 @@ class SeisArray(object):
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" % (traceID1, traceID2)
|
||||
|
||||
def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
Returns the mean distance between two traceID's depending on the number of geophones in between
|
||||
'''
|
||||
num_spaces = abs(self._getGeophoneNumber(traceID1) - self._getGeophoneNumber(traceID2))
|
||||
mean_distance = abs(self._getReceiverValue(traceID1, coordinate) - self._getReceiverValue(traceID2, coordinate))/num_spaces
|
||||
mean_distance = abs(
|
||||
self._getReceiverValue(traceID1, coordinate) - self._getReceiverValue(traceID2, coordinate)) / num_spaces
|
||||
return mean_distance
|
||||
|
||||
def interpolateValues(self, coordinate):
|
||||
@ -159,22 +162,22 @@ class SeisArray(object):
|
||||
Interpolates and sets all values (linear) for coordinate = 'X', 'Y' or 'Z'
|
||||
'''
|
||||
for lineID in self._getReceiverlines().keys():
|
||||
number_measured = len(self._getReceiverlines()[lineID])
|
||||
for index, traceID1 in enumerate(self._getReceiverlines()[lineID]):
|
||||
if index + 1 < number_measured:
|
||||
traceID2 = self._getReceiverlines()[lineID][index + 1]
|
||||
number_measured = len(self._getReceiverlines()[lineID])
|
||||
for index, traceID1 in enumerate(self._getReceiverlines()[lineID]):
|
||||
if index + 1 < number_measured:
|
||||
traceID2 = self._getReceiverlines()[lineID][index + 1]
|
||||
|
||||
traceID_dir = self._checkTraceIDdirection(traceID1, traceID2)
|
||||
traceID_interp = traceID1 + traceID_dir
|
||||
traceID_dir = self._checkTraceIDdirection(traceID1, traceID2)
|
||||
traceID_interp = traceID1 + traceID_dir
|
||||
|
||||
coord_dir = self._checkCoordDirection(traceID1, traceID2, coordinate)
|
||||
mean_distance = self._interpolateMeanDistances(traceID1, traceID2, coordinate)
|
||||
coord_dir = self._checkCoordDirection(traceID1, traceID2, coordinate)
|
||||
mean_distance = self._interpolateMeanDistances(traceID1, traceID2, coordinate)
|
||||
|
||||
while (traceID_dir * traceID_interp) < (traceID_dir * traceID2):
|
||||
self._setValue(traceID_interp, coordinate,
|
||||
(self._getReceiverValue(traceID_interp - traceID_dir, coordinate)
|
||||
+ coord_dir * (mean_distance)))
|
||||
traceID_interp += traceID_dir
|
||||
while (traceID_dir * traceID_interp) < (traceID_dir * traceID2):
|
||||
self._setValue(traceID_interp, coordinate,
|
||||
(self._getReceiverValue(traceID_interp - traceID_dir, coordinate)
|
||||
+ coord_dir * (mean_distance)))
|
||||
traceID_interp += traceID_dir
|
||||
|
||||
def addMeasuredTopographyPoints(self, filename):
|
||||
'''
|
||||
@ -206,7 +209,7 @@ class SeisArray(object):
|
||||
z = float(line[3])
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
|
||||
def interpZcoords4rec(self, method = 'linear'):
|
||||
def interpZcoords4rec(self, method='linear'):
|
||||
'''
|
||||
Interpolates z values for all receivers.
|
||||
'''
|
||||
@ -214,7 +217,8 @@ class SeisArray(object):
|
||||
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
if type(self.getReceiverCoordinates()[traceID]) is not tuple:
|
||||
z = griddata((measured_x, measured_y), measured_z, (self._getXreceiver(traceID), self._getYreceiver(traceID)), method = method)
|
||||
z = griddata((measured_x, measured_y), measured_z,
|
||||
(self._getXreceiver(traceID), self._getYreceiver(traceID)), method=method)
|
||||
self._setZvalue(traceID, float(z))
|
||||
|
||||
def _getAngle(self, distance):
|
||||
@ -239,7 +243,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all measured receivers known to SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for traceID in self.getMeasuredReceivers().keys():
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
y.append(self.getMeasuredReceivers()[traceID][1])
|
||||
@ -250,7 +256,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all measured topography points known to the SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for pointID in self.getMeasuredTopo().keys():
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
y.append(self.getMeasuredTopo()[pointID][1])
|
||||
@ -261,7 +269,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all measured source locations known to SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for pointID in self.getSourceLocations().keys():
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
y.append(self.getSourceLocations()[pointID][1])
|
||||
@ -285,7 +295,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all receivers (measured and interpolated).
|
||||
'''
|
||||
x = []; y =[]; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
x.append(self.getReceiverCoordinates()[traceID][0])
|
||||
y.append(self.getReceiverCoordinates()[traceID][1])
|
||||
@ -303,7 +315,7 @@ class SeisArray(object):
|
||||
self._interpolateXY4rec()
|
||||
self.interpZcoords4rec()
|
||||
|
||||
def interpolateTopography(self, nTheta, nPhi, thetaSN, phiWE, elevation = 0.25, method = 'linear'):
|
||||
def interpolateTopography(self, nTheta, nPhi, thetaSN, phiWE, elevation=0.25, method='linear'):
|
||||
'''
|
||||
Interpolate Z values on a regular grid with cushion nodes e.g. to use it as FMTOMO topography interface.
|
||||
Returns a surface in form of a list of points [[x1, y1, z1], [x2, y2, y2], ...] (cartesian).
|
||||
@ -325,7 +337,7 @@ class SeisArray(object):
|
||||
'''
|
||||
return self.interpolateOnRegularGrid(nTheta, nPhi, thetaSN, phiWE, elevation, method)
|
||||
|
||||
def interpolateOnRegularGrid(self, nTheta, nPhi, thetaSN, phiWE, elevation, method = 'linear'):
|
||||
def interpolateOnRegularGrid(self, nTheta, nPhi, thetaSN, phiWE, elevation, method='linear'):
|
||||
'''
|
||||
Interpolate Z values on a regular grid with cushion nodes e.g. to use it as FMTOMO topography interface.
|
||||
Returns a surface in form of a list of points [[x1, y1, z1], [x2, y2, y2], ...] (cartesian).
|
||||
@ -349,8 +361,8 @@ class SeisArray(object):
|
||||
surface = []
|
||||
|
||||
print "Interpolating interface on regular grid with the dimensions:"
|
||||
print "nTheta = %s, nPhi = %s, thetaSN = %s, phiWE = %s"%(nTheta, nPhi, thetaSN, phiWE)
|
||||
print "method = %s, elevation = %s" %(method, elevation)
|
||||
print "nTheta = %s, nPhi = %s, thetaSN = %s, phiWE = %s" % (nTheta, nPhi, thetaSN, phiWE)
|
||||
print "method = %s, elevation = %s" % (method, elevation)
|
||||
|
||||
thetaS, thetaN = thetaSN
|
||||
phiW, phiE = phiWE
|
||||
@ -361,18 +373,19 @@ class SeisArray(object):
|
||||
deltaTheta = (thetaN - thetaS) / (nTheta - 1)
|
||||
deltaPhi = (phiE - phiW) / (nPhi - 1)
|
||||
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num = nPhi + 2) # +2 cushion nodes
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num=nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num=nPhi + 2) # +2 cushion nodes
|
||||
|
||||
nTotal = len(thetaGrid) * len(phiGrid); count = 0
|
||||
nTotal = len(thetaGrid) * len(phiGrid);
|
||||
count = 0
|
||||
for theta in thetaGrid:
|
||||
for phi in phiGrid:
|
||||
xval = self._getDistance(phi)
|
||||
yval = self._getDistance(theta)
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method = method)
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method=method)
|
||||
# in case the point lies outside, nan will be returned. Find nearest:
|
||||
if np.isnan(z) == True:
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method = 'nearest')
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method='nearest')
|
||||
z = float(z) + elevation
|
||||
surface.append((xval, yval, z))
|
||||
count += 1
|
||||
@ -382,8 +395,8 @@ class SeisArray(object):
|
||||
return surface
|
||||
|
||||
def generateFMTOMOinputFromArray(self, nPointsPropgrid, nPointsInvgrid,
|
||||
zBotTop, cushionfactor, interpolationMethod = 'linear',
|
||||
customgrid = 'mygrid.in', writeVTK = True):
|
||||
zBotTop, cushionfactor, interpolationMethod='linear',
|
||||
customgrid='mygrid.in', writeVTK=True):
|
||||
'''
|
||||
Generate FMTOMO input files from the SeisArray dimensions.
|
||||
Generates: vgrids.in, interfaces.in, propgrid.in
|
||||
@ -401,15 +414,15 @@ class SeisArray(object):
|
||||
:type: float
|
||||
'''
|
||||
|
||||
nRP, nThetaP, nPhiP = nPointsPropgrid
|
||||
nRP, nThetaP, nPhiP = nPointsPropgrid
|
||||
nRI, nThetaI, nPhiI = nPointsInvgrid
|
||||
|
||||
print('\n------------------------------------------------------------')
|
||||
print('Automatically generating input for FMTOMO from array size.')
|
||||
print('Propgrid: nR = %s, nTheta = %s, nPhi = %s'%(nRP, nThetaP, nPhiP))
|
||||
print('Interpolation Grid and Interfaces Grid: nR = %s, nTheta = %s, nPhi = %s'%(nRI, nThetaI, nPhiI))
|
||||
print('Bottom and Top of model: (%s, %s)'%(zBotTop[0], zBotTop[1]))
|
||||
print('Method: %s, customgrid = %s'%(interpolationMethod, customgrid))
|
||||
print('Propgrid: nR = %s, nTheta = %s, nPhi = %s' % (nRP, nThetaP, nPhiP))
|
||||
print('Interpolation Grid and Interfaces Grid: nR = %s, nTheta = %s, nPhi = %s' % (nRI, nThetaI, nPhiI))
|
||||
print('Bottom and Top of model: (%s, %s)' % (zBotTop[0], zBotTop[1]))
|
||||
print('Method: %s, customgrid = %s' % (interpolationMethod, customgrid))
|
||||
print('------------------------------------------------------------')
|
||||
|
||||
def getZmin(surface):
|
||||
@ -418,31 +431,31 @@ class SeisArray(object):
|
||||
z.append(point[2])
|
||||
return min(z)
|
||||
|
||||
self.generatePropgrid(nThetaP, nPhiP, nRP, zBotTop, cushionfactor = cushionfactor,
|
||||
cushionpropgrid = 0.05)
|
||||
surface = self.generateVgrid(nThetaI, nPhiI, nRI, zBotTop, method = interpolationMethod,
|
||||
cushionfactor = cushionfactor, infilename = customgrid,
|
||||
returnTopo = True)
|
||||
self.generatePropgrid(nThetaP, nPhiP, nRP, zBotTop, cushionfactor=cushionfactor,
|
||||
cushionpropgrid=0.05)
|
||||
surface = self.generateVgrid(nThetaI, nPhiI, nRI, zBotTop, method=interpolationMethod,
|
||||
cushionfactor=cushionfactor, infilename=customgrid,
|
||||
returnTopo=True)
|
||||
|
||||
depthmax = abs(zBotTop[0] - getZmin(surface)) - 1.0 # cushioning for the bottom interface
|
||||
depthmax = abs(zBotTop[0] - getZmin(surface)) - 1.0 # cushioning for the bottom interface
|
||||
|
||||
interf1, interf2 = self.generateInterfaces(nThetaI, nPhiI, depthmax, cushionfactor = cushionfactor,
|
||||
returnInterfaces = True, method = interpolationMethod)
|
||||
interf1, interf2 = self.generateInterfaces(nThetaI, nPhiI, depthmax, cushionfactor=cushionfactor,
|
||||
returnInterfaces=True, method=interpolationMethod)
|
||||
|
||||
if writeVTK == True:
|
||||
from pylot.core.active import fmtomoUtils
|
||||
self.surface2VTK(interf1, filename = 'interface1.vtk')
|
||||
self.surface2VTK(interf2, filename = 'interface2.vtk')
|
||||
self.surface2VTK(interf1, filename='interface1.vtk')
|
||||
self.surface2VTK(interf2, filename='interface2.vtk')
|
||||
self.receivers2VTK()
|
||||
self.sources2VTK()
|
||||
fmtomoUtils.vgrids2VTK()
|
||||
|
||||
def generateReceiversIn(self, outfilename = 'receivers.in'):
|
||||
def generateReceiversIn(self, outfilename='receivers.in'):
|
||||
outfile = open(outfilename, 'w')
|
||||
|
||||
recx, recy, recz = self.getReceiverLists()
|
||||
nsrc = len(self.getSourceLocations())
|
||||
outfile.writelines('%s\n'%(len(zip(recx, recy, recz)) * nsrc))
|
||||
outfile.writelines('%s\n' % (len(zip(recx, recy, recz)) * nsrc))
|
||||
|
||||
for index in range(nsrc):
|
||||
for point in zip(recx, recy, recz):
|
||||
@ -450,17 +463,16 @@ class SeisArray(object):
|
||||
rad = - rz
|
||||
lat = self._getAngle(ry)
|
||||
lon = self._getAngle(rx)
|
||||
outfile.writelines('%15s %15s %15s\n'%(rad, lat, lon))
|
||||
outfile.writelines('%15s\n'%(1))
|
||||
outfile.writelines('%15s\n'%(index + 1))
|
||||
outfile.writelines('%15s\n'%(1))
|
||||
outfile.writelines('%15s %15s %15s\n' % (rad, lat, lon))
|
||||
outfile.writelines('%15s\n' % (1))
|
||||
outfile.writelines('%15s\n' % (index + 1))
|
||||
outfile.writelines('%15s\n' % (1))
|
||||
|
||||
outfile.close()
|
||||
|
||||
|
||||
def generateInterfaces(self, nTheta, nPhi, depthmax, cushionfactor = 0.1,
|
||||
outfilename = 'interfaces.in', method = 'linear',
|
||||
returnInterfaces = False):
|
||||
def generateInterfaces(self, nTheta, nPhi, depthmax, cushionfactor=0.1,
|
||||
outfilename='interfaces.in', method='linear',
|
||||
returnInterfaces=False):
|
||||
'''
|
||||
Create an interfaces.in file for FMTOMO from the SeisArray boundaries.
|
||||
:param: nTheta, number of points in Theta
|
||||
@ -470,7 +482,7 @@ class SeisArray(object):
|
||||
type: int
|
||||
|
||||
:param: depthmax, maximum depth of the model (below topography)
|
||||
type: float
|
||||
type: float
|
||||
|
||||
:param: cushionfactor, add some extra space to the model (default: 0.1 = 10%)
|
||||
type: float
|
||||
@ -478,7 +490,7 @@ class SeisArray(object):
|
||||
|
||||
print('\n------------------------------------------------------------')
|
||||
print('Generating interfaces...')
|
||||
nInterfaces = 2
|
||||
nInterfaces = 2
|
||||
|
||||
# generate dimensions of the grid from array
|
||||
thetaSN, phiWE = self.getThetaPhiFromArray(cushionfactor)
|
||||
@ -494,22 +506,22 @@ class SeisArray(object):
|
||||
deltaPhi = abs(phiE - phiW) / float((nPhi - 1))
|
||||
|
||||
# write header for interfaces grid file (in RADIANS)
|
||||
outfile.writelines('%10s\n' %(nInterfaces))
|
||||
outfile.writelines('%10s %10s\n' %(nTheta + 2, nPhi + 2)) # +2 cushion nodes
|
||||
outfile.writelines('%10s %10s\n' %(np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines('%10s %10s\n' %(np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
outfile.writelines('%10s\n' % (nInterfaces))
|
||||
outfile.writelines('%10s %10s\n' % (nTheta + 2, nPhi + 2)) # +2 cushion nodes
|
||||
outfile.writelines('%10s %10s\n' % (np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines('%10s %10s\n' % (np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
|
||||
interface1 = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method)
|
||||
interface2 = self.interpolateOnRegularGrid(nTheta, nPhi, thetaSN, phiWE, -depthmax, method = method)
|
||||
interface1 = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method=method)
|
||||
interface2 = self.interpolateOnRegularGrid(nTheta, nPhi, thetaSN, phiWE, -depthmax, method=method)
|
||||
|
||||
for point in interface1:
|
||||
z = point[2]
|
||||
outfile.writelines('%10s\n'%(z + R))
|
||||
outfile.writelines('%10s\n' % (z + R))
|
||||
|
||||
outfile.writelines('\n')
|
||||
for point in interface2:
|
||||
z = point[2]
|
||||
outfile.writelines('%10s\n'%(z + R))
|
||||
outfile.writelines('%10s\n' % (z + R))
|
||||
|
||||
outfile.close()
|
||||
|
||||
@ -519,10 +531,10 @@ class SeisArray(object):
|
||||
print('Finished generating interfaces.')
|
||||
print('------------------------------------------------------------')
|
||||
|
||||
def getThetaPhiFromArray(self, cushionfactor = 0.1):
|
||||
def getThetaPhiFromArray(self, cushionfactor=0.1):
|
||||
'''
|
||||
Determine and returns PhiWE (tuple: (West, East)) and thetaSN (tuple (South, North)) from the SeisArray boundaries.
|
||||
|
||||
|
||||
:param: cushionfactor, add some extra space to the model (default: 0.1 = 10%)
|
||||
type: float
|
||||
'''
|
||||
@ -535,8 +547,8 @@ class SeisArray(object):
|
||||
thetaSN = (theta_min - cushionTheta, theta_max + cushionTheta)
|
||||
return thetaSN, phiWE
|
||||
|
||||
def generatePropgrid(self, nTheta, nPhi, nR, Rbt, cushionfactor, cushionpropgrid = 0.05,
|
||||
refinement = (5, 5), outfilename = 'propgrid.in'):
|
||||
def generatePropgrid(self, nTheta, nPhi, nR, Rbt, cushionfactor, cushionpropgrid=0.05,
|
||||
refinement=(5, 5), outfilename='propgrid.in'):
|
||||
'''
|
||||
Create a propergation grid file for FMTOMO using SeisArray boundaries
|
||||
|
||||
@ -566,10 +578,10 @@ class SeisArray(object):
|
||||
|
||||
print('\n------------------------------------------------------------')
|
||||
print('Generating Propagation Grid for nTheta = %s, nPhi'
|
||||
' = %s, nR = %s and a cushioning of %s'
|
||||
%(nTheta, nPhi, nR, cushionpropgrid))
|
||||
print('Bottom of the grid: %s, top of the grid %s'
|
||||
%(Rbt[0], Rbt[1]))
|
||||
' = %s, nR = %s and a cushioning of %s'
|
||||
% (nTheta, nPhi, nR, cushionpropgrid))
|
||||
print('Bottom of the grid: %s, top of the grid %s'
|
||||
% (Rbt[0], Rbt[1]))
|
||||
|
||||
thetaSN, phiWE = self.getThetaPhiFromArray(cushionfactor)
|
||||
|
||||
@ -584,20 +596,20 @@ class SeisArray(object):
|
||||
deltaPhi = abs(phiE - phiW) / float(nPhi - 1)
|
||||
deltaR = abs(rbot - rtop) / float(nR - 1)
|
||||
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(deltaR, deltaTheta, deltaPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(rtop, thetaS, phiW))
|
||||
outfile.writelines('%10s %10s\n' %refinement)
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (deltaR, deltaTheta, deltaPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (rtop, thetaS, phiW))
|
||||
outfile.writelines('%10s %10s\n' % refinement)
|
||||
|
||||
outfile.close()
|
||||
|
||||
print('Created Propagation Grid and saved it to %s' %outfilename)
|
||||
print('Created Propagation Grid and saved it to %s' % outfilename)
|
||||
print('------------------------------------------------------------')
|
||||
|
||||
def generateVgrid(self, nTheta, nPhi, nR, Rbt, thetaSN = None,
|
||||
phiWE = None, cushionfactor = 0.1,
|
||||
outfilename = 'vgrids.in', method = 'linear',
|
||||
infilename = 'mygrid.in', returnTopo = False):
|
||||
def generateVgrid(self, nTheta, nPhi, nR, Rbt, thetaSN=None,
|
||||
phiWE=None, cushionfactor=0.1,
|
||||
outfilename='vgrids.in', method='linear',
|
||||
infilename='mygrid.in', returnTopo=False):
|
||||
'''
|
||||
Generate a velocity grid for fmtomo regarding topography with a linear gradient starting at the topography with 0.34 [km/s].
|
||||
|
||||
@ -641,11 +653,14 @@ class SeisArray(object):
|
||||
return nlayers
|
||||
|
||||
def readMygrid(filename):
|
||||
ztop = []; zbot = []; vtop = []; vbot = []
|
||||
ztop = [];
|
||||
zbot = [];
|
||||
vtop = [];
|
||||
vbot = []
|
||||
infile = open(filename, 'r')
|
||||
nlayers = readMygridNlayers(filename)
|
||||
|
||||
print('\nreadMygrid: Reading file %s.'%filename)
|
||||
print('\nreadMygrid: Reading file %s.' % filename)
|
||||
for index in range(nlayers):
|
||||
line1 = infile.readline()
|
||||
line2 = infile.readline()
|
||||
@ -655,11 +670,11 @@ class SeisArray(object):
|
||||
vbot.append(float(line2.split()[1]))
|
||||
print('Layer %s:\n[Top: v = %s [km/s], z = %s [m]]'
|
||||
'\n[Bot: v = %s [km/s], z = %s [m]]'
|
||||
%(index + 1, vtop[index], ztop[index],
|
||||
vbot[index], zbot[index]))
|
||||
% (index + 1, vtop[index], ztop[index],
|
||||
vbot[index], zbot[index]))
|
||||
|
||||
if not ztop[0] == 0:
|
||||
print('ERROR: there must be a velocity set for z = 0 in the file %s'%filename)
|
||||
print('ERROR: there must be a velocity set for z = 0 in the file %s' % filename)
|
||||
print('e.g.:\n0 0.33\n-5 1.0\netc.')
|
||||
|
||||
infile.close()
|
||||
@ -667,7 +682,7 @@ class SeisArray(object):
|
||||
|
||||
R = 6371.
|
||||
vmin = 0.34
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(outfilename, 'w')
|
||||
|
||||
# generate dimensions of the grid from array
|
||||
@ -685,28 +700,29 @@ class SeisArray(object):
|
||||
deltaR = abs(rbot - rtop) / float((nR - 1))
|
||||
|
||||
# create a regular grid including +2 cushion nodes in every direction
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num = nPhi + 2) # +2 cushion nodes
|
||||
rGrid = np.linspace(rbot - deltaR, rtop + deltaR, num = nR + 2) # +2 cushion nodes
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num=nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num=nPhi + 2) # +2 cushion nodes
|
||||
rGrid = np.linspace(rbot - deltaR, rtop + deltaR, num=nR + 2) # +2 cushion nodes
|
||||
|
||||
nTotal = len(rGrid) * len(thetaGrid) * len(phiGrid)
|
||||
print("Total number of grid nodes: %s"%nTotal)
|
||||
print("Total number of grid nodes: %s" % nTotal)
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR + 2, nTheta + 2, nPhi + 2))
|
||||
outfile.writelines('%10s %10s %10s\n' %(deltaR, np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(rbot - deltaR, np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
outfile.writelines('%10s %10s \n' % (1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR + 2, nTheta + 2, nPhi + 2))
|
||||
outfile.writelines('%10s %10s %10s\n' % (deltaR, np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines(
|
||||
'%10s %10s %10s\n' % (rbot - deltaR, np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
|
||||
surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method)
|
||||
surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method=method)
|
||||
|
||||
nlayers = readMygridNlayers(infilename)
|
||||
ztop, zbot, vtop, vbot = readMygrid(infilename)
|
||||
|
||||
print("\nGenerating velocity grid for FMTOMO. "
|
||||
"Output filename = %s, interpolation method = %s"%(outfilename, method))
|
||||
"Output filename = %s, interpolation method = %s" % (outfilename, method))
|
||||
print("nTheta = %s, nPhi = %s, nR = %s, "
|
||||
"thetaSN = %s, phiWE = %s, Rbt = %s"%(nTheta, nPhi, nR, thetaSN, phiWE, Rbt))
|
||||
"thetaSN = %s, phiWE = %s, Rbt = %s" % (nTheta, nPhi, nR, thetaSN, phiWE, Rbt))
|
||||
count = 0
|
||||
|
||||
for radius in rGrid:
|
||||
@ -721,32 +737,36 @@ class SeisArray(object):
|
||||
depth = -(R + topo - radius)
|
||||
if depth > 1:
|
||||
vel = 0.0
|
||||
elif 1 >= depth > 0: # cushioning around topography
|
||||
elif 1 >= depth > 0: # cushioning around topography
|
||||
vel = vtop[0]
|
||||
else:
|
||||
for index in range(nlayers):
|
||||
if (ztop[index]) >= depth > (zbot[index]):
|
||||
vel = (depth - ztop[index]) / (zbot[index] - ztop[index]) * (vbot[index] - vtop[index]) + vtop[index]
|
||||
vel = (depth - ztop[index]) / (zbot[index] - ztop[index]) * (
|
||||
vbot[index] - vtop[index]) + vtop[index]
|
||||
break
|
||||
if not (ztop[index]) >= depth > (zbot[index]):
|
||||
print('ERROR in grid inputfile, could not find velocity for a z-value of %s in the inputfile'%(depth-topo))
|
||||
print(
|
||||
'ERROR in grid inputfile, could not find velocity for a z-value of %s in the inputfile' % (
|
||||
depth - topo))
|
||||
return
|
||||
count += 1
|
||||
if vel < 0:
|
||||
print('ERROR, vel <0; z, topo, zbot, vbot, vtop:', depth, topo, zbot[index], vbot[index], vtop[index])
|
||||
outfile.writelines('%10s %10s\n'%(vel, decm))
|
||||
print(
|
||||
'ERROR, vel <0; z, topo, zbot, vbot, vtop:', depth, topo, zbot[index], vbot[index], vtop[index])
|
||||
outfile.writelines('%10s %10s\n' % (vel, decm))
|
||||
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
print('\nWrote %d points to file %s for %d layers'%(count, outfilename, nlayers))
|
||||
print('\nWrote %d points to file %s for %d layers' % (count, outfilename, nlayers))
|
||||
print('------------------------------------------------------------')
|
||||
outfile.close()
|
||||
|
||||
if returnTopo == True:
|
||||
return surface
|
||||
|
||||
def exportAll(self, filename = 'interpolated_receivers.out'):
|
||||
def exportAll(self, filename='interpolated_receivers.out'):
|
||||
'''
|
||||
Exports all receivers to an input file for ActiveSeismoPick3D.
|
||||
'''
|
||||
@ -755,11 +775,11 @@ class SeisArray(object):
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
count += 1
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" %(count, filename)
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' % (traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" % (count, filename)
|
||||
recfile_out.close()
|
||||
|
||||
def plotArray2D(self, plot_topo = False, highlight_measured = False, annotations = True, pointsize = 10):
|
||||
def plotArray2D(self, plot_topo=False, highlight_measured=False, annotations=True, pointsize=10):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
fig = plt.figure()
|
||||
@ -770,36 +790,36 @@ class SeisArray(object):
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
|
||||
if len(xrc) > 0:
|
||||
ax.plot(xrc, yrc, 'k.', markersize = pointsize, label = 'all receivers')
|
||||
ax.plot(xrc, yrc, 'k.', markersize=pointsize, label='all receivers')
|
||||
if len(xsc) > 0:
|
||||
ax.plot(xsc, ysc, 'b*', markersize = pointsize, label = 'shot locations')
|
||||
ax.plot(xsc, ysc, 'b*', markersize=pointsize, label='shot locations')
|
||||
|
||||
if plot_topo == True:
|
||||
ax.plot(xmt, ymt, 'b.', markersize = pointsize, label = 'measured topo points')
|
||||
ax.plot(xmt, ymt, 'b.', markersize=pointsize, label='measured topo points')
|
||||
if highlight_measured == True:
|
||||
ax.plot(xmr, ymr, 'r.', markersize = pointsize, label = 'measured receivers')
|
||||
ax.plot(xmr, ymr, 'r.', markersize=pointsize, label='measured receivers')
|
||||
|
||||
plt.title('2D plot of seismic array %s'%self.recfile)
|
||||
plt.title('2D plot of seismic array %s' % self.recfile)
|
||||
ax.set_xlabel('X [m]')
|
||||
ax.set_ylabel('Y [m]')
|
||||
ax.set_aspect('equal')
|
||||
plt.legend()
|
||||
if annotations == True:
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
ax.annotate((' ' + str(traceID)), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small', color = 'k')
|
||||
ax.annotate((' ' + str(traceID)), xy=(self._getXreceiver(traceID), self._getYreceiver(traceID)),
|
||||
fontsize='x-small', color='k')
|
||||
for shotnumber in self.getSourceLocations().keys():
|
||||
ax.annotate((' ' + str(shotnumber)), xy = (self._getXshot(shotnumber), self._getYshot(shotnumber)), fontsize = 'x-small', color = 'b')
|
||||
ax.annotate((' ' + str(shotnumber)), xy=(self._getXshot(shotnumber), self._getYshot(shotnumber)),
|
||||
fontsize='x-small', color='b')
|
||||
|
||||
|
||||
|
||||
def plotArray3D(self, ax = None):
|
||||
def plotArray3D(self, ax=None):
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
plt.interactive(True)
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
@ -808,20 +828,21 @@ class SeisArray(object):
|
||||
|
||||
plt.title('3D plot of seismic array.')
|
||||
if len(xmt) > 0:
|
||||
ax.plot(xmt, ymt, zmt, 'b.', markersize = 10, label = 'measured topo points')
|
||||
ax.plot(xmt, ymt, zmt, 'b.', markersize=10, label='measured topo points')
|
||||
if len(xrc) > 0:
|
||||
ax.plot(xrc, yrc, zrc, 'k.', markersize = 10, label = 'all receivers')
|
||||
ax.plot(xrc, yrc, zrc, 'k.', markersize=10, label='all receivers')
|
||||
if len(xmr) > 0:
|
||||
ax.plot(xmr, ymr, zmr, 'ro', label = 'measured receivers')
|
||||
ax.plot(xmr, ymr, zmr, 'ro', label='measured receivers')
|
||||
if len(xsc) > 0:
|
||||
ax.plot(xsc, ysc, zsc, 'b*', label = 'shot locations')
|
||||
ax.set_xlabel('X [m]'); ax.set_ylabel('Y [m]'); ax.set_zlabel('Z [m]')
|
||||
ax.plot(xsc, ysc, zsc, 'b*', label='shot locations')
|
||||
ax.set_xlabel('X [m]');
|
||||
ax.set_ylabel('Y [m]');
|
||||
ax.set_zlabel('Z [m]')
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
|
||||
def plotSurface3D(self, ax = None, step = 0.5, method = 'linear', exag = False):
|
||||
def plotSurface3D(self, ax=None, step=0.5, method='linear', exag=False):
|
||||
from matplotlib import cm
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
@ -829,7 +850,7 @@ class SeisArray(object):
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
@ -838,31 +859,33 @@ class SeisArray(object):
|
||||
y = ymt + ymr
|
||||
z = zmt + zmr
|
||||
|
||||
xaxis = np.arange(min(x)+1, max(x), step)
|
||||
yaxis = np.arange(min(y)+1, max(y), step)
|
||||
xaxis = np.arange(min(x) + 1, max(x), step)
|
||||
yaxis = np.arange(min(y) + 1, max(y), step)
|
||||
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method = method)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method=method)
|
||||
|
||||
surf = ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z))
|
||||
surf = ax.plot_surface(xgrid, ygrid, zgrid, linewidth=0, cmap=cm.jet, vmin=min(z), vmax=max(z))
|
||||
cbar = plt.colorbar(surf)
|
||||
cbar.set_label('Elevation [m]')
|
||||
|
||||
if exag == False:
|
||||
ax.set_zlim(-(max(x) - min(x)/2),(max(x) - min(x)/2))
|
||||
ax.set_zlim(-(max(x) - min(x) / 2), (max(x) - min(x) / 2))
|
||||
ax.set_aspect('equal')
|
||||
|
||||
ax.set_xlabel('X [m]'); ax.set_ylabel('Y [m]'); ax.set_zlabel('Z [m]')
|
||||
ax.set_xlabel('X [m]');
|
||||
ax.set_ylabel('Y [m]');
|
||||
ax.set_zlabel('Z [m]')
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
def _update_progress(self, progress):
|
||||
sys.stdout.write("%d%% done \r" % (progress) )
|
||||
sys.stdout.write("%d%% done \r" % (progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
def surface2VTK(self, surface, filename = 'surface.vtk'):
|
||||
def surface2VTK(self, surface, filename='surface.vtk'):
|
||||
'''
|
||||
Generates a vtk file from all points of a surface as generated by interpolateTopography.
|
||||
'''
|
||||
@ -876,7 +899,7 @@ class SeisArray(object):
|
||||
outfile.writelines('Surface Points\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
@ -885,14 +908,14 @@ class SeisArray(object):
|
||||
y = point[1]
|
||||
z = point[2]
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
outfile.writelines('%10f %10f %10f \n' % (x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
outfile.writelines('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
outfile.writelines('%10d %10d\n' % (1, index))
|
||||
|
||||
# outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
# outfile.writelines('SCALARS traceIDs int %d\n' %(1))
|
||||
@ -904,10 +927,10 @@ class SeisArray(object):
|
||||
# outfile.writelines('%10d\n' %traceID)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote %d points to file: %s" %(nPoints, filename))
|
||||
print("Wrote %d points to file: %s" % (nPoints, filename))
|
||||
return
|
||||
|
||||
def receivers2VTK(self, filename = 'receivers.vtk'):
|
||||
def receivers2VTK(self, filename='receivers.vtk'):
|
||||
'''
|
||||
Generates a vtk file from all receivers of the SeisArray object.
|
||||
'''
|
||||
@ -925,7 +948,7 @@ class SeisArray(object):
|
||||
outfile.writelines('Receivers with traceIDs\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
@ -934,29 +957,29 @@ class SeisArray(object):
|
||||
y = self._getYreceiver(traceID)
|
||||
z = self._getZreceiver(traceID)
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
outfile.writelines('%10f %10f %10f \n' % (x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
outfile.writelines('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
outfile.writelines('%10d %10d\n' % (1, index))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('SCALARS traceIDs int %d\n' %(1))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
outfile.writelines('SCALARS traceIDs int %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write traceIDs
|
||||
print("Writing traceIDs to VTK file...")
|
||||
for traceID in traceIDs:
|
||||
outfile.writelines('%10d\n' %traceID)
|
||||
outfile.writelines('%10d\n' % traceID)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote %d receiver for to file: %s" %(nPoints, filename))
|
||||
print("Wrote %d receiver for to file: %s" % (nPoints, filename))
|
||||
return
|
||||
|
||||
def sources2VTK(self, filename = 'sources.vtk'):
|
||||
def sources2VTK(self, filename='sources.vtk'):
|
||||
'''
|
||||
Generates a vtk-file for all source locations in the SeisArray object.
|
||||
'''
|
||||
@ -974,7 +997,7 @@ class SeisArray(object):
|
||||
outfile.writelines('Shots with shotnumbers\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
@ -983,35 +1006,34 @@ class SeisArray(object):
|
||||
y = self._getYshot(shotnumber)
|
||||
z = self._getZshot(shotnumber)
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
outfile.writelines('%10f %10f %10f \n' % (x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
outfile.writelines('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
outfile.writelines('%10d %10d\n' % (1, index))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('SCALARS shotnumbers int %d\n' %(1))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
outfile.writelines('SCALARS shotnumbers int %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write shotnumber
|
||||
print("Writing shotnumbers to VTK file...")
|
||||
for shotnumber in shotnumbers:
|
||||
outfile.writelines('%10d\n' %shotnumber)
|
||||
outfile.writelines('%10d\n' % shotnumber)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote %d sources to file: %s" %(nPoints, filename))
|
||||
print("Wrote %d sources to file: %s" % (nPoints, filename))
|
||||
return
|
||||
|
||||
|
||||
def saveSeisArray(self, filename = 'seisArray.pickle'):
|
||||
def saveSeisArray(self, filename='seisArray.pickle'):
|
||||
import cPickle
|
||||
outfile = open(filename, 'wb')
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved SeisArray to file %s'%(filename))
|
||||
print('saved SeisArray to file %s' % (filename))
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
|
@ -6,17 +6,20 @@ import numpy as np
|
||||
from obspy.core import read
|
||||
from obspy import Stream
|
||||
from obspy import Trace
|
||||
from pylot.core.pick.CharFuns import HOScf
|
||||
from pylot.core.pick.CharFuns import AICcf
|
||||
from pylot.core.pick.charfuns import HOScf
|
||||
from pylot.core.pick.charfuns import AICcf
|
||||
from pylot.core.pick.utils import getSNR
|
||||
from pylot.core.pick.utils import earllatepicker
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.interactive('True')
|
||||
|
||||
|
||||
class SeismicShot(object):
|
||||
'''
|
||||
SuperClass for a seismic shot object.
|
||||
'''
|
||||
|
||||
def __init__(self, obsfile):
|
||||
'''
|
||||
Initialize seismic shot object giving an inputfile.
|
||||
@ -29,8 +32,8 @@ class SeismicShot(object):
|
||||
self.srcCoordlist = None
|
||||
self.traceIDs = None
|
||||
self.picks = {}
|
||||
self.pwindow= {}
|
||||
self.manualpicks= {}
|
||||
self.pwindow = {}
|
||||
self.manualpicks = {}
|
||||
self.snr = {}
|
||||
self.snrthreshold = {}
|
||||
self.timeArray = {}
|
||||
@ -61,10 +64,10 @@ class SeismicShot(object):
|
||||
if traceID == trace.stats.channel:
|
||||
self.traces.remove(trace)
|
||||
|
||||
# for traceID in TraceIDs:
|
||||
# traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
|
||||
# if len(traces) is not 1:
|
||||
# self.traces.remove(trace)
|
||||
# for traceID in TraceIDs:
|
||||
# traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
|
||||
# if len(traces) is not 1:
|
||||
# self.traces.remove(trace)
|
||||
|
||||
def updateTraceList(self):
|
||||
'''
|
||||
@ -87,22 +90,22 @@ class SeismicShot(object):
|
||||
self.setParameters('tmovwind', tmovwind)
|
||||
|
||||
def setOrder(self, order):
|
||||
self.setParameters('order', order)
|
||||
self.setParameters('order', order)
|
||||
|
||||
def setTsignal(self, tsignal):
|
||||
self.setParameters('tsignal', tsignal)
|
||||
self.setParameters('tsignal', tsignal)
|
||||
|
||||
def setTgap(self, tgap):
|
||||
self.setParameters('tgap', tgap)
|
||||
self.setParameters('tgap', tgap)
|
||||
|
||||
def setShotnumber(self, shotname):
|
||||
self.setParameters('shotname', shotname)
|
||||
self.setParameters('shotname', shotname)
|
||||
|
||||
def setRecfile(self, recfile):
|
||||
self.setParameters('recfile', recfile)
|
||||
self.setParameters('recfile', recfile)
|
||||
|
||||
def setSourcefile(self, sourcefile):
|
||||
self.setParameters('sourcefile', sourcefile)
|
||||
self.setParameters('sourcefile', sourcefile)
|
||||
|
||||
def getParas(self):
|
||||
return self.paras
|
||||
@ -144,15 +147,15 @@ class SeismicShot(object):
|
||||
def getManualLatest(self, traceID):
|
||||
return self.manualpicks[traceID]['lpp']
|
||||
|
||||
def getPick(self, traceID, returnRemoved = False):
|
||||
def getPick(self, traceID, returnRemoved=False):
|
||||
if not self.getPickFlag(traceID) == 0:
|
||||
return self.picks[traceID]['mpp']
|
||||
if returnRemoved == True:
|
||||
#print('getPick: Returned removed pick for shot %d, traceID %d' %(self.getShotnumber(), traceID))
|
||||
# print('getPick: Returned removed pick for shot %d, traceID %d' %(self.getShotnumber(), traceID))
|
||||
return self.picks[traceID]['mpp']
|
||||
|
||||
def getPickIncludeRemoved(self, traceID):
|
||||
return self.getPick(traceID, returnRemoved = True)
|
||||
return self.getPick(traceID, returnRemoved=True)
|
||||
|
||||
def getEarliest(self, traceID):
|
||||
return self.picks[traceID]['epp']
|
||||
@ -163,13 +166,13 @@ class SeismicShot(object):
|
||||
def getSymmetricPickError(self, traceID):
|
||||
pickerror = self.picks[traceID]['spe']
|
||||
if np.isnan(pickerror) == True:
|
||||
print "SPE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID)
|
||||
print "SPE is NaN for shot %s, traceID %s" % (self.getShotnumber(), traceID)
|
||||
return pickerror
|
||||
|
||||
def getPickError(self, traceID):
|
||||
pickerror = abs(self.getEarliest(traceID) - self.getLatest(traceID)) / 2
|
||||
if np.isnan(pickerror) == True:
|
||||
print("PE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID))
|
||||
print("PE is NaN for shot %s, traceID %s" % (self.getShotnumber(), traceID))
|
||||
return pickerror
|
||||
|
||||
def getStreamTraceIDs(self):
|
||||
@ -207,15 +210,15 @@ class SeismicShot(object):
|
||||
|
||||
def getRecCoordlist(self):
|
||||
if self.recCoordlist is None:
|
||||
coordlist = open(self.getRecfile(),'r').readlines()
|
||||
#print 'Reading receiver coordinates from %s' %(self.getRecfile())
|
||||
coordlist = open(self.getRecfile(), 'r').readlines()
|
||||
# print 'Reading receiver coordinates from %s' %(self.getRecfile())
|
||||
self.recCoordlist = coordlist
|
||||
return self.recCoordlist
|
||||
|
||||
def getSrcCoordlist(self):
|
||||
if self.srcCoordlist is None:
|
||||
coordlist = open(self.getSourcefile(),'r').readlines()
|
||||
#print 'Reading shot coordinates from %s' %(self.getSourcefile())
|
||||
coordlist = open(self.getSourcefile(), 'r').readlines()
|
||||
# print 'Reading shot coordinates from %s' %(self.getSourcefile())
|
||||
self.srcCoordlist = coordlist
|
||||
return self.srcCoordlist
|
||||
|
||||
@ -239,7 +242,7 @@ class SeismicShot(object):
|
||||
:type: int
|
||||
'''
|
||||
return HOScf(self.getSingleStream(traceID), self.getCut(),
|
||||
self.getTmovwind(), self.getOrder(), stealthMode = True)
|
||||
self.getTmovwind(), self.getOrder(), stealthMode=True)
|
||||
|
||||
def getAICcf(self, traceID):
|
||||
'''
|
||||
@ -262,7 +265,7 @@ class SeismicShot(object):
|
||||
tr_cf = Trace()
|
||||
tr_cf.data = self.getHOScf(traceID).getCF()
|
||||
st_cf += tr_cf
|
||||
return AICcf(st_cf, self.getCut(), self.getTmovwind(), stealthMode = True)
|
||||
return AICcf(st_cf, self.getCut(), self.getTmovwind(), stealthMode=True)
|
||||
|
||||
def getSingleStream(self, traceID): ########## SEG2 / SEGY ? ##########
|
||||
'''
|
||||
@ -271,16 +274,16 @@ class SeismicShot(object):
|
||||
:param: traceID
|
||||
:type: int
|
||||
'''
|
||||
#traces = [trace for trace in self.traces if int(trace.stats.seg2['CHANNEL_NUMBER']) == traceID]
|
||||
# traces = [trace for trace in self.traces if int(trace.stats.seg2['CHANNEL_NUMBER']) == traceID]
|
||||
traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
|
||||
if len(traces) == 1:
|
||||
return Stream(traces)
|
||||
self.setPick(traceID, None)
|
||||
print 'Warning: ambigious or empty traceID: %s' % traceID
|
||||
|
||||
#raise ValueError('ambigious or empty traceID: %s' % traceID)
|
||||
# raise ValueError('ambigious or empty traceID: %s' % traceID)
|
||||
|
||||
def pickTraces(self, traceID, windowsize, folm, HosAic = 'hos'): ########## input variables ##########
|
||||
def pickTraces(self, traceID, windowsize, folm, HosAic='hos'): ########## input variables ##########
|
||||
# LOCALMAX NOT IMPLEMENTED!
|
||||
'''
|
||||
Intitiate picking for a trace.
|
||||
@ -306,7 +309,7 @@ class SeismicShot(object):
|
||||
:param: HosAic, get hos or aic pick (can be 'hos'(default) or 'aic')
|
||||
:type: 'string'
|
||||
'''
|
||||
hoscf = self.getHOScf(traceID) ### determination of both, HOS and AIC (need to change threshold-picker) ###
|
||||
hoscf = self.getHOScf(traceID) ### determination of both, HOS and AIC (need to change threshold-picker) ###
|
||||
aiccf = self.getAICcf(traceID)
|
||||
|
||||
self.folm = folm
|
||||
@ -318,7 +321,7 @@ class SeismicShot(object):
|
||||
|
||||
self.setPick(traceID, setHosAic[HosAic])
|
||||
|
||||
def setEarllatepick(self, traceID, nfac = 1.5):
|
||||
def setEarllatepick(self, traceID, nfac=1.5):
|
||||
tgap = self.getTgap()
|
||||
tsignal = self.getTsignal()
|
||||
tnoise = self.getPickIncludeRemoved(traceID) - tgap
|
||||
@ -326,17 +329,17 @@ class SeismicShot(object):
|
||||
(self.picks[traceID]['epp'],
|
||||
self.picks[traceID]['lpp'],
|
||||
self.picks[traceID]['spe']) = earllatepicker(self.getSingleStream(traceID),
|
||||
nfac, (tnoise, tgap, tsignal),
|
||||
self.getPickIncludeRemoved(traceID),
|
||||
stealthMode = True)
|
||||
nfac, (tnoise, tgap, tsignal),
|
||||
self.getPickIncludeRemoved(traceID),
|
||||
stealthMode=True)
|
||||
|
||||
if self.picks[traceID]['epp'] < 0:
|
||||
self.picks[traceID]['epp']
|
||||
#print('setEarllatepick: Set epp to 0 because it was < 0')
|
||||
# print('setEarllatepick: Set epp to 0 because it was < 0')
|
||||
|
||||
# TEST OF 1/2 PICKERROR
|
||||
# self.picks[traceID]['spe'] *= 0.5
|
||||
# TEST OF 1/2 PICKERROR
|
||||
# TEST OF 1/2 PICKERROR
|
||||
# self.picks[traceID]['spe'] *= 0.5
|
||||
# TEST OF 1/2 PICKERROR
|
||||
|
||||
def threshold(self, hoscf, aiccf, windowsize, pickwindow, folm):
|
||||
'''
|
||||
@ -365,10 +368,11 @@ class SeismicShot(object):
|
||||
leftb = int(pickwindow[0] / self.getCut()[1] * len(hoscflist))
|
||||
rightb = int(pickwindow[1] / self.getCut()[1] * len(hoscflist))
|
||||
|
||||
#threshold = folm * max(hoscflist[leftb : rightb]) # combination of local maximum and threshold
|
||||
# threshold = folm * max(hoscflist[leftb : rightb]) # combination of local maximum and threshold
|
||||
|
||||
### TEST TEST
|
||||
threshold = folm * (max(hoscflist[leftb : rightb]) - min(hoscflist[leftb : rightb])) + min(hoscflist[leftb : rightb]) # combination of local maximum and threshold
|
||||
threshold = folm * (max(hoscflist[leftb: rightb]) - min(hoscflist[leftb: rightb])) + min(
|
||||
hoscflist[leftb: rightb]) # combination of local maximum and threshold
|
||||
### TEST TEST
|
||||
|
||||
m = leftb
|
||||
@ -378,8 +382,8 @@ class SeismicShot(object):
|
||||
|
||||
hoscftime = list(hoscf.getTimeArray())[m]
|
||||
|
||||
lb = max(0, m - windowsize[0]) # if window exceeds t = 0
|
||||
aiccfcut = list(aiccf.getCF())[lb : m + windowsize[1]]
|
||||
lb = max(0, m - windowsize[0]) # if window exceeds t = 0
|
||||
aiccfcut = list(aiccf.getCF())[lb: m + windowsize[1]]
|
||||
if len(aiccfcut) > 0:
|
||||
n = aiccfcut.index(min(aiccfcut))
|
||||
else:
|
||||
@ -401,13 +405,13 @@ class SeismicShot(object):
|
||||
'''
|
||||
shotX, shotY, shotZ = self.getSrcLoc()
|
||||
recX, recY, recZ = self.getRecLoc(traceID)
|
||||
dist = np.sqrt((shotX-recX)**2 + (shotY-recY)**2 + (shotZ-recZ)**2)
|
||||
dist = np.sqrt((shotX - recX) ** 2 + (shotY - recY) ** 2 + (shotZ - recZ) ** 2)
|
||||
|
||||
if np.isnan(dist) == True:
|
||||
raise ValueError("Distance is NaN for traceID %s" %traceID)
|
||||
raise ValueError("Distance is NaN for traceID %s" % traceID)
|
||||
|
||||
return dist
|
||||
#return abs(float(self.getSrcLoc(traceID))-float(self.getRecLoc(traceID)))
|
||||
# return abs(float(self.getSrcLoc(traceID))-float(self.getRecLoc(traceID)))
|
||||
|
||||
def getRecLoc(self, traceID): ########## input FILENAME ##########
|
||||
'''
|
||||
@ -417,7 +421,7 @@ class SeismicShot(object):
|
||||
:param: traceID
|
||||
:type: int
|
||||
'''
|
||||
if traceID == 0: # artificial traceID 0 with pick at t = 0
|
||||
if traceID == 0: # artificial traceID 0 with pick at t = 0
|
||||
return self.getSrcLoc()
|
||||
|
||||
coordlist = self.getRecCoordlist()
|
||||
@ -428,9 +432,9 @@ class SeismicShot(object):
|
||||
z = coordlist[i].split()[3]
|
||||
return float(x), float(y), float(z)
|
||||
|
||||
#print "WARNING: traceID %s not found" % traceID
|
||||
# print "WARNING: traceID %s not found" % traceID
|
||||
raise ValueError("traceID %s not found" % traceID)
|
||||
#return float(self.getSingleStream(traceID)[0].stats.seg2['RECEIVER_LOCATION'])
|
||||
# return float(self.getSingleStream(traceID)[0].stats.seg2['RECEIVER_LOCATION'])
|
||||
|
||||
def getSrcLoc(self): ########## input FILENAME ##########
|
||||
'''
|
||||
@ -444,9 +448,10 @@ class SeismicShot(object):
|
||||
y = coordlist[i].split()[2]
|
||||
z = coordlist[i].split()[3]
|
||||
return float(x), float(y), float(z)
|
||||
#return float(self.getSingleStream(traceID)[0].stats.seg2['SOURCE_LOCATION'])
|
||||
# return float(self.getSingleStream(traceID)[0].stats.seg2['SOURCE_LOCATION'])
|
||||
|
||||
def getTraceIDs4Dist(self, distance = 0, distancebin = (0, 0)): ########## nur fuer 2D benutzt, 'distance bins' ##########
|
||||
def getTraceIDs4Dist(self, distance=0,
|
||||
distancebin=(0, 0)): ########## nur fuer 2D benutzt, 'distance bins' ##########
|
||||
'''
|
||||
Returns the traceID(s) for a certain distance between source and receiver.
|
||||
Used for 2D Tomography. TO BE IMPROVED.
|
||||
@ -460,39 +465,39 @@ class SeismicShot(object):
|
||||
|
||||
traceID_list = []
|
||||
for trace in self.traces:
|
||||
#traceID = int(trace.stats.seg2['CHANNEL_NUMBER'])
|
||||
traceID = int(trace.stats.channel)
|
||||
if distance != 0:
|
||||
if self.getDistance(traceID) == distance:
|
||||
traceID_list.append(traceID)
|
||||
if distancebin[0] >= 0 and distancebin[1] > 0:
|
||||
if distancebin[0] < self.getDistance(traceID) < distancebin[1]:
|
||||
traceID_list.append(traceID)
|
||||
# traceID = int(trace.stats.seg2['CHANNEL_NUMBER'])
|
||||
traceID = int(trace.stats.channel)
|
||||
if distance != 0:
|
||||
if self.getDistance(traceID) == distance:
|
||||
traceID_list.append(traceID)
|
||||
if distancebin[0] >= 0 and distancebin[1] > 0:
|
||||
if distancebin[0] < self.getDistance(traceID) < distancebin[1]:
|
||||
traceID_list.append(traceID)
|
||||
|
||||
if len(traceID_list) > 0:
|
||||
return traceID_list
|
||||
|
||||
# def setManualPicks(self, traceID, picklist): ########## picklist momentan nicht allgemein, nur testweise benutzt ##########
|
||||
# '''
|
||||
# Sets the manual picks for a receiver with the ID == traceID for comparison.
|
||||
# def setManualPicks(self, traceID, picklist): ########## picklist momentan nicht allgemein, nur testweise benutzt ##########
|
||||
# '''
|
||||
# Sets the manual picks for a receiver with the ID == traceID for comparison.
|
||||
|
||||
# :param: traceID
|
||||
# :type: int
|
||||
# :param: traceID
|
||||
# :type: int
|
||||
|
||||
# :param: picklist, list containing the manual picks (mostlikely, earliest, latest).
|
||||
# :type: list
|
||||
# '''
|
||||
# picks = picklist[traceID - 1].split()
|
||||
# mostlikely = float(picks[1])
|
||||
# earliest = float(picks[2])
|
||||
# latest = float(picks[3])
|
||||
# :param: picklist, list containing the manual picks (mostlikely, earliest, latest).
|
||||
# :type: list
|
||||
# '''
|
||||
# picks = picklist[traceID - 1].split()
|
||||
# mostlikely = float(picks[1])
|
||||
# earliest = float(picks[2])
|
||||
# latest = float(picks[3])
|
||||
|
||||
# if not self.manualpicks.has_key(traceID):
|
||||
# self.manualpicks[traceID] = (mostlikely, earliest, latest)
|
||||
#else:
|
||||
# raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID)
|
||||
# if not self.manualpicks.has_key(traceID):
|
||||
# self.manualpicks[traceID] = (mostlikely, earliest, latest)
|
||||
# else:
|
||||
# raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID)
|
||||
|
||||
def setManualPicksFromFile(self, directory = 'picks'):
|
||||
def setManualPicksFromFile(self, directory='picks'):
|
||||
'''
|
||||
Read manual picks from *.pck file.
|
||||
The * must be identical with the shotnumber.
|
||||
@ -517,8 +522,7 @@ class SeismicShot(object):
|
||||
else:
|
||||
self.setManualPickFlag(traceID, 1)
|
||||
|
||||
|
||||
def setPick(self, traceID, pick): ########## siehe Kommentar ##########
|
||||
def setPick(self, traceID, pick): ########## siehe Kommentar ##########
|
||||
if not traceID in self.picks.keys():
|
||||
self.picks[traceID] = {}
|
||||
self.picks[traceID]['mpp'] = pick
|
||||
@ -568,7 +572,7 @@ class SeismicShot(object):
|
||||
tsignal = self.getTsignal()
|
||||
tnoise = self.getPick(traceID) - tgap
|
||||
|
||||
self.snr[traceID] = getSNR(self.getSingleStream(traceID), (tnoise,tgap,tsignal), self.getPick(traceID))
|
||||
self.snr[traceID] = getSNR(self.getSingleStream(traceID), (tnoise, tgap, tsignal), self.getPick(traceID))
|
||||
|
||||
def setSNRthreshold(self, traceID, snrthreshold):
|
||||
self.snrthreshold[traceID] = snrthreshold
|
||||
@ -583,12 +587,11 @@ class SeismicShot(object):
|
||||
if self.getRecLoc(traceID)[0] > self.getSrcLoc()[0]:
|
||||
distancearray.append(self.getDistance(traceID))
|
||||
elif self.getRecLoc(traceID)[0] <= self.getSrcLoc()[0]:
|
||||
distancearray.append((-1)*self.getDistance(traceID))
|
||||
distancearray.append((-1) * self.getDistance(traceID))
|
||||
|
||||
return distancearray
|
||||
|
||||
|
||||
def plot2dttc(self, ax = None): ########## 2D ##########
|
||||
def plot2dttc(self, ax=None): ########## 2D ##########
|
||||
'''
|
||||
Function to plot the traveltime curve for automated picks of a shot. 2d only! ATM: X DIRECTION!!
|
||||
'''
|
||||
@ -605,15 +608,16 @@ class SeismicShot(object):
|
||||
|
||||
# shotnumbers = [shotnumbers for (shotnumbers, shotnames) in sorted(zip(shotnumbers, shotnames))]
|
||||
plotarray = sorted(zip(self.getDistArray4ttcPlot(), picks))
|
||||
x = []; y = []
|
||||
x = [];
|
||||
y = []
|
||||
for point in plotarray:
|
||||
x.append(point[0])
|
||||
y.append(point[1])
|
||||
ax.plot(x, y,'r', label = "Automatic Picks")
|
||||
ax.text(0.5, 0.9, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes
|
||||
, horizontalalignment = 'center')
|
||||
ax.plot(x, y, 'r', label="Automatic Picks")
|
||||
ax.text(0.5, 0.9, 'shot: %s' % self.getShotnumber(), transform=ax.transAxes
|
||||
, horizontalalignment='center')
|
||||
|
||||
def plotmanual2dttc(self, ax = None): ########## 2D ##########
|
||||
def plotmanual2dttc(self, ax=None): ########## 2D ##########
|
||||
'''
|
||||
Function to plot the traveltime curve for manual picks of a shot. 2D only!
|
||||
'''
|
||||
@ -632,11 +636,12 @@ class SeismicShot(object):
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
plotarray = sorted(zip(self.getDistArray4ttcPlot(), manualpicktimesarray))
|
||||
x = []; y = []
|
||||
x = [];
|
||||
y = []
|
||||
for point in plotarray:
|
||||
x.append(point[0])
|
||||
y.append(point[1])
|
||||
ax.plot(x, y, 'b', label = "Manual Picks")
|
||||
ax.plot(x, y, 'b', label="Manual Picks")
|
||||
|
||||
# def plotpickwindow(self): ########## 2D ##########
|
||||
# '''
|
||||
@ -656,10 +661,10 @@ class SeismicShot(object):
|
||||
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_lowerb, ':k')
|
||||
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_upperb, ':k')
|
||||
|
||||
def plotTrace(self, traceID, plotSNR = True, lw = 1):
|
||||
def plotTrace(self, traceID, plotSNR=True, lw=1):
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
ax = self._drawStream(traceID, ax = ax)
|
||||
ax = self._drawStream(traceID, ax=ax)
|
||||
|
||||
tgap = self.getTgap()
|
||||
tsignal = self.getTsignal()
|
||||
@ -667,31 +672,32 @@ class SeismicShot(object):
|
||||
tnoise = pick - tgap
|
||||
snr, snrdb, noiselevel = self.getSNR(traceID)
|
||||
|
||||
ax.plot([0, tnoise], [noiselevel, noiselevel], 'm', linewidth = lw, label = 'noise level')
|
||||
ax.plot([tnoise, pick], [noiselevel, noiselevel], 'g:', linewidth = lw, label = 'gap')
|
||||
ax.plot([tnoise + tgap, pick + tsignal], [noiselevel * snr, noiselevel * snr], 'b', linewidth = lw, label = 'signal level')
|
||||
ax.plot([0, tnoise], [noiselevel, noiselevel], 'm', linewidth=lw, label='noise level')
|
||||
ax.plot([tnoise, pick], [noiselevel, noiselevel], 'g:', linewidth=lw, label='gap')
|
||||
ax.plot([tnoise + tgap, pick + tsignal], [noiselevel * snr, noiselevel * snr], 'b', linewidth=lw,
|
||||
label='signal level')
|
||||
ax.legend()
|
||||
ax.text(0.05, 0.9, 'SNR: %s' %snr, transform = ax.transAxes)
|
||||
ax.text(0.05, 0.9, 'SNR: %s' % snr, transform=ax.transAxes)
|
||||
|
||||
def plot_traces(self, traceID): ########## 2D, muss noch mehr verbessert werden ##########
|
||||
def plot_traces(self, traceID): ########## 2D, muss noch mehr verbessert werden ##########
|
||||
from matplotlib.widgets import Button
|
||||
|
||||
def onclick(event):
|
||||
self.setPick(traceID, event.xdata)
|
||||
if self.getSNR(traceID)[0] > 1:
|
||||
self.setEarllatepick(traceID)
|
||||
self._drawStream(traceID, refresh = True)
|
||||
self._drawCFs(traceID, folm, refresh = True)
|
||||
self._drawStream(traceID, refresh=True)
|
||||
self._drawCFs(traceID, folm, refresh=True)
|
||||
fig.canvas.mpl_disconnect(self.traces4plot[traceID]['cid'])
|
||||
plt.draw()
|
||||
|
||||
def rmPick(event = None):
|
||||
def rmPick(event=None):
|
||||
self.removePick(traceID)
|
||||
self._drawStream(traceID, refresh = True)
|
||||
self._drawCFs(traceID, folm, refresh = True)
|
||||
self._drawStream(traceID, refresh=True)
|
||||
self._drawCFs(traceID, folm, refresh=True)
|
||||
plt.draw()
|
||||
|
||||
def connectButton(event = None):
|
||||
def connectButton(event=None):
|
||||
cid = fig.canvas.mpl_connect('button_press_event', onclick)
|
||||
self.traces4plot[traceID]['cid'] = cid
|
||||
|
||||
@ -701,13 +707,13 @@ class SeismicShot(object):
|
||||
folm = self.folm
|
||||
|
||||
fig = plt.figure()
|
||||
ax1 = fig.add_subplot(2,1,1)
|
||||
ax2 = fig.add_subplot(2,1,2, sharex = ax1)
|
||||
ax1 = fig.add_subplot(2, 1, 1)
|
||||
ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
|
||||
axb1 = fig.add_axes([0.15, 0.91, 0.05, 0.03])
|
||||
axb2 = fig.add_axes([0.22, 0.91, 0.05, 0.03])
|
||||
button1 = Button(axb1, 'repick', color = 'red', hovercolor = 'grey')
|
||||
button1 = Button(axb1, 'repick', color='red', hovercolor='grey')
|
||||
button1.on_clicked(connectButton)
|
||||
button2 = Button(axb2, 'delete', color = 'green', hovercolor = 'grey')
|
||||
button2 = Button(axb2, 'delete', color='green', hovercolor='grey')
|
||||
button2.on_clicked(rmPick)
|
||||
fig.canvas.mpl_connect('close_event', cleanup)
|
||||
|
||||
@ -717,7 +723,7 @@ class SeismicShot(object):
|
||||
self._drawStream(traceID)
|
||||
self._drawCFs(traceID, folm)
|
||||
|
||||
def _drawStream(self, traceID, refresh = False, ax = None):
|
||||
def _drawStream(self, traceID, refresh=False, ax=None):
|
||||
from pylot.core.util.utils import getGlobalTimes
|
||||
from pylot.core.util.utils import prepTimeAxis
|
||||
|
||||
@ -737,27 +743,27 @@ class SeismicShot(object):
|
||||
ax.set_ylim(ylim)
|
||||
|
||||
ax.set_title('Shot: %s, traceID: %s, pick: %s'
|
||||
%(self.getShotnumber(), traceID, self.getPick(traceID)))
|
||||
ax.plot(timeaxis, stream[0].data, 'k', label = 'trace')
|
||||
% (self.getShotnumber(), traceID, self.getPick(traceID)))
|
||||
ax.plot(timeaxis, stream[0].data, 'k', label='trace')
|
||||
ax.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'r', label = 'most likely')
|
||||
'r', label='most likely')
|
||||
if self.getEarliest(traceID) is not None:
|
||||
ax.plot([self.getEarliest(traceID), self.getEarliest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'g:', label = 'earliest')
|
||||
'g:', label='earliest')
|
||||
if self.getLatest(traceID) is not None:
|
||||
ax.plot([self.getLatest(traceID), self.getLatest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'b:', label = 'latest')
|
||||
'b:', label='latest')
|
||||
|
||||
ax.legend()
|
||||
return ax
|
||||
|
||||
def _drawCFs(self, traceID, folm = None, refresh = False):
|
||||
def _drawCFs(self, traceID, folm=None, refresh=False):
|
||||
hoscf = self.getHOScf(traceID)
|
||||
aiccf = self.getAICcf(traceID)
|
||||
ax = self.traces4plot[traceID]['ax2']
|
||||
@ -769,30 +775,30 @@ class SeismicShot(object):
|
||||
ax.set_xlim(xlim)
|
||||
ax.set_ylim(ylim)
|
||||
|
||||
ax.plot(hoscf.getTimeArray(), hoscf.getCF(), 'b', label = 'HOS')
|
||||
ax.plot(hoscf.getTimeArray(), aiccf.getCF(), 'g', label = 'AIC')
|
||||
ax.plot(hoscf.getTimeArray(), hoscf.getCF(), 'b', label='HOS')
|
||||
ax.plot(hoscf.getTimeArray(), aiccf.getCF(), 'g', label='AIC')
|
||||
ax.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'r', label = 'most likely')
|
||||
'r', label='most likely')
|
||||
if self.getEarliest(traceID) is not None:
|
||||
ax.plot([self.getEarliest(traceID), self.getEarliest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'g:', label = 'earliest')
|
||||
'g:', label='earliest')
|
||||
if self.getLatest(traceID) is not None:
|
||||
ax.plot([self.getLatest(traceID), self.getLatest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'b:', label = 'latest')
|
||||
'b:', label='latest')
|
||||
if folm is not None:
|
||||
ax.plot([0, self.getPick(traceID)],
|
||||
[folm * max(hoscf.getCF()), folm * max(hoscf.getCF())],
|
||||
'm:', label = 'folm = %s' %folm)
|
||||
'm:', label='folm = %s' % folm)
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.legend()
|
||||
|
||||
def plot3dttc(self, step = 0.5, contour = False, plotpicks = False, method = 'linear', ax = None):
|
||||
def plot3dttc(self, step=0.5, contour=False, plotpicks=False, method='linear', ax=None):
|
||||
'''
|
||||
Plots a 3D 'traveltime cone' as surface plot by interpolating on a regular grid over the traveltimes, not yet regarding the vertical offset of the receivers.
|
||||
|
||||
@ -824,20 +830,20 @@ class SeismicShot(object):
|
||||
xaxis = np.arange(min(x) + step, max(x), step)
|
||||
yaxis = np.arange(min(y) + step, max(y), step)
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method = method)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method=method)
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
xsrc, ysrc, zsrc = self.getSrcLoc()
|
||||
|
||||
if contour == True:
|
||||
ax.contour3D(xgrid,ygrid,zgrid,20)
|
||||
ax.contour3D(xgrid, ygrid, zgrid, 20)
|
||||
else:
|
||||
ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z))
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'k*', markersize = 20) # plot source location
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'r*', markersize = 15) # plot source location
|
||||
ax.plot_surface(xgrid, ygrid, zgrid, linewidth=0, cmap=cm.jet, vmin=min(z), vmax=max(z))
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'k*', markersize=20) # plot source location
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'r*', markersize=15) # plot source location
|
||||
|
||||
if plotpicks == True:
|
||||
ax.plot(x, y, z, 'k.')
|
||||
@ -847,7 +853,7 @@ class SeismicShot(object):
|
||||
|
||||
plotmethod[method](*args)
|
||||
|
||||
def matshow(self, ax = None, step = 0.5, method = 'linear', plotRec = True, annotations = True, colorbar = True, legend = True):
|
||||
def matshow(self, ax=None, step=0.5, method='linear', plotRec=True, annotations=True, colorbar=True, legend=True):
|
||||
'''
|
||||
Plots a 2D matrix of the interpolated traveltimes. This needs less performance than plot3dttc
|
||||
|
||||
@ -868,9 +874,12 @@ class SeismicShot(object):
|
||||
from matplotlib import cm
|
||||
cmap = cm.jet
|
||||
|
||||
x = []; xcut = []
|
||||
y = []; ycut = []
|
||||
z = []; zcut = []
|
||||
x = [];
|
||||
xcut = []
|
||||
y = [];
|
||||
ycut = []
|
||||
z = [];
|
||||
zcut = []
|
||||
|
||||
for traceID in self.picks.keys():
|
||||
if self.getPickFlag(traceID) != 0:
|
||||
@ -882,7 +891,7 @@ class SeismicShot(object):
|
||||
ycut.append(self.getRecLoc(traceID)[1])
|
||||
zcut.append(self.getPickIncludeRemoved(traceID))
|
||||
|
||||
tmin = 0.8 * min(z) # 20% cushion for colorbar
|
||||
tmin = 0.8 * min(z) # 20% cushion for colorbar
|
||||
tmax = 1.2 * max(z)
|
||||
|
||||
xaxis = np.arange(min(x), max(x), step)
|
||||
@ -895,10 +904,11 @@ class SeismicShot(object):
|
||||
ax = plt.axes()
|
||||
|
||||
count = 0
|
||||
ax.imshow(zgrid, extent = [min(x), max(x), min(y), max(y)], vmin = tmin, vmax = tmax, cmap = cmap, origin = 'lower', alpha = 0.85)
|
||||
ax.text(0.5, 0.95, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes
|
||||
, horizontalalignment = 'center')
|
||||
sc = ax.scatter(x, y, c = z, s = 30, label = 'picked shots', vmin = tmin, vmax = tmax, cmap = cmap, linewidths = 1.5)
|
||||
ax.imshow(zgrid, extent=[min(x), max(x), min(y), max(y)], vmin=tmin, vmax=tmax, cmap=cmap, origin='lower',
|
||||
alpha=0.85)
|
||||
ax.text(0.5, 0.95, 'shot: %s' % self.getShotnumber(), transform=ax.transAxes
|
||||
, horizontalalignment='center')
|
||||
sc = ax.scatter(x, y, c=z, s=30, label='picked shots', vmin=tmin, vmax=tmax, cmap=cmap, linewidths=1.5)
|
||||
label = None
|
||||
for xyz in zip(xcut, ycut, zcut):
|
||||
x, y, z = xyz
|
||||
@ -907,7 +917,7 @@ class SeismicShot(object):
|
||||
z = 'w'
|
||||
if count == 1:
|
||||
label = 'cut out shots'
|
||||
ax.scatter(x, y, c = z, s = 30, edgecolor = 'm', label = label, vmin = tmin, vmax = tmax, cmap = cmap, linewidths = 1.5)
|
||||
ax.scatter(x, y, c=z, s=30, edgecolor='m', label=label, vmin=tmin, vmax=tmax, cmap=cmap, linewidths=1.5)
|
||||
if colorbar == True:
|
||||
cbar = plt.colorbar(sc)
|
||||
cbar.set_label('Time [s]')
|
||||
@ -916,17 +926,15 @@ class SeismicShot(object):
|
||||
ax.legend()
|
||||
ax.set_xlabel('X')
|
||||
ax.set_ylabel('Y')
|
||||
ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1],'*k', markersize = 15) # plot source location
|
||||
ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1], '*k', markersize=15) # plot source location
|
||||
|
||||
if annotations == True:
|
||||
for traceID in self.getTraceIDlist():
|
||||
if self.getPickFlag(traceID) is not 0:
|
||||
ax.annotate(' %s' %traceID , xy = (self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
ax.annotate(' %s' % traceID, xy=(self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize='x-small', color='k')
|
||||
else:
|
||||
ax.annotate(' %s' %traceID , xy = (self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'r')
|
||||
ax.annotate(' %s' % traceID, xy=(self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize='x-small', color='r')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
@ -2,8 +2,10 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
plt.interactive(True)
|
||||
|
||||
|
||||
class regions(object):
|
||||
'''
|
||||
A class used for manual inspection and processing of all picks for the user.
|
||||
@ -12,19 +14,19 @@ class regions(object):
|
||||
|
||||
regions.chooseRectangles():
|
||||
- lets the user choose several rectangular regions in the plot
|
||||
|
||||
|
||||
regions.plotTracesInActiveRegions():
|
||||
- creates plots (shot.plot_traces) for all traces in the active regions (i.e. chosen by e.g. chooseRectangles)
|
||||
|
||||
|
||||
regions.setAllActiveRegionsForDeletion():
|
||||
- highlights all shots in a the active regions for deletion
|
||||
|
||||
|
||||
regions.deleteAllMarkedPicks():
|
||||
- deletes the picks (pick flag set to 0) for all shots set for deletion
|
||||
|
||||
regions.deselectSelection(number):
|
||||
- deselects the region of number = number
|
||||
|
||||
|
||||
'''
|
||||
|
||||
def __init__(self, ax, cbar, survey):
|
||||
@ -57,10 +59,10 @@ class regions(object):
|
||||
for shot in self.shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
allpicks.append((shot.getDistance(traceID),
|
||||
shot.getPickIncludeRemoved(traceID),
|
||||
shot.getShotnumber(),
|
||||
traceID,
|
||||
shot.getPickFlag(traceID)))
|
||||
shot.getPickIncludeRemoved(traceID),
|
||||
shot.getShotnumber(),
|
||||
traceID,
|
||||
shot.getPickFlag(traceID)))
|
||||
|
||||
allpicks.sort()
|
||||
self._allpicks = allpicks
|
||||
@ -74,9 +76,9 @@ class regions(object):
|
||||
def _onselect_clicks(self, eclick, erelease):
|
||||
'''eclick and erelease are matplotlib events at press and release'''
|
||||
print 'region selected x0, y0 = (%3s, %3s), x1, y1 = (%3s, %3s)' % (eclick.xdata,
|
||||
eclick.ydata,
|
||||
erelease.xdata,
|
||||
erelease.ydata)
|
||||
eclick.ydata,
|
||||
erelease.xdata,
|
||||
erelease.ydata)
|
||||
x0 = min(eclick.xdata, erelease.xdata)
|
||||
x1 = max(eclick.xdata, erelease.xdata)
|
||||
y0 = min(eclick.ydata, erelease.ydata)
|
||||
@ -105,18 +107,18 @@ class regions(object):
|
||||
self.disconnectPoly()
|
||||
self.printOutput('Disconnected polygon selection')
|
||||
|
||||
def addTextfield(self, xpos = 0, ypos = 0.95, width = 1, height = 0.03):
|
||||
def addTextfield(self, xpos=0, ypos=0.95, width=1, height=0.03):
|
||||
'''
|
||||
Adds an ax for text output to the plot.
|
||||
'''
|
||||
self.axtext = self.ax.figure.add_axes([xpos,
|
||||
ypos,
|
||||
width,
|
||||
height])
|
||||
ypos,
|
||||
width,
|
||||
height])
|
||||
self.axtext.xaxis.set_visible(False)
|
||||
self.axtext.yaxis.set_visible(False)
|
||||
|
||||
def writeInTextfield(self, text = None):
|
||||
def writeInTextfield(self, text=None):
|
||||
self.setXYlim(self.ax.get_xlim(), self.ax.get_ylim())
|
||||
self.axtext.clear()
|
||||
self.axtext.text(0.01, 0.5, text, verticalalignment='center', horizontalalignment='left')
|
||||
@ -136,16 +138,16 @@ class regions(object):
|
||||
self.addButton('SelAll', self.setAllActiveRegionsForDeletion, xpos=xpos2 + 2 * dx)
|
||||
self.addButton('DelAll', self.deleteAllMarkedPicks, xpos=xpos2 + 3 * dx, color='red')
|
||||
|
||||
def addButton(self, name, action, xpos, ypos = 0.91, color = None):
|
||||
def addButton(self, name, action, xpos, ypos=0.91, color=None):
|
||||
from matplotlib.widgets import Button
|
||||
self.buttons[name] = {'ax': None,
|
||||
'button': None,
|
||||
'action': action,
|
||||
'xpos': xpos}
|
||||
'button': None,
|
||||
'action': action,
|
||||
'xpos': xpos}
|
||||
ax = self.ax.figure.add_axes([xpos,
|
||||
ypos,
|
||||
0.05,
|
||||
0.03])
|
||||
ypos,
|
||||
0.05,
|
||||
0.03])
|
||||
button = Button(ax, name, color=color, hovercolor='grey')
|
||||
button.on_clicked(action)
|
||||
self.buttons[name]['ax'] = ax
|
||||
@ -179,23 +181,24 @@ class regions(object):
|
||||
self.drawLastPolyLine()
|
||||
x = self._polyx
|
||||
y = self._polyy
|
||||
self._polyx = []; self._polyy = []
|
||||
self._polyx = [];
|
||||
self._polyy = []
|
||||
|
||||
key = self.getKey()
|
||||
self.markPolygon(x, y, key = key)
|
||||
self.markPolygon(x, y, key=key)
|
||||
|
||||
shots, numtraces = self.findTracesInPoly(x, y)
|
||||
self.shots_found[key] = {'shots': shots,
|
||||
'selection': 'poly',
|
||||
'xvalues': x,
|
||||
'yvalues': y}
|
||||
'selection': 'poly',
|
||||
'xvalues': x,
|
||||
'yvalues': y}
|
||||
self.printOutput('Found %d traces in polygon: %s' % (numtraces, shots))
|
||||
|
||||
def printOutput(self, text):
|
||||
print text
|
||||
self.writeInTextfield(text)
|
||||
|
||||
def chooseRectangles(self, event = None):
|
||||
def chooseRectangles(self, event=None):
|
||||
'''
|
||||
Activates matplotlib widget RectangleSelector.
|
||||
'''
|
||||
@ -208,7 +211,7 @@ class regions(object):
|
||||
self._rectangle = RectangleSelector(self.ax, self._onselect_clicks)
|
||||
return self._rectangle
|
||||
|
||||
def choosePolygon(self, event = None):
|
||||
def choosePolygon(self, event=None):
|
||||
'''
|
||||
Activates matplotlib widget LassoSelector.
|
||||
'''
|
||||
@ -221,7 +224,7 @@ class regions(object):
|
||||
self._lasso = LassoSelector(self.ax, self._onselect_verts)
|
||||
return self._lasso
|
||||
|
||||
def disconnectPoly(self, event = None):
|
||||
def disconnectPoly(self, event=None):
|
||||
if not hasattr(self, '_cidPoly'):
|
||||
self.printOutput('no poly selection found')
|
||||
return
|
||||
@ -231,7 +234,7 @@ class regions(object):
|
||||
self._lasso.disconnect_events()
|
||||
print 'disconnected poly selection\n'
|
||||
|
||||
def disconnectRect(self, event = None):
|
||||
def disconnectRect(self, event=None):
|
||||
if not hasattr(self, '_cidRect'):
|
||||
self.printOutput('no rectangle selection found')
|
||||
return
|
||||
@ -240,14 +243,14 @@ class regions(object):
|
||||
self._rectangle.disconnect_events()
|
||||
print 'disconnected rectangle selection\n'
|
||||
|
||||
def deselectLastSelection(self, event = None):
|
||||
def deselectLastSelection(self, event=None):
|
||||
if self.shots_found.keys() == []:
|
||||
self.printOutput('No selection found.')
|
||||
return
|
||||
key = max(self.shots_found.keys())
|
||||
self.deselectSelection(key)
|
||||
|
||||
def deselectSelection(self, key, color = 'green', alpha = 0.1):
|
||||
def deselectSelection(self, key, color='green', alpha=0.1):
|
||||
if key not in self.shots_found.keys():
|
||||
self.printOutput('No selection found.')
|
||||
return
|
||||
@ -255,17 +258,17 @@ class regions(object):
|
||||
if self.shots_found[key]['selection'] == 'rect':
|
||||
self.markRectangle(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'],
|
||||
key = key, color = color, alpha = alpha,
|
||||
linewidth = 1)
|
||||
key=key, color=color, alpha=alpha,
|
||||
linewidth=1)
|
||||
elif self.shots_found[key]['selection'] == 'poly':
|
||||
self.markPolygon(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'],
|
||||
key = key, color = color, alpha = alpha,
|
||||
linewidth = 1)
|
||||
key=key, color=color, alpha=alpha,
|
||||
linewidth=1)
|
||||
value = self.shots_found.pop(key)
|
||||
self.printOutput('Deselected selection number %d' % key)
|
||||
|
||||
def findTracesInPoly(self, x, y, picks = 'normal', highlight = True):
|
||||
def findTracesInPoly(self, x, y, picks='normal', highlight=True):
|
||||
def dotproduct(v1, v2):
|
||||
return sum((a * b for a, b in zip(v1, v2)))
|
||||
|
||||
@ -279,21 +282,26 @@ class regions(object):
|
||||
angle = 0
|
||||
epsilon = 1e-07
|
||||
for index in range(len(x)):
|
||||
xval1 = x[index - 1]; yval1 = y[index - 1]
|
||||
xval2 = x[index]; yval2 = y[index]
|
||||
xval1 = x[index - 1];
|
||||
yval1 = y[index - 1]
|
||||
xval2 = x[index];
|
||||
yval2 = y[index]
|
||||
angle += getangle([xval1 - pickX, yval1 - pickY], [xval2 - pickX, yval2 - pickY])
|
||||
if 360 - epsilon <= angle <= 360 + epsilon: ### IMPROVE THAT??
|
||||
if 360 - epsilon <= angle <= 360 + epsilon: ### IMPROVE THAT??
|
||||
return True
|
||||
|
||||
if len(x) == 0 or len(y) == 0:
|
||||
self.printOutput('No polygon defined.')
|
||||
return
|
||||
|
||||
shots_found = {}; numtraces = 0
|
||||
x0 = min(x); x1 = max(x)
|
||||
y0 = min(y); y1 = max(y)
|
||||
shots_found = {};
|
||||
numtraces = 0
|
||||
x0 = min(x);
|
||||
x1 = max(x)
|
||||
y0 = min(y);
|
||||
y1 = max(y)
|
||||
|
||||
shots, numtracesrect = self.findTracesInShotDict((x0, x1), (y0, y1), highlight = False)
|
||||
shots, numtracesrect = self.findTracesInShotDict((x0, x1), (y0, y1), highlight=False)
|
||||
for shotnumber in shots.keys():
|
||||
shot = self.shot_dict[shotnumber]
|
||||
for traceID in shots[shotnumber]:
|
||||
@ -310,18 +318,21 @@ class regions(object):
|
||||
|
||||
self.drawFigure()
|
||||
return shots_found, numtraces
|
||||
|
||||
def findTracesInShotDict(self, (x0, x1), (y0, y1), picks = 'normal', highlight = True):
|
||||
|
||||
def findTracesInShotDict(self, (x0, x1), (y0, y1), picks='normal', highlight=True):
|
||||
'''
|
||||
Returns traces corresponding to a certain area in the plot with all picks over the distances.
|
||||
'''
|
||||
shots_found = {}; numtraces = 0
|
||||
if picks == 'normal': pickflag = 0
|
||||
elif picks == 'includeCutOut': pickflag = None
|
||||
shots_found = {};
|
||||
numtraces = 0
|
||||
if picks == 'normal':
|
||||
pickflag = 0
|
||||
elif picks == 'includeCutOut':
|
||||
pickflag = None
|
||||
|
||||
for line in self._allpicks:
|
||||
dist, pick, shotnumber, traceID, flag = line
|
||||
if flag == pickflag: continue ### IMPROVE THAT
|
||||
if flag == pickflag: continue ### IMPROVE THAT
|
||||
if (x0 <= dist <= x1 and y0 <= pick <= y1):
|
||||
if shotnumber not in shots_found.keys():
|
||||
shots_found[shotnumber] = []
|
||||
@ -333,7 +344,7 @@ class regions(object):
|
||||
self.drawFigure()
|
||||
return shots_found, numtraces
|
||||
|
||||
def highlightPick(self, shot, traceID, annotations = True):
|
||||
def highlightPick(self, shot, traceID, annotations=True):
|
||||
'''
|
||||
Highlights a single pick for a shot(object)/shotnumber and traceID.
|
||||
If annotations == True: Displays shotnumber and traceID in the plot.
|
||||
@ -344,9 +355,11 @@ class regions(object):
|
||||
if shot.getPickFlag(traceID) is 0:
|
||||
return
|
||||
|
||||
self.ax.scatter(shot.getDistance(traceID), shot.getPick(traceID), s = 50, marker = 'o', facecolors = 'none', edgecolors = 'm', alpha = 1)
|
||||
self.ax.scatter(shot.getDistance(traceID), shot.getPick(traceID), s=50, marker='o', facecolors='none',
|
||||
edgecolors='m', alpha=1)
|
||||
if annotations == True:
|
||||
self.ax.annotate(s='s%s|t%s' % (shot.getShotnumber(), traceID), xy=(shot.getDistance(traceID), shot.getPick(traceID)), fontsize='xx-small')
|
||||
self.ax.annotate(s='s%s|t%s' % (shot.getShotnumber(), traceID),
|
||||
xy=(shot.getDistance(traceID), shot.getPick(traceID)), fontsize='xx-small')
|
||||
|
||||
def highlightAllActiveRegions(self):
|
||||
'''
|
||||
@ -358,7 +371,7 @@ class regions(object):
|
||||
self.highlightPick(self.shot_dict[shotnumber], traceID)
|
||||
self.drawFigure()
|
||||
|
||||
def plotTracesInActiveRegions(self, event = None, keys = 'all', maxfigures = 20):
|
||||
def plotTracesInActiveRegions(self, event=None, keys='all', maxfigures=20):
|
||||
'''
|
||||
Plots all traces in the active region or for all specified keys.
|
||||
|
||||
@ -382,13 +395,14 @@ class regions(object):
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
count += 1
|
||||
if count > maxfigures:
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' %(maxfigures, count)
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' % (
|
||||
maxfigures, count)
|
||||
break
|
||||
shot.plot_traces(traceID)
|
||||
else:
|
||||
self.printOutput('No picks defined in that region(s)')
|
||||
|
||||
def setAllActiveRegionsForDeletion(self, event = None):
|
||||
def setAllActiveRegionsForDeletion(self, event=None):
|
||||
keys = []
|
||||
for key in self.shots_found.keys():
|
||||
keys.append(key)
|
||||
@ -405,7 +419,7 @@ class regions(object):
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
if traceID not in self.shots_for_deletion[shotnumber]:
|
||||
self.shots_for_deletion[shotnumber].append(traceID)
|
||||
self.deselectSelection(key, color = 'red', alpha = 0.2)
|
||||
self.deselectSelection(key, color='red', alpha=0.2)
|
||||
|
||||
self.deselectSelection(key, color='red', alpha=0.2)
|
||||
|
||||
@ -415,13 +429,12 @@ class regions(object):
|
||||
for key in self.shots_found.keys():
|
||||
if self.shots_found[key]['selection'] == 'rect':
|
||||
self.markRectangle(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'], key = key)
|
||||
self.shots_found[key]['yvalues'], key=key)
|
||||
if self.shots_found[key]['selection'] == 'poly':
|
||||
self.markPolygon(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'], key = key)
|
||||
|
||||
self.shots_found[key]['yvalues'], key=key)
|
||||
|
||||
def markRectangle(self, (x0, x1), (y0, y1), key = None, color = 'grey', alpha = 0.1, linewidth = 1):
|
||||
def markRectangle(self, (x0, x1), (y0, y1), key=None, color='grey', alpha=0.1, linewidth=1):
|
||||
'''
|
||||
Mark a rectangular region on the axes.
|
||||
'''
|
||||
@ -431,7 +444,7 @@ class regions(object):
|
||||
self.ax.text(x0 + (x1 - x0) / 2, y0 + (y1 - y0) / 2, str(key))
|
||||
self.drawFigure()
|
||||
|
||||
def markPolygon(self, x, y, key = None, color = 'grey', alpha = 0.1, linewidth = 1):
|
||||
def markPolygon(self, x, y, key=None, color='grey', alpha=0.1, linewidth=1):
|
||||
from matplotlib.patches import Polygon
|
||||
poly = Polygon(np.array(zip(x, y)), color=color, alpha=alpha, lw=linewidth)
|
||||
self.ax.add_patch(poly)
|
||||
@ -449,7 +462,7 @@ class regions(object):
|
||||
def getShotsForDeletion(self):
|
||||
return self.shots_for_deletion
|
||||
|
||||
def deleteAllMarkedPicks(self, event = None):
|
||||
def deleteAllMarkedPicks(self, event=None):
|
||||
'''
|
||||
Deletes all shots set for deletion.
|
||||
'''
|
||||
@ -462,11 +475,11 @@ class regions(object):
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
for traceID in self.getShotsForDeletion()[shotnumber]:
|
||||
shot.removePick(traceID)
|
||||
print "Deleted the pick for traceID %s on shot number %s" %(traceID, shotnumber)
|
||||
print "Deleted the pick for traceID %s on shot number %s" % (traceID, shotnumber)
|
||||
self.clearShotsForDeletion()
|
||||
self.refreshFigure()
|
||||
|
||||
def highlightPicksForShot(self, shot, annotations = False):
|
||||
def highlightPicksForShot(self, shot, annotations=False):
|
||||
'''
|
||||
Highlight all picks for a given shot.
|
||||
'''
|
||||
@ -482,19 +495,19 @@ class regions(object):
|
||||
def setXYlim(self, xlim, ylim):
|
||||
self._xlim, self._ylim = xlim, ylim
|
||||
|
||||
def refreshLog10SNR(self, event = None):
|
||||
def refreshLog10SNR(self, event=None):
|
||||
cbv = 'log10SNR'
|
||||
self.refreshFigure(self, colorByVal=cbv)
|
||||
|
||||
def refreshPickerror(self, event = None):
|
||||
def refreshPickerror(self, event=None):
|
||||
cbv = 'pickerror'
|
||||
self.refreshFigure(self, colorByVal=cbv)
|
||||
|
||||
def refreshSPE(self, event = None):
|
||||
def refreshSPE(self, event=None):
|
||||
cbv = 'spe'
|
||||
self.refreshFigure(self, colorByVal=cbv)
|
||||
|
||||
def refreshFigure(self, event = None, colorByVal = None):
|
||||
def refreshFigure(self, event=None, colorByVal=None):
|
||||
if colorByVal == None:
|
||||
colorByVal = self.cbv
|
||||
else:
|
||||
@ -508,7 +521,7 @@ class regions(object):
|
||||
self.drawFigure()
|
||||
self.printOutput('Done!')
|
||||
|
||||
def drawFigure(self, resetAxes = True):
|
||||
def drawFigure(self, resetAxes=True):
|
||||
if resetAxes == True:
|
||||
self.ax.set_xlim(self._xlim)
|
||||
self.ax.set_ylim(self._ylim)
|
||||
|
@ -1,6 +1,13 @@
|
||||
import numpy as np
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def readParameters(parfile, parameter):
|
||||
"""
|
||||
|
||||
:param parfile:
|
||||
:param parameter:
|
||||
:return:
|
||||
"""
|
||||
from ConfigParser import ConfigParser
|
||||
parameterConfig = ConfigParser()
|
||||
parameterConfig.read('parfile')
|
||||
@ -9,14 +16,29 @@ def readParameters(parfile, parameter):
|
||||
|
||||
return value
|
||||
|
||||
|
||||
def setArtificialPick(shot_dict, traceID, pick):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:param traceID:
|
||||
:param pick:
|
||||
:return:
|
||||
"""
|
||||
for shot in shot_dict.values():
|
||||
shot.setPick(traceID, pick)
|
||||
shot.setPickwindow(traceID, shot.getCut())
|
||||
|
||||
def fitSNR4dist(shot_dict, shiftdist = 30, shiftSNR = 100):
|
||||
|
||||
def fitSNR4dist(shot_dict, shiftdist=30, shiftSNR=100):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:param shiftdist:
|
||||
:param shiftSNR:
|
||||
:return:
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
dists = []
|
||||
picks = []
|
||||
snrs = []
|
||||
@ -29,54 +51,84 @@ def fitSNR4dist(shot_dict, shiftdist = 30, shiftSNR = 100):
|
||||
dists.append(shot.getDistance(traceID))
|
||||
picks.append(shot.getPickIncludeRemoved(traceID))
|
||||
snrs.append(shot.getSNR(traceID)[0])
|
||||
snr_sqrt_inv.append(1/np.sqrt(shot.getSNR(traceID)[0]))
|
||||
snr_sqrt_inv.append(1 / np.sqrt(shot.getSNR(traceID)[0]))
|
||||
fit = np.polyfit(dists, snr_sqrt_inv, 1)
|
||||
fit_fn = np.poly1d(fit)
|
||||
for dist in dists:
|
||||
snrBestFit.append((1/(fit_fn(dist)**2)))
|
||||
snrBestFit.append((1 / (fit_fn(dist) ** 2)))
|
||||
dist += shiftdist
|
||||
snrthresholds.append((1/(fit_fn(dist)**2)) - shiftSNR * np.exp(-0.05 * dist))
|
||||
snrthresholds.append((1 / (fit_fn(dist) ** 2)) - shiftSNR * np.exp(-0.05 * dist))
|
||||
plotFittedSNR(dists, snrthresholds, snrs, snrBestFit)
|
||||
return fit_fn #### ZU VERBESSERN, sollte fertige funktion wiedergeben
|
||||
return fit_fn #### ZU VERBESSERN, sollte fertige funktion wiedergeben
|
||||
|
||||
|
||||
def plotFittedSNR(dists, snrthresholds, snrs, snrBestFit):
|
||||
"""
|
||||
|
||||
:param dists:
|
||||
:param snrthresholds:
|
||||
:param snrs:
|
||||
:param snrBestFit:
|
||||
:return:
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
fig = plt.figure()
|
||||
plt.plot(dists, snrs, 'b.', markersize = 2.0, label = 'SNR values')
|
||||
plt.plot(dists, snrs, 'b.', markersize=2.0, label='SNR values')
|
||||
dists.sort()
|
||||
snrthresholds.sort(reverse = True)
|
||||
snrBestFit.sort(reverse = True)
|
||||
plt.plot(dists, snrthresholds, 'r', markersize = 1, label = 'Fitted threshold')
|
||||
plt.plot(dists, snrBestFit, 'k', markersize = 1, label = 'Best fitted curve')
|
||||
snrthresholds.sort(reverse=True)
|
||||
snrBestFit.sort(reverse=True)
|
||||
plt.plot(dists, snrthresholds, 'r', markersize=1, label='Fitted threshold')
|
||||
plt.plot(dists, snrBestFit, 'k', markersize=1, label='Best fitted curve')
|
||||
plt.xlabel('Distance[m]')
|
||||
plt.ylabel('SNR')
|
||||
plt.legend()
|
||||
|
||||
def setDynamicFittedSNR(shot_dict, shiftdist = 30, shiftSNR = 100, p1 = 0.004, p2 = -0.0007):
|
||||
|
||||
def setDynamicFittedSNR(shot_dict, shiftdist=30, shiftSNR=100, p1=0.004, p2=-0.0007):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:type shot_dict: dict
|
||||
:param shiftdist:
|
||||
:type shiftdist: int
|
||||
:param shiftSNR:
|
||||
:type shiftSNR: int
|
||||
:param p1:
|
||||
:type p1: float
|
||||
:param p2:
|
||||
:type p2: float
|
||||
:return:
|
||||
"""
|
||||
import numpy as np
|
||||
minSNR = 2.5
|
||||
#fit_fn = fitSNR4dist(shot_dict)
|
||||
# fit_fn = fitSNR4dist(shot_dict)
|
||||
fit_fn = np.poly1d([p1, p2])
|
||||
for shot in shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist(): ### IMPROVE
|
||||
for traceID in shot.getTraceIDlist(): ### IMPROVE
|
||||
dist = shot.getDistance(traceID) + shiftdist
|
||||
snrthreshold = (1/(fit_fn(dist)**2)) - shiftSNR * np.exp(-0.05 * dist)
|
||||
snrthreshold = (1 / (fit_fn(dist) ** 2)) - shiftSNR * np.exp(-0.05 * dist)
|
||||
if snrthreshold < minSNR:
|
||||
print('WARNING: SNR threshold %s lower %s. Set SNR threshold to %s.'
|
||||
%(snrthreshold, minSNR, minSNR))
|
||||
% (snrthreshold, minSNR, minSNR))
|
||||
shot.setSNRthreshold(traceID, minSNR)
|
||||
else:
|
||||
shot.setSNRthreshold(traceID, snrthreshold)
|
||||
print "setDynamicFittedSNR: Finished setting of fitted SNR-threshold"
|
||||
print("setDynamicFittedSNR: Finished setting of fitted SNR-threshold")
|
||||
|
||||
def setConstantSNR(shot_dict, snrthreshold = 2.5):
|
||||
import numpy as np
|
||||
|
||||
def setConstantSNR(shot_dict, snrthreshold=2.5):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:param snrthreshold:
|
||||
:return:
|
||||
"""
|
||||
for shot in shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
shot.setSNRthreshold(traceID, snrthreshold)
|
||||
print "setConstantSNR: Finished setting of SNR threshold to a constant value of %s"%snrthreshold
|
||||
print("setConstantSNR: Finished setting of SNR threshold to a constant value of %s" % snrthreshold)
|
||||
|
||||
|
||||
def findTracesInRanges(shot_dict, distancebin, pickbin):
|
||||
'''
|
||||
@ -94,8 +146,8 @@ def findTracesInRanges(shot_dict, distancebin, pickbin):
|
||||
'''
|
||||
shots_found = {}
|
||||
for shot in shot_dict.values():
|
||||
if shot.getTraceIDs4Dist(distancebin = distancebin) is not None:
|
||||
for traceID in shot.getTraceIDs4Dist(distancebin = distancebin):
|
||||
if shot.getTraceIDs4Dist(distancebin=distancebin) is not None:
|
||||
for traceID in shot.getTraceIDs4Dist(distancebin=distancebin):
|
||||
if pickbin[0] < shot.getPick(traceID) < pickbin[1]:
|
||||
if shot.getShotnumber() not in shots_found.keys():
|
||||
shots_found[shot.getShotnumber()] = []
|
||||
@ -103,11 +155,17 @@ def findTracesInRanges(shot_dict, distancebin, pickbin):
|
||||
|
||||
return shots_found
|
||||
|
||||
def cleanUp(survey):
|
||||
|
||||
def cleanUp(survey):
|
||||
"""
|
||||
|
||||
:param survey:
|
||||
:return:
|
||||
"""
|
||||
for shot in survey.data.values():
|
||||
shot.traces4plot = {}
|
||||
|
||||
|
||||
# def plotScatterStats(survey, key, ax = None):
|
||||
# import matplotlib.pyplot as plt
|
||||
# x = []; y = []; value = []
|
||||
@ -119,7 +177,7 @@ def cleanUp(survey):
|
||||
# value.append(stats[shotnumber][key])
|
||||
# x.append(survey.data[shotnumber].getSrcLoc()[0])
|
||||
# y.append(survey.data[shotnumber].getSrcLoc()[1])
|
||||
|
||||
|
||||
# if ax == None:
|
||||
# fig = plt.figure()
|
||||
# ax = fig.add_subplot(111)
|
||||
@ -131,14 +189,19 @@ def cleanUp(survey):
|
||||
# cbar.set_label(key)
|
||||
|
||||
def plotScatterStats4Shots(survey, key):
|
||||
'''
|
||||
"""
|
||||
Statistics, scatter plot.
|
||||
key can be 'mean SNR', 'median SNR', 'mean SPE', 'median SPE', or 'picked traces'
|
||||
'''
|
||||
:param survey:
|
||||
:param key:
|
||||
:return:
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
statsShot = {}
|
||||
x = []; y = []; value = []
|
||||
x = []
|
||||
y = []
|
||||
value = []
|
||||
for shot in survey.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if not shot in statsShot.keys():
|
||||
@ -147,7 +210,7 @@ def plotScatterStats4Shots(survey, key):
|
||||
'SNR': [],
|
||||
'SPE': [],
|
||||
'picked traces': 0}
|
||||
|
||||
|
||||
statsShot[shot]['SNR'].append(shot.getSNR(traceID)[0])
|
||||
if shot.getPickFlag(traceID) == 1:
|
||||
statsShot[shot]['picked traces'] += 1
|
||||
@ -171,7 +234,7 @@ def plotScatterStats4Shots(survey, key):
|
||||
for val in value:
|
||||
size.append(100 * val / max(value))
|
||||
|
||||
sc = ax.scatter(x, y, s = size, c = value)
|
||||
sc = ax.scatter(x, y, s=size, c=value)
|
||||
plt.title('Plot of all shots')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
@ -179,18 +242,24 @@ def plotScatterStats4Shots(survey, key):
|
||||
cbar.set_label(key)
|
||||
|
||||
for shot in statsShot.keys():
|
||||
ax.annotate(' %s' %shot.getShotnumber() , xy = (shot.getSrcLoc()[0], shot.getSrcLoc()[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
|
||||
ax.annotate(' %s' % shot.getShotnumber(), xy=(shot.getSrcLoc()[0], shot.getSrcLoc()[1]),
|
||||
fontsize='x-small', color='k')
|
||||
|
||||
|
||||
def plotScatterStats4Receivers(survey, key):
|
||||
'''
|
||||
"""
|
||||
Statistics, scatter plot.
|
||||
key can be 'mean SNR', 'median SNR', 'mean SPE', 'median SPE', or 'picked traces'
|
||||
'''
|
||||
:param survey:
|
||||
:param key:
|
||||
:return:
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
statsRec = {}
|
||||
x = []; y = []; value = []
|
||||
x = []
|
||||
y = []
|
||||
value = []
|
||||
for shot in survey.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if not traceID in statsRec.keys():
|
||||
@ -199,13 +268,12 @@ def plotScatterStats4Receivers(survey, key):
|
||||
'SNR': [],
|
||||
'SPE': [],
|
||||
'picked traces': 0}
|
||||
|
||||
|
||||
statsRec[traceID]['SNR'].append(shot.getSNR(traceID)[0])
|
||||
if shot.getPickFlag(traceID) == 1:
|
||||
statsRec[traceID]['picked traces'] += 1
|
||||
statsRec[traceID]['SPE'].append(shot.getSymmetricPickError(traceID))
|
||||
|
||||
|
||||
for traceID in statsRec.keys():
|
||||
statsRec[traceID]['mean SNR'] = np.mean(statsRec[traceID]['SNR'])
|
||||
statsRec[traceID]['median SNR'] = np.median(statsRec[traceID]['SNR'])
|
||||
@ -224,14 +292,14 @@ def plotScatterStats4Receivers(survey, key):
|
||||
for val in value:
|
||||
size.append(100 * val / max(value))
|
||||
|
||||
sc = ax.scatter(x, y, s = size, c = value)
|
||||
sc = ax.scatter(x, y, s=size, c=value)
|
||||
plt.title('Plot of all receivers')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
cbar = plt.colorbar(sc)
|
||||
cbar.set_label(key)
|
||||
|
||||
|
||||
shot = survey.data.values()[0]
|
||||
for traceID in shot.getTraceIDlist():
|
||||
ax.annotate(' %s' %traceID , xy = (shot.getRecLoc(traceID)[0], shot.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
ax.annotate(' %s' % traceID, xy=(shot.getRecLoc(traceID)[0], shot.getRecLoc(traceID)[1]),
|
||||
fontsize='x-small', color='k')
|
||||
|
@ -5,9 +5,7 @@ from obspy.core import read
|
||||
from obspy.signal.trigger import coincidenceTrigger
|
||||
|
||||
|
||||
|
||||
class CoincidenceTimes(object):
|
||||
|
||||
def __init__(self, st, comp='Z', coinum=4, sta=1., lta=10., on=5., off=1.):
|
||||
_type = 'recstalta'
|
||||
self.coinclist = self.createCoincTriggerlist(data=st, trigcomp=comp,
|
||||
|
@ -6,11 +6,15 @@ import numpy as np
|
||||
|
||||
def crosscorrsingle(wf1, wf2, taumax):
|
||||
'''
|
||||
|
||||
:param Wx:
|
||||
:param Wy:
|
||||
:param taumax:
|
||||
:return:
|
||||
Calculates the crosscorrelation between two waveforms with a defined maximum timedifference.
|
||||
:param wf1: first waveformdata
|
||||
:type wf1: list
|
||||
:param wf2: second waveformdata
|
||||
:type wf2: list
|
||||
:param taumax: maximum time difference between waveforms
|
||||
:type taumax: positive integer
|
||||
:return: returns the crosscorrelation funktion 'c' and the lagvector 'l'
|
||||
:rtype: c and l are lists
|
||||
'''
|
||||
N = len(wf1)
|
||||
c = np.zeros(2 * taumax - 1)
|
||||
@ -83,10 +87,13 @@ def wfscrosscorr(weights, wfs, taumax):
|
||||
|
||||
SWB 26.01.2010 as arranged with Thomas Meier and Monika Bischoff
|
||||
|
||||
:param weights:
|
||||
:param wfs:
|
||||
:param taumax:
|
||||
:return:
|
||||
:param weights: weighting factors for the single components
|
||||
:type weights: tuple
|
||||
:param wfs: tuple of `~numpy.array` object containing waveform data
|
||||
:type wfs: tuple
|
||||
:param taumax: maximum time difference
|
||||
:type taumax: positive integer
|
||||
:return: returns cross correlation function normalized by the waveform energy
|
||||
'''
|
||||
|
||||
ccnorm = 0.
|
||||
|
@ -15,6 +15,7 @@ from scipy.optimize import curve_fit
|
||||
from scipy import integrate, signal
|
||||
from pylot.core.read.data import Data
|
||||
|
||||
|
||||
class Magnitude(object):
|
||||
'''
|
||||
Superclass for calculating Wood-Anderson peak-to-peak
|
||||
@ -72,7 +73,6 @@ class Magnitude(object):
|
||||
self.calcsourcespec()
|
||||
self.run_calcMoMw()
|
||||
|
||||
|
||||
def getwfstream(self):
|
||||
return self.wfstream
|
||||
|
||||
@ -108,7 +108,7 @@ class Magnitude(object):
|
||||
|
||||
def getrho(self):
|
||||
return self.rho
|
||||
|
||||
|
||||
def setvp(self, vp):
|
||||
self.vp = vp
|
||||
|
||||
@ -117,7 +117,7 @@ class Magnitude(object):
|
||||
|
||||
def setQp(self, Qp):
|
||||
self.Qp = Qp
|
||||
|
||||
|
||||
def getQp(self):
|
||||
return self.Qp
|
||||
|
||||
@ -154,6 +154,7 @@ class Magnitude(object):
|
||||
def run_calcMoMw(self):
|
||||
self.pickdic = None
|
||||
|
||||
|
||||
class WApp(Magnitude):
|
||||
'''
|
||||
Method to derive peak-to-peak amplitude as seen on a Wood-Anderson-
|
||||
@ -207,10 +208,10 @@ class WApp(Magnitude):
|
||||
class M0Mw(Magnitude):
|
||||
'''
|
||||
Method to calculate seismic moment Mo and moment magnitude Mw.
|
||||
Requires results of class calcsourcespec for calculating plateau w0
|
||||
and corner frequency fc of source spectrum, respectively. Uses
|
||||
subfunction calcMoMw.py. Returns modified dictionary of picks including
|
||||
Dc-value, corner frequency fc, seismic moment Mo and
|
||||
Requires results of class calcsourcespec for calculating plateau w0
|
||||
and corner frequency fc of source spectrum, respectively. Uses
|
||||
subfunction calcMoMw.py. Returns modified dictionary of picks including
|
||||
Dc-value, corner frequency fc, seismic moment Mo and
|
||||
corresponding moment magntiude Mw.
|
||||
'''
|
||||
|
||||
@ -222,44 +223,45 @@ class M0Mw(Magnitude):
|
||||
self.picdic = None
|
||||
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] < 4:
|
||||
# select waveform
|
||||
selwf = wfdat.select(station=key)
|
||||
if len(key) > 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) == 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) < 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
nllocline = getPatternLine(nllocfile, Ppattern)
|
||||
# get hypocentral distance, station azimuth and
|
||||
# angle of incidence from NLLoc-location file
|
||||
delta = float(nllocline.split(None)[21])
|
||||
az = float(nllocline.split(None)[22])
|
||||
inc = float(nllocline.split(None)[24])
|
||||
# call subfunction to estimate source spectrum
|
||||
# and to derive w0 and fc
|
||||
[w0, fc] = calcsourcespec(selwf, picks[key]['P']['mpp'], \
|
||||
self.getinvdir(), self.getvp(), delta, az, \
|
||||
inc, self.getQp(), self.getiplot())
|
||||
if picks[key]['P']['weight'] < 4:
|
||||
# select waveform
|
||||
selwf = wfdat.select(station=key)
|
||||
if len(key) > 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) == 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) < 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
nllocline = getPatternLine(nllocfile, Ppattern)
|
||||
# get hypocentral distance, station azimuth and
|
||||
# angle of incidence from NLLoc-location file
|
||||
delta = float(nllocline.split(None)[21])
|
||||
az = float(nllocline.split(None)[22])
|
||||
inc = float(nllocline.split(None)[24])
|
||||
# call subfunction to estimate source spectrum
|
||||
# and to derive w0 and fc
|
||||
[w0, fc] = calcsourcespec(selwf, picks[key]['P']['mpp'], \
|
||||
self.getinvdir(), self.getvp(), delta, az, \
|
||||
inc, self.getQp(), self.getiplot())
|
||||
|
||||
if w0 is not None:
|
||||
# call subfunction to calculate Mo and Mw
|
||||
zdat = selwf.select(component="Z")
|
||||
if len(zdat) == 0: # check for other components
|
||||
zdat = selwf.select(component="3")
|
||||
[Mo, Mw] = calcMoMw(zdat, w0, self.getrho(), self.getvp(), \
|
||||
delta, self.getinvdir())
|
||||
else:
|
||||
Mo = None
|
||||
Mw = None
|
||||
if w0 is not None:
|
||||
# call subfunction to calculate Mo and Mw
|
||||
zdat = selwf.select(component="Z")
|
||||
if len(zdat) == 0: # check for other components
|
||||
zdat = selwf.select(component="3")
|
||||
[Mo, Mw] = calcMoMw(zdat, w0, self.getrho(), self.getvp(), \
|
||||
delta, self.getinvdir())
|
||||
else:
|
||||
Mo = None
|
||||
Mw = None
|
||||
|
||||
# add w0, fc, Mo and Mw to dictionary
|
||||
picks[key]['P']['w0'] = w0
|
||||
picks[key]['P']['fc'] = fc
|
||||
picks[key]['P']['Mo'] = Mo
|
||||
picks[key]['P']['Mw'] = Mw
|
||||
self.picdic = picks
|
||||
|
||||
# add w0, fc, Mo and Mw to dictionary
|
||||
picks[key]['P']['w0'] = w0
|
||||
picks[key]['P']['fc'] = fc
|
||||
picks[key]['P']['Mo'] = Mo
|
||||
picks[key]['P']['Mw'] = Mw
|
||||
self.picdic = picks
|
||||
|
||||
def calcMoMw(wfstream, w0, rho, vp, delta, inv):
|
||||
'''
|
||||
@ -271,7 +273,7 @@ def calcMoMw(wfstream, w0, rho, vp, delta, inv):
|
||||
|
||||
:param: w0, height of plateau of source spectrum
|
||||
:type: float
|
||||
|
||||
|
||||
:param: rho, rock density [kg/m³]
|
||||
:type: integer
|
||||
|
||||
@ -283,25 +285,24 @@ def calcMoMw(wfstream, w0, rho, vp, delta, inv):
|
||||
'''
|
||||
|
||||
tr = wfstream[0]
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
|
||||
print("calcMoMw: Calculating seismic moment Mo and moment magnitude Mw for station %s ..." \
|
||||
% tr.stats.station)
|
||||
% tr.stats.station)
|
||||
|
||||
# additional common parameters for calculating Mo
|
||||
rP = 2 / np.sqrt(15) # average radiation pattern of P waves (Aki & Richards, 1980)
|
||||
freesurf = 2.0 # free surface correction, assuming vertical incidence
|
||||
rP = 2 / np.sqrt(15) # average radiation pattern of P waves (Aki & Richards, 1980)
|
||||
freesurf = 2.0 # free surface correction, assuming vertical incidence
|
||||
|
||||
Mo = w0 * 4 * np.pi * rho * np.power(vp, 3) * delta / (rP * freesurf)
|
||||
Mo = w0 * 4 * np.pi * rho * np.power(vp, 3) * delta / (rP * freesurf)
|
||||
|
||||
#Mw = np.log10(Mo * 1e07) * 2 / 3 - 10.7 # after Hanks & Kanamori (1979), defined for [dyn*cm]!
|
||||
Mw = np.log10(Mo) * 2 / 3 - 6.7 # for metric units
|
||||
# Mw = np.log10(Mo * 1e07) * 2 / 3 - 10.7 # after Hanks & Kanamori (1979), defined for [dyn*cm]!
|
||||
Mw = np.log10(Mo) * 2 / 3 - 6.7 # for metric units
|
||||
|
||||
print("calcMoMw: Calculated seismic moment Mo = %e Nm => Mw = %3.1f " % (Mo, Mw))
|
||||
|
||||
return Mo, Mw
|
||||
|
||||
|
||||
|
||||
def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp, iplot):
|
||||
'''
|
||||
@ -310,7 +311,7 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
source model. Has to be derived from instrument corrected displacement traces,
|
||||
thus restitution and integration necessary! Integrated traces are rotated
|
||||
into ray-coordinate system ZNE => LQT using Obspy's rotate modul!
|
||||
|
||||
|
||||
:param: wfstream
|
||||
:type: `~obspy.core.stream.Stream`
|
||||
|
||||
@ -346,7 +347,7 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
Q = int(qu[0])
|
||||
# A, i.e. power of frequency
|
||||
A = float(qu[1])
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
|
||||
fc = None
|
||||
w0 = None
|
||||
@ -385,11 +386,11 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
# L: P-wave direction
|
||||
# Q: SV-wave direction
|
||||
# T: SH-wave direction
|
||||
LQT=cordat_copy.rotate('ZNE->LQT',azimuth, incidence)
|
||||
LQT = cordat_copy.rotate('ZNE->LQT', azimuth, incidence)
|
||||
ldat = LQT.select(component="L")
|
||||
if len(ldat) == 0:
|
||||
# if horizontal channels are 2 and 3
|
||||
# no azimuth information is available and thus no
|
||||
# no azimuth information is available and thus no
|
||||
# rotation is possible!
|
||||
print("calcsourcespec: Azimuth information is missing, "
|
||||
"no rotation of components possible!")
|
||||
@ -398,30 +399,30 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
# integrate to displacement
|
||||
# unrotated vertical component (for copmarison)
|
||||
inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None, \
|
||||
zdat[0].stats.delta))
|
||||
zdat[0].stats.delta))
|
||||
# rotated component Z => L
|
||||
Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None, \
|
||||
ldat[0].stats.delta))
|
||||
ldat[0].stats.delta))
|
||||
|
||||
# get window after P pulse for
|
||||
# get window after P pulse for
|
||||
# calculating source spectrum
|
||||
if zdat[0].stats.sampling_rate <= 100:
|
||||
winzc = zdat[0].stats.sampling_rate
|
||||
elif zdat[0].stats.sampling_rate > 100 and \
|
||||
zdat[0].stats.sampling_rate <= 200:
|
||||
winzc = 0.5 * zdat[0].stats.sampling_rate
|
||||
zdat[0].stats.sampling_rate <= 200:
|
||||
winzc = 0.5 * zdat[0].stats.sampling_rate
|
||||
elif zdat[0].stats.sampling_rate > 200 and \
|
||||
zdat[0].stats.sampling_rate <= 400:
|
||||
winzc = 0.2 * zdat[0].stats.sampling_rate
|
||||
zdat[0].stats.sampling_rate <= 400:
|
||||
winzc = 0.2 * zdat[0].stats.sampling_rate
|
||||
elif zdat[0].stats.sampling_rate > 400:
|
||||
winzc = zdat[0].stats.sampling_rate
|
||||
winzc = zdat[0].stats.sampling_rate
|
||||
tstart = UTCDateTime(zdat[0].stats.starttime)
|
||||
tonset = onset.timestamp -tstart.timestamp
|
||||
tonset = onset.timestamp - tstart.timestamp
|
||||
impickP = tonset * zdat[0].stats.sampling_rate
|
||||
wfzc = Ldat[impickP : impickP + winzc]
|
||||
wfzc = Ldat[impickP: impickP + winzc]
|
||||
# get time array
|
||||
t = np.arange(0, len(inttrz) * zdat[0].stats.delta, \
|
||||
zdat[0].stats.delta)
|
||||
zdat[0].stats.delta)
|
||||
# calculate spectrum using only first cycles of
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
@ -441,14 +442,14 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
fny = zdat[0].stats.sampling_rate / 2
|
||||
l = len(xdat) / zdat[0].stats.sampling_rate
|
||||
# number of fft bins after Bath
|
||||
n = zdat[0].stats.sampling_rate * l
|
||||
n = zdat[0].stats.sampling_rate * l
|
||||
# find next power of 2 of data length
|
||||
m = pow(2, np.ceil(np.log(len(xdat)) / np.log(2)))
|
||||
N = int(np.power(m, 2))
|
||||
y = zdat[0].stats.delta * np.fft.fft(xdat, N)
|
||||
Y = abs(y[: N/2])
|
||||
Y = abs(y[: N / 2])
|
||||
L = (N - 1) / zdat[0].stats.sampling_rate
|
||||
f = np.arange(0, fny, 1/L)
|
||||
f = np.arange(0, fny, 1 / L)
|
||||
|
||||
# remove zero-frequency and frequencies above
|
||||
# corner frequency of seismometer (assumed
|
||||
@ -457,10 +458,10 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
F = f[fi]
|
||||
YY = Y[fi]
|
||||
|
||||
# correction for attenuation
|
||||
wa = 2 * np.pi * F #angular frequency
|
||||
D = np.exp((wa * delta) / (2 * vp * Q*F**A))
|
||||
YYcor = YY.real*D
|
||||
# correction for attenuation
|
||||
wa = 2 * np.pi * F # angular frequency
|
||||
D = np.exp((wa * delta) / (2 * vp * Q * F ** A))
|
||||
YYcor = YY.real * D
|
||||
|
||||
# get plateau (DC value) and corner frequency
|
||||
# initial guess of plateau
|
||||
@ -477,24 +478,24 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
fc1 = optspecfit[1]
|
||||
print ("calcsourcespec: Determined w0-value: %e m/Hz, \n"
|
||||
"Determined corner frequency: %f Hz" % (w01, fc1))
|
||||
|
||||
# use of conventional fitting
|
||||
|
||||
# use of conventional fitting
|
||||
[w02, fc2] = fitSourceModel(F, YYcor, Fcin, iplot)
|
||||
|
||||
# get w0 and fc as median of both
|
||||
# source spectrum fits
|
||||
|
||||
# get w0 and fc as median of both
|
||||
# source spectrum fits
|
||||
w0 = np.median([w01, w02])
|
||||
fc = np.median([fc1, fc2])
|
||||
print("calcsourcespec: Using w0-value = %e m/Hz and fc = %f Hz" % (w0, fc))
|
||||
|
||||
|
||||
except TypeError as er:
|
||||
raise TypeError('''{0}'''.format(er))
|
||||
|
||||
if iplot > 1:
|
||||
f1 = plt.figure()
|
||||
tLdat = np.arange(0, len(Ldat) * zdat[0].stats.delta, \
|
||||
zdat[0].stats.delta)
|
||||
plt.subplot(2,1,1)
|
||||
zdat[0].stats.delta)
|
||||
plt.subplot(2, 1, 1)
|
||||
# show displacement in mm
|
||||
p1, = plt.plot(t, np.multiply(inttrz, 1000), 'k')
|
||||
p2, = plt.plot(tLdat, np.multiply(Ldat, 1000))
|
||||
@ -502,26 +503,26 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
if plotflag == 1:
|
||||
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
|
||||
plt.title('Seismogram and P Pulse, Station %s-%s' \
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
else:
|
||||
plt.title('Seismogram, Station %s-%s' \
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
plt.xlabel('Time since %s' % zdat[0].stats.starttime)
|
||||
plt.ylabel('Displacement [mm]')
|
||||
|
||||
if plotflag == 1:
|
||||
plt.subplot(2,1,2)
|
||||
plt.subplot(2, 1, 2)
|
||||
p1, = plt.loglog(f, Y.real, 'k')
|
||||
p2, = plt.loglog(F, YY.real)
|
||||
p3, = plt.loglog(F, YYcor, 'r')
|
||||
p4, = plt.loglog(F, fit, 'g')
|
||||
plt.loglog([fc, fc], [w0/100, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0 / 100, w0], 'g')
|
||||
plt.legend([p1, p2, p3, p4], ['Raw Spectrum', \
|
||||
'Used Raw Spectrum', \
|
||||
'Q-Corrected Spectrum', \
|
||||
'Fit to Spectrum'])
|
||||
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
|
||||
% (w0, fc))
|
||||
% (w0, fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
plt.grid()
|
||||
@ -530,7 +531,7 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
plt.close(f1)
|
||||
|
||||
return w0, fc
|
||||
|
||||
|
||||
|
||||
def synthsourcespec(f, omega0, fcorner):
|
||||
'''
|
||||
@ -547,7 +548,7 @@ def synthsourcespec(f, omega0, fcorner):
|
||||
:type: float
|
||||
'''
|
||||
|
||||
#ssp = omega0 / (pow(2, (1 + f / fcorner)))
|
||||
# ssp = omega0 / (pow(2, (1 + f / fcorner)))
|
||||
ssp = omega0 / (1 + pow(2, (f / fcorner)))
|
||||
|
||||
return ssp
|
||||
@ -556,8 +557,8 @@ def synthsourcespec(f, omega0, fcorner):
|
||||
def fitSourceModel(f, S, fc0, iplot):
|
||||
'''
|
||||
Calculates synthetic source spectrum by varying corner frequency fc.
|
||||
Returns best approximated plateau omega0 and corner frequency, i.e. with least
|
||||
common standard deviations.
|
||||
Returns best approximated plateau omega0 and corner frequency, i.e. with least
|
||||
common standard deviations.
|
||||
|
||||
:param: f, frequencies
|
||||
:type: array
|
||||
@ -569,7 +570,7 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
:type: float
|
||||
'''
|
||||
|
||||
w0 = []
|
||||
w0 = []
|
||||
stdw0 = []
|
||||
fc = []
|
||||
stdfc = []
|
||||
@ -577,17 +578,17 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
|
||||
# get window around initial corner frequency for trials
|
||||
fcstopl = fc0 - max(1, len(f) / 10)
|
||||
il = np.argmin(abs(f-fcstopl))
|
||||
il = np.argmin(abs(f - fcstopl))
|
||||
fcstopl = f[il]
|
||||
fcstopr = fc0 + min(len(f), len(f) /10)
|
||||
ir = np.argmin(abs(f-fcstopr))
|
||||
fcstopr = fc0 + min(len(f), len(f) / 10)
|
||||
ir = np.argmin(abs(f - fcstopr))
|
||||
fcstopr = f[ir]
|
||||
iF = np.where((f >= fcstopl) & (f <= fcstopr))
|
||||
|
||||
# vary corner frequency around initial point
|
||||
for i in range(il, ir):
|
||||
for i in range(il, ir):
|
||||
FC = f[i]
|
||||
indexdc = np.where((f > 0 ) & (f <= FC))
|
||||
indexdc = np.where((f > 0) & (f <= FC))
|
||||
dc = np.mean(S[indexdc])
|
||||
stddc = np.std(dc - S[indexdc])
|
||||
w0.append(dc)
|
||||
@ -595,7 +596,7 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
fc.append(FC)
|
||||
# slope
|
||||
indexfc = np.where((f >= FC) & (f <= fcstopr))
|
||||
yi = dc/(1+(f[indexfc]/FC)**2)
|
||||
yi = dc / (1 + (f[indexfc] / FC) ** 2)
|
||||
stdFC = np.std(yi - S[indexfc])
|
||||
stdfc.append(stdFC)
|
||||
STD.append(stddc + stdFC)
|
||||
@ -607,31 +608,31 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
elif len(STD) == 0:
|
||||
fc = fc0
|
||||
w0 = max(S)
|
||||
|
||||
|
||||
print("fitSourceModel: best fc: %fHz, best w0: %e m/Hz" \
|
||||
% (fc, w0))
|
||||
% (fc, w0))
|
||||
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
plt.loglog(f, S, 'k')
|
||||
plt.loglog([f[0], fc], [w0, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0/100, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0 / 100, w0], 'g')
|
||||
plt.title('Calculated Source Spectrum, Omega0=%e m/Hz, fc=%6.2f Hz' \
|
||||
% (w0, fc))
|
||||
% (w0, fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
plt.grid()
|
||||
plt.figure(iplot+1)
|
||||
plt.figure(iplot + 1)
|
||||
plt.subplot(311)
|
||||
plt.plot(f[il:ir], STD,'*')
|
||||
plt.plot(f[il:ir], STD, '*')
|
||||
plt.title('Common Standard Deviations')
|
||||
plt.xticks([])
|
||||
plt.subplot(312)
|
||||
plt.plot(f[il:ir], stdw0,'*')
|
||||
plt.plot(f[il:ir], stdw0, '*')
|
||||
plt.title('Standard Deviations of w0-Values')
|
||||
plt.xticks([])
|
||||
plt.subplot(313)
|
||||
plt.plot(f[il:ir],stdfc,'*')
|
||||
plt.plot(f[il:ir], stdfc, '*')
|
||||
plt.title('Standard Deviations of Corner Frequencies')
|
||||
plt.xlabel('Corner Frequencies [Hz]')
|
||||
plt.show()
|
||||
@ -639,10 +640,3 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
plt.close()
|
||||
|
||||
return w0, fc
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,25 +1,31 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from obspy.signal.trigger import recSTALTA, triggerOnset
|
||||
from obspy.signal.trigger import recursive_sta_lta, trigger_onset
|
||||
|
||||
|
||||
def createSingleTriggerlist(st, station='ZV01', trigcomp='Z', stalta=(1, 10),
|
||||
trigonoff=(6, 1)):
|
||||
'''
|
||||
uses a single-station trigger to create a triggerlist for this station
|
||||
:param st:
|
||||
:param station:
|
||||
:param trigcomp:
|
||||
:param stalta:
|
||||
:param trigonoff:
|
||||
:return:
|
||||
:param st: obspy stream
|
||||
:type st:
|
||||
:param station: station name to get triggers for (optional, default = ZV01)
|
||||
:type station: str
|
||||
:param trigcomp: (optional, default = Z)
|
||||
:type trigcomp: str
|
||||
:param stalta: (optional, default = (1,10))
|
||||
:type stalta: tuple
|
||||
:param trigonoff: (optional, default = (6,1))
|
||||
:type trigonoff: tuple
|
||||
:return: list of triggtimes
|
||||
:rtype: list
|
||||
'''
|
||||
tr = st.copy().select(component=trigcomp, station=station)[0]
|
||||
df = tr.stats.sampling_rate
|
||||
|
||||
cft = recSTALTA(tr.data, int(stalta[0] * df), int(stalta[1] * df))
|
||||
triggers = triggerOnset(cft, trigonoff[0], trigonoff[1])
|
||||
cft = recursive_sta_lta(tr.data, int(stalta[0] * df), int(stalta[1] * df))
|
||||
triggers = trigger_onset(cft, trigonoff[0], trigonoff[1])
|
||||
trigg = []
|
||||
for time in triggers:
|
||||
trigg.append(tr.stats.starttime + time[0] / df)
|
||||
@ -32,7 +38,7 @@ def createSubCoincTriggerlist(trig, station='ZV01'):
|
||||
coincidence trigger and are seen at the demanded station
|
||||
:param trig: list containing triggers from coincidence trigger
|
||||
:type trig: list
|
||||
:param station: station name to get triggers for
|
||||
:param station: station name to get triggers for (optional, default = ZV01)
|
||||
:type station: str
|
||||
:return: list of triggertimes
|
||||
:rtype: list
|
||||
|
@ -3,16 +3,16 @@
|
||||
|
||||
import subprocess
|
||||
import os
|
||||
from obspy.core.event import readEvents
|
||||
from pylot.core.pick.utils import writephases
|
||||
from pylot.core.util.utils import getPatternLine
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
||||
__version__ = _getVersionString()
|
||||
|
||||
|
||||
def picksExport(picks, locrt, phasefile):
|
||||
'''
|
||||
Take <picks> dictionary and exports picking data to a NLLOC-obs
|
||||
Take <picks> dictionary and exports picking data to a NLLOC-obs
|
||||
<phasefile> without creating an ObsPy event object.
|
||||
|
||||
:param picks: picking data dictionary
|
||||
@ -27,6 +27,7 @@ def picksExport(picks, locrt, phasefile):
|
||||
# write phases to NLLoc-phase file
|
||||
writephases(picks, locrt, phasefile)
|
||||
|
||||
|
||||
def modifyInputFile(ctrfn, root, nllocoutn, phasefn, tttn):
|
||||
'''
|
||||
:param ctrfn: name of NLLoc-control file
|
||||
@ -36,18 +37,18 @@ def modifyInputFile(ctrfn, root, nllocoutn, phasefn, tttn):
|
||||
:type: str
|
||||
|
||||
:param nllocoutn: name of NLLoc-location output file
|
||||
:type: str
|
||||
:type: str
|
||||
|
||||
:param phasefn: name of NLLoc-input phase file
|
||||
:type: str
|
||||
|
||||
:param tttn: pattern of precalculated NLLoc traveltime tables
|
||||
:type: str
|
||||
:type: str
|
||||
'''
|
||||
# For locating the event the NLLoc-control file has to be modified!
|
||||
# create comment line for NLLoc-control file NLLoc-output file
|
||||
ctrfile = os.path.join(root, 'run', ctrfn)
|
||||
nllocout = os.path.join(root,'loc', nllocoutn)
|
||||
nllocout = os.path.join(root, 'loc', nllocoutn)
|
||||
phasefile = os.path.join(root, 'obs', phasefn)
|
||||
tttable = os.path.join(root, 'time', tttn)
|
||||
locfiles = 'LOCFILES %s NLLOC_OBS %s %s 0\n' % (phasefile, tttable, nllocout)
|
||||
@ -64,6 +65,7 @@ def modifyInputFile(ctrfn, root, nllocoutn, phasefn, tttn):
|
||||
nllfile.write(filedata)
|
||||
nllfile.close()
|
||||
|
||||
|
||||
def locate(call, fnin):
|
||||
'''
|
||||
Takes paths to NLLoc executable <call> and input parameter file <fnin>
|
||||
@ -79,8 +81,10 @@ def locate(call, fnin):
|
||||
# locate the event
|
||||
subprocess.call([call, fnin])
|
||||
|
||||
|
||||
def readLocation(fn):
|
||||
pass
|
||||
|
||||
if __name__=='__main__':
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
|
@ -11,15 +11,17 @@ function conglomerate utils.
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from scipy import integrate
|
||||
from pylot.core.pick.Picker import AICPicker, PragPicker
|
||||
from pylot.core.pick.CharFuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
|
||||
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker,\
|
||||
from pylot.core.read.inputs import AutoPickParameter
|
||||
from pylot.core.pick.picker import AICPicker, PragPicker
|
||||
from pylot.core.pick.charfuns import CharacteristicFunction
|
||||
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
|
||||
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
|
||||
getSNR, fmpicker, checkPonsets, wadaticheck
|
||||
from pylot.core.util.utils import getPatternLine
|
||||
from pylot.core.read.data import Data
|
||||
from pylot.core.analysis.magnitude import WApp
|
||||
|
||||
|
||||
def autopickevent(data, param):
|
||||
stations = []
|
||||
all_onsets = {}
|
||||
@ -46,14 +48,18 @@ def autopickevent(data, param):
|
||||
# check S-P times (Wadati)
|
||||
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
|
||||
|
||||
|
||||
def autopickstation(wfstream, pickparam, verbose=False):
|
||||
"""
|
||||
:param: wfstream
|
||||
:type: `~obspy.core.stream.Stream`
|
||||
:param wfstream: `~obspy.core.stream.Stream` containing waveform
|
||||
:type wfstream: obspy.core.stream.Stream
|
||||
|
||||
:param: pickparam
|
||||
:type: container of picking parameters from input file,
|
||||
:param pickparam: container of picking parameters from input file,
|
||||
usually autoPyLoT.in
|
||||
:type pickparam: AutoPickParameter
|
||||
:param verbose:
|
||||
:type verbose: bool
|
||||
|
||||
"""
|
||||
|
||||
# declaring pickparam variables (only for convenience)
|
||||
@ -137,7 +143,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
Pflag = 0
|
||||
Sflag = 0
|
||||
Pmarker = []
|
||||
Ao = None # Wood-Anderson peak-to-peak amplitude
|
||||
Ao = None # Wood-Anderson peak-to-peak amplitude
|
||||
picker = 'autoPyLoT' # name of the picking programm
|
||||
|
||||
# split components
|
||||
zdat = wfstream.select(component="Z")
|
||||
@ -152,9 +159,9 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
|
||||
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
|
||||
msg = '##########################################\nautopickstation:' \
|
||||
' Working on P onset of station {station}\nFiltering vertical ' \
|
||||
'trace ...\n{data}'.format(station=zdat[0].stats.station,
|
||||
data=str(zdat))
|
||||
' Working on P onset of station {station}\nFiltering vertical ' \
|
||||
'trace ...\n{data}'.format(station=zdat[0].stats.station,
|
||||
data=str(zdat))
|
||||
if verbose: print(msg)
|
||||
z_copy = zdat.copy()
|
||||
# filter and taper data
|
||||
@ -169,12 +176,13 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
|
||||
Ldiff = Lwf - Lc
|
||||
if Ldiff < 0:
|
||||
msg = 'autopickstation: Cutting times are too large for actual ' \
|
||||
'waveform!\nUsing entire waveform instead!'
|
||||
msg = 'autopickstation: Cutting times are too large for actual ' \
|
||||
'waveform!\nUsing entire waveform instead!'
|
||||
if verbose: print(msg)
|
||||
pstart = 0
|
||||
pstop = len(zdat[0].data) * zdat[0].stats.delta
|
||||
cuttimes = [pstart, pstop]
|
||||
cf1 = None
|
||||
if algoP == 'HOS':
|
||||
# calculate HOS-CF using subclass HOScf of class
|
||||
# CharacteristicFunction
|
||||
@ -188,6 +196,10 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
# calculate AIC-HOS-CF using subclass AICcf of class
|
||||
# CharacteristicFunction
|
||||
# class needs stream object => build it
|
||||
assert isinstance(cf1, CharacteristicFunction), 'cf2 is not set ' \
|
||||
'correctly: maybe the algorithm name ({algoP}) is ' \
|
||||
'corrupted'.format(
|
||||
algoP=algoP)
|
||||
tr_aic = tr_filt.copy()
|
||||
tr_aic.data = cf1.getCF()
|
||||
z_copy[0].data = tr_aic.data
|
||||
@ -217,10 +229,10 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
trH1_filt = edat.copy()
|
||||
trH2_filt = ndat.copy()
|
||||
trH1_filt.filter('bandpass', freqmin=bph1[0],
|
||||
freqmax=bph1[1],
|
||||
freqmax=bph1[1],
|
||||
zerophase=False)
|
||||
trH2_filt.filter('bandpass', freqmin=bph1[0],
|
||||
freqmax=bph1[1],
|
||||
freqmax=bph1[1],
|
||||
zerophase=False)
|
||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||
@ -249,8 +261,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
##############################################################
|
||||
# go on with processing if AIC onset passes quality control
|
||||
if (aicpick.getSlope() >= minAICPslope and
|
||||
aicpick.getSNR() >= minAICPSNR and
|
||||
Pflag == 1):
|
||||
aicpick.getSNR() >= minAICPSNR and Pflag == 1):
|
||||
aicPflag = 1
|
||||
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
|
||||
'SNR: {1}\nGo on with refined picking ...\n' \
|
||||
@ -270,6 +281,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])),
|
||||
round(min([len(zdat[0].data) * zdat[0].stats.delta,
|
||||
aicpick.getpick() + Precalcwin]))]
|
||||
cf2 = None
|
||||
if algoP == 'HOS':
|
||||
# calculate HOS-CF using subclass HOScf of class
|
||||
# CharacteristicFunction
|
||||
@ -282,14 +294,18 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
addnoise) # instance of ARZcf
|
||||
##############################################################
|
||||
# get refined onset time from CF2 using class Picker
|
||||
assert isinstance(cf2, CharacteristicFunction), 'cf2 is not set ' \
|
||||
'correctly: maybe the algorithm name ({algoP}) is ' \
|
||||
'corrupted'.format(
|
||||
algoP=algoP)
|
||||
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP,
|
||||
aicpick.getpick())
|
||||
mpickP = refPpick.getpick()
|
||||
#############################################################
|
||||
if mpickP is not None:
|
||||
# quality assessment
|
||||
# get earliest and latest possible pick and symmetrized uncertainty
|
||||
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz,
|
||||
# get earliest/latest possible pick and symmetrized uncertainty
|
||||
[epickP, lpickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz,
|
||||
mpickP, iplot)
|
||||
|
||||
# get SNR
|
||||
@ -473,13 +489,14 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
#############################################################
|
||||
if mpickS is not None:
|
||||
# quality assessment
|
||||
# get earliest and latest possible pick and symmetrized uncertainty
|
||||
# get earliest/latest possible pick and symmetrized uncertainty
|
||||
h_copy[0].data = trH1_filt.data
|
||||
[lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS,
|
||||
[epickS1, lpickS1, Serror1] = earllatepicker(h_copy, nfacS,
|
||||
tsnrh,
|
||||
mpickS, iplot)
|
||||
|
||||
h_copy[0].data = trH2_filt.data
|
||||
[lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS,
|
||||
[epickS2, lpickS2, Serror2] = earllatepicker(h_copy, nfacS,
|
||||
tsnrh,
|
||||
mpickS, iplot)
|
||||
if epickS1 is not None and epickS2 is not None:
|
||||
@ -488,28 +505,30 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
epick = [epickS1, epickS2]
|
||||
lpick = [lpickS1, lpickS2]
|
||||
pickerr = [Serror1, Serror2]
|
||||
if epickS1 == None and epickS2 is not None:
|
||||
if epickS1 is None and epickS2 is not None:
|
||||
ipick = 1
|
||||
elif epickS1 is not None and epickS2 == None:
|
||||
elif epickS1 is not None and epickS2 is None:
|
||||
ipick = 0
|
||||
elif epickS1 is not None and epickS2 is not None:
|
||||
ipick = np.argmin([epickS1, epickS2])
|
||||
elif algoS == 'AR3':
|
||||
[lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS,
|
||||
[epickS3, lpickS3, Serror3] = earllatepicker(h_copy,
|
||||
nfacS,
|
||||
tsnrh,
|
||||
mpickS, iplot)
|
||||
mpickS,
|
||||
iplot)
|
||||
# get earliest pick of all three picks
|
||||
epick = [epickS1, epickS2, epickS3]
|
||||
lpick = [lpickS1, lpickS2, lpickS3]
|
||||
pickerr = [Serror1, Serror2, Serror3]
|
||||
if epickS1 == None and epickS2 is not None \
|
||||
if epickS1 is None and epickS2 is not None \
|
||||
and epickS3 is not None:
|
||||
ipick = np.argmin([epickS2, epickS3])
|
||||
elif epickS1 is not None and epickS2 == None \
|
||||
elif epickS1 is not None and epickS2 is None \
|
||||
and epickS3 is not None:
|
||||
ipick = np.argmin([epickS2, epickS3])
|
||||
elif epickS1 is not None and epickS2 is not None \
|
||||
and epickS3 == None:
|
||||
and epickS3 is None:
|
||||
ipick = np.argmin([epickS1, epickS2])
|
||||
elif epickS1 is not None and epickS2 is not None \
|
||||
and epickS3 is not None:
|
||||
@ -538,7 +557,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
'SNR[dB]: {2}\n'
|
||||
'################################################'
|
||||
''.format(Sweight, SNRS, SNRSdB))
|
||||
##################################################################
|
||||
################################################################
|
||||
# get Wood-Anderson peak-to-peak amplitude
|
||||
# initialize Data object
|
||||
data = Data()
|
||||
@ -555,8 +574,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
else:
|
||||
# use larger window for getting peak-to-peak amplitude
|
||||
# as the S pick is quite unsure
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop + \
|
||||
(0.5 * (mpickP + sstop)), iplot)
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop +
|
||||
(0.5 * (mpickP + sstop)), iplot)
|
||||
|
||||
Ao = wapp.getwapp()
|
||||
|
||||
@ -585,7 +604,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# using subclass WApp of superclass Magnitude
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP
|
||||
+ sstop)), iplot)
|
||||
+ sstop)),
|
||||
iplot)
|
||||
Ao = wapp.getwapp()
|
||||
|
||||
else:
|
||||
@ -642,7 +662,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
plt.title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
|
||||
tr_filt.stats.channel,
|
||||
Pweight))
|
||||
|
||||
|
||||
plt.yticks([])
|
||||
plt.ylim([-1.5, 1.5])
|
||||
plt.ylabel('Normalized Counts')
|
||||
@ -754,46 +774,46 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
plt.close()
|
||||
##########################################################################
|
||||
# calculate "real" onset times
|
||||
if mpickP is not None and epickP is not None and mpickP is not None:
|
||||
if lpickP is not None and lpickP == mpickP:
|
||||
lpickP += timeerrorsP[0]
|
||||
if epickP is not None and epickP == mpickP:
|
||||
epickP -= timeerrorsP[0]
|
||||
if mpickP is not None and epickP is not None and lpickP is not None:
|
||||
lpickP = zdat[0].stats.starttime + lpickP
|
||||
epickP = zdat[0].stats.starttime + epickP
|
||||
mpickP = zdat[0].stats.starttime + mpickP
|
||||
else:
|
||||
# dummy values (start of seismic trace) in order to derive
|
||||
# theoretical onset times for iteratve picking
|
||||
lpickP = zdat[0].stats.starttime
|
||||
epickP = zdat[0].stats.starttime
|
||||
lpickP = zdat[0].stats.starttime + timeerrorsP[3]
|
||||
epickP = zdat[0].stats.starttime - timeerrorsP[3]
|
||||
mpickP = zdat[0].stats.starttime
|
||||
|
||||
if mpickS is not None and epickS is not None and mpickS is not None:
|
||||
if lpickS is not None and lpickS == mpickS:
|
||||
lpickS += timeerrorsS[0]
|
||||
if epickS is not None and epickS == mpickS:
|
||||
epickS -= timeerrorsS[0]
|
||||
if mpickS is not None and epickS is not None and lpickS is not None:
|
||||
lpickS = edat[0].stats.starttime + lpickS
|
||||
epickS = edat[0].stats.starttime + epickS
|
||||
mpickS = edat[0].stats.starttime + mpickS
|
||||
else:
|
||||
# dummy values (start of seismic trace) in order to derive
|
||||
# theoretical onset times for iteratve picking
|
||||
lpickS = edat[0].stats.starttime
|
||||
epickS = edat[0].stats.starttime
|
||||
lpickS = edat[0].stats.starttime + timeerrorsS[3]
|
||||
epickS = edat[0].stats.starttime - timeerrorsS[3]
|
||||
mpickS = edat[0].stats.starttime
|
||||
|
||||
# create dictionary
|
||||
# for P phase
|
||||
phase = 'P'
|
||||
phasepick = {'lpp': lpickP, 'epp': epickP, 'mpp': mpickP, 'spe': Perror,
|
||||
'snr': SNRP, 'snrdb': SNRPdB, 'weight': Pweight, 'fm': FM,
|
||||
'w0': None, 'fc': None, 'Mo': None, 'Mw': None}
|
||||
picks = {phase: phasepick}
|
||||
# add P marker
|
||||
picks[phase]['marked'] = Pmarker
|
||||
ppick = dict(lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP,
|
||||
snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None,
|
||||
Mw=None, picker=picker, marked=Pmarker)
|
||||
# add S phase
|
||||
phase = 'S'
|
||||
phasepick = {'lpp': lpickS, 'epp': epickS, 'mpp': mpickS, 'spe': Serror,
|
||||
'snr': SNRS, 'snrdb': SNRSdB, 'weight': Sweight, 'fm': None}
|
||||
picks[phase] = phasepick
|
||||
# add Wood-Anderson amplitude
|
||||
picks[phase]['Ao'] = Ao
|
||||
|
||||
|
||||
spick = dict(lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS,
|
||||
snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao)
|
||||
# merge picks into returning dictionary
|
||||
picks = dict(P=ppick, S=spick)
|
||||
return picks
|
||||
|
||||
|
||||
@ -819,70 +839,72 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
|
||||
|
||||
newpicks = {}
|
||||
for i in range(0, len(badpicks)):
|
||||
if len(badpicks[i][0]) > 4:
|
||||
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
||||
elif len(badpicks[i][0]) == 4:
|
||||
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
||||
elif len(badpicks[i][0]) < 4:
|
||||
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
||||
nllocline = getPatternLine(NLLocfile, Ppattern)
|
||||
res = nllocline.split(None)[16]
|
||||
# get theoretical P-onset time from residuum
|
||||
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
|
||||
if len(badpicks[i][0]) > 4:
|
||||
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
||||
elif len(badpicks[i][0]) == 4:
|
||||
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
||||
elif len(badpicks[i][0]) < 4:
|
||||
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
||||
nllocline = getPatternLine(NLLocfile, Ppattern)
|
||||
res = nllocline.split(None)[16]
|
||||
# get theoretical P-onset time from residuum
|
||||
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
|
||||
|
||||
# get corresponding waveform stream
|
||||
msg = '#######################################################\n' \
|
||||
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
|
||||
print(msg)
|
||||
wf2pick = wf.select(station=badpicks[i][0])
|
||||
# get corresponding waveform stream
|
||||
msg = '#######################################################\n' \
|
||||
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
|
||||
print(msg)
|
||||
wf2pick = wf.select(station=badpicks[i][0])
|
||||
|
||||
# modify some picking parameters
|
||||
pstart_old = pickparameter.getParam('pstart')
|
||||
pstop_old = pickparameter.getParam('pstop')
|
||||
sstop_old = pickparameter.getParam('sstop')
|
||||
pickwinP_old = pickparameter.getParam('pickwinP')
|
||||
Precalcwin_old = pickparameter.getParam('Precalcwin')
|
||||
noisefactor_old = pickparameter.getParam('noisefactor')
|
||||
zfac_old = pickparameter.getParam('zfac')
|
||||
pickparameter.setParam(pstart=max([0, badpicks[i][1] - wf2pick[0].stats.starttime \
|
||||
- pickparameter.getParam('tlta')]))
|
||||
pickparameter.setParam(pstop=pickparameter.getParam('pstart') + \
|
||||
(3 * pickparameter.getParam('tlta')))
|
||||
pickparameter.setParam(sstop=pickparameter.getParam('sstop') / 2)
|
||||
pickparameter.setParam(pickwinP=pickparameter.getParam('pickwinP') / 2)
|
||||
pickparameter.setParam(Precalcwin=pickparameter.getParam('Precalcwin') / 2)
|
||||
pickparameter.setParam(noisefactor=1.0)
|
||||
pickparameter.setParam(zfac=1.0)
|
||||
print("iteratepicker: The following picking parameters have been modified for iterative picking:")
|
||||
print("pstart: %fs => %fs" % (pstart_old, pickparameter.getParam('pstart')))
|
||||
print("pstop: %fs => %fs" % (pstop_old, pickparameter.getParam('pstop')))
|
||||
print("sstop: %fs => %fs" % (sstop_old, pickparameter.getParam('sstop')))
|
||||
print("pickwinP: %fs => %fs" % (pickwinP_old, pickparameter.getParam('pickwinP')))
|
||||
print("Precalcwin: %fs => %fs" % (Precalcwin_old, pickparameter.getParam('Precalcwin')))
|
||||
print("noisefactor: %f => %f" % (noisefactor_old, pickparameter.getParam('noisefactor')))
|
||||
print("zfac: %f => %f" % (zfac_old, pickparameter.getParam('zfac')))
|
||||
# modify some picking parameters
|
||||
pstart_old = pickparameter.getParam('pstart')
|
||||
pstop_old = pickparameter.getParam('pstop')
|
||||
sstop_old = pickparameter.getParam('sstop')
|
||||
pickwinP_old = pickparameter.getParam('pickwinP')
|
||||
Precalcwin_old = pickparameter.getParam('Precalcwin')
|
||||
noisefactor_old = pickparameter.getParam('noisefactor')
|
||||
zfac_old = pickparameter.getParam('zfac')
|
||||
pickparameter.setParam(
|
||||
pstart=max([0, badpicks[i][1] - wf2pick[0].stats.starttime \
|
||||
- pickparameter.getParam('tlta')]))
|
||||
pickparameter.setParam(pstop=pickparameter.getParam('pstart') + \
|
||||
(3 * pickparameter.getParam('tlta')))
|
||||
pickparameter.setParam(sstop=pickparameter.getParam('sstop') / 2)
|
||||
pickparameter.setParam(pickwinP=pickparameter.getParam('pickwinP') / 2)
|
||||
pickparameter.setParam(
|
||||
Precalcwin=pickparameter.getParam('Precalcwin') / 2)
|
||||
pickparameter.setParam(noisefactor=1.0)
|
||||
pickparameter.setParam(zfac=1.0)
|
||||
print(
|
||||
"iteratepicker: The following picking parameters have been modified for iterative picking:")
|
||||
print(
|
||||
"pstart: %fs => %fs" % (pstart_old, pickparameter.getParam('pstart')))
|
||||
print(
|
||||
"pstop: %fs => %fs" % (pstop_old, pickparameter.getParam('pstop')))
|
||||
print(
|
||||
"sstop: %fs => %fs" % (sstop_old, pickparameter.getParam('sstop')))
|
||||
print("pickwinP: %fs => %fs" % (
|
||||
pickwinP_old, pickparameter.getParam('pickwinP')))
|
||||
print("Precalcwin: %fs => %fs" % (
|
||||
Precalcwin_old, pickparameter.getParam('Precalcwin')))
|
||||
print("noisefactor: %f => %f" % (
|
||||
noisefactor_old, pickparameter.getParam('noisefactor')))
|
||||
print("zfac: %f => %f" % (zfac_old, pickparameter.getParam('zfac')))
|
||||
|
||||
# repick station
|
||||
newpicks = autopickstation(wf2pick, pickparameter)
|
||||
# repick station
|
||||
newpicks = autopickstation(wf2pick, pickparameter)
|
||||
|
||||
# replace old dictionary with new one
|
||||
picks[badpicks[i][0]] = newpicks
|
||||
# replace old dictionary with new one
|
||||
picks[badpicks[i][0]] = newpicks
|
||||
|
||||
# reset temporary change of picking parameters
|
||||
print("iteratepicker: Resetting picking parameters ...")
|
||||
pickparameter.setParam(pstart=pstart_old)
|
||||
pickparameter.setParam(pstop=pstop_old)
|
||||
pickparameter.setParam(sstop=sstop_old)
|
||||
pickparameter.setParam(pickwinP=pickwinP_old)
|
||||
pickparameter.setParam(Precalcwin=Precalcwin_old)
|
||||
pickparameter.setParam(noisefactor=noisefactor_old)
|
||||
pickparameter.setParam(zfac=zfac_old)
|
||||
# reset temporary change of picking parameters
|
||||
print("iteratepicker: Resetting picking parameters ...")
|
||||
pickparameter.setParam(pstart=pstart_old)
|
||||
pickparameter.setParam(pstop=pstop_old)
|
||||
pickparameter.setParam(sstop=sstop_old)
|
||||
pickparameter.setParam(pickwinP=pickwinP_old)
|
||||
pickparameter.setParam(Precalcwin=Precalcwin_old)
|
||||
pickparameter.setParam(noisefactor=noisefactor_old)
|
||||
pickparameter.setParam(zfac=zfac_old)
|
||||
|
||||
return picks
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -21,10 +21,12 @@ import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from obspy.core import Stream
|
||||
|
||||
|
||||
class CharacteristicFunction(object):
|
||||
'''
|
||||
SuperClass for different types of characteristic functions.
|
||||
'''
|
||||
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None, stealthMode=False):
|
||||
'''
|
||||
Initialize data type object with information from the original
|
||||
@ -103,9 +105,9 @@ class CharacteristicFunction(object):
|
||||
|
||||
def setARdetStep(self, t1):
|
||||
if t1:
|
||||
self.ARdetStep = []
|
||||
self.ARdetStep.append(t1 / 4)
|
||||
self.ARdetStep.append(int(np.ceil(self.getTime2() / self.getIncrement()) / 4))
|
||||
self.ARdetStep = []
|
||||
self.ARdetStep.append(t1 / 4)
|
||||
self.ARdetStep.append(int(np.ceil(self.getTime2() / self.getIncrement()) / 4))
|
||||
|
||||
def getOrder(self):
|
||||
return self.order
|
||||
@ -150,14 +152,14 @@ class CharacteristicFunction(object):
|
||||
if cut is not None:
|
||||
if len(self.orig_data) == 1:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = len(self.orig_data[0])
|
||||
start = 0
|
||||
stop = len(self.orig_data[0])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
else:
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
zz = self.orig_data.copy()
|
||||
z1 = zz[0].copy()
|
||||
zz[0].data = z1.data[int(start):int(stop)]
|
||||
@ -165,16 +167,16 @@ class CharacteristicFunction(object):
|
||||
return data
|
||||
elif len(self.orig_data) == 2:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = min([len(self.orig_data[0]), len(self.orig_data[1])])
|
||||
start = 0
|
||||
stop = min([len(self.orig_data[0]), len(self.orig_data[1])])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
else:
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
@ -184,16 +186,16 @@ class CharacteristicFunction(object):
|
||||
return data
|
||||
elif len(self.orig_data) == 3:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
else:
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
@ -223,13 +225,13 @@ class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
#if self._getStealthMode() is False:
|
||||
# if self._getStealthMode() is False:
|
||||
# print 'Calculating AIC ...'
|
||||
x = self.getDataArray()
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
xnp[nn] = 0
|
||||
datlen = len(xnp)
|
||||
k = np.arange(1, datlen)
|
||||
cf = np.zeros(datlen)
|
||||
@ -247,6 +249,7 @@ class AICcf(CharacteristicFunction):
|
||||
self.cf = cf - np.mean(cf)
|
||||
self.xcf = x
|
||||
|
||||
|
||||
class HOScf(CharacteristicFunction):
|
||||
'''
|
||||
Function to calculate skewness (statistics of order 3) or kurtosis
|
||||
@ -257,38 +260,38 @@ class HOScf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
x = self.getDataArray(self.getCut())
|
||||
xnp =x[0].data
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
xnp[nn] = 0
|
||||
if self.getOrder() == 3: # this is skewness
|
||||
#if self._getStealthMode() is False:
|
||||
# if self._getStealthMode() is False:
|
||||
# print 'Calculating skewness ...'
|
||||
y = np.power(xnp, 3)
|
||||
y1 = np.power(xnp, 2)
|
||||
elif self.getOrder() == 4: # this is kurtosis
|
||||
#if self._getStealthMode() is False:
|
||||
# if self._getStealthMode() is False:
|
||||
# print 'Calculating kurtosis ...'
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
#Initialisation
|
||||
#t2: long term moving window
|
||||
# Initialisation
|
||||
# t2: long term moving window
|
||||
ilta = int(round(self.getTime2() / self.getIncrement()))
|
||||
lta = y[0]
|
||||
lta1 = y1[0]
|
||||
#moving windows
|
||||
# moving windows
|
||||
LTA = np.zeros(len(xnp))
|
||||
for j in range(0, len(xnp)):
|
||||
if j < 4:
|
||||
LTA[j] = 0
|
||||
elif j <= ilta:
|
||||
lta = (y[j] + lta * (j-1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j-1)) / j
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j - 1)) / j
|
||||
else:
|
||||
lta = (y[j] - y[j - ilta]) / ilta + lta
|
||||
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
|
||||
#define LTA
|
||||
# define LTA
|
||||
if self.getOrder() == 3:
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
@ -296,13 +299,12 @@ class HOScf(CharacteristicFunction):
|
||||
|
||||
nn = np.isnan(LTA)
|
||||
if len(nn) > 1:
|
||||
LTA[nn] = 0
|
||||
LTA[nn] = 0
|
||||
self.cf = LTA
|
||||
self.xcf = x
|
||||
|
||||
|
||||
class ARZcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from single trace ...'
|
||||
@ -310,33 +312,33 @@ class ARZcf(CharacteristicFunction):
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xnp[nn] = 0
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
xnoise = xnp + np.random.normal(0.0, 1.0, len(xnp)) * self.getFnoise() * max(abs(xnp))
|
||||
tend = len(xnp)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
|
||||
cf = np.zeros(len(xnp))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() #AR-calculation index
|
||||
arcalci = ldet + self.getOrder() # AR-calculation index
|
||||
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
# determination of AR coefficients
|
||||
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetZ(xnoise, self.getOrder(), i - ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
cf[i + lpred-1] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred-1] - xnp[i:i + lpred-1], 2)) / lpred)
|
||||
# prediction error = CF
|
||||
cf[i + lpred - 1] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred - 1] - xnp[i:i + lpred - 1], 2)) / lpred)
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
#remove zeros and artefacts
|
||||
cf[nn] = 0
|
||||
# remove zeros and artefacts
|
||||
tap = np.hanning(len(cf))
|
||||
cf = tap * cf
|
||||
io = np.where(cf == 0)
|
||||
@ -366,25 +368,25 @@ class ARZcf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet+1):
|
||||
for i in range(rind, ldet + 1):
|
||||
ki = k + 1
|
||||
rhs[k] = rhs[k] + data[i] * data[i - ki]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((self.getOrder(),self.getOrder()))
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((self.getOrder(), self.getOrder()))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet+1):
|
||||
for i in range(rind, ldet + 1):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[i - j] * data[i - k]
|
||||
A[ki, ji] = A[ki, ji] + data[i - j] * data[i - k]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
A[ji, ki] = A[ki, ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPredZ(self, data, arpara, rind, lpred):
|
||||
@ -406,10 +408,10 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
Output: predicted waveform z
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
# be sure of the summation indeces
|
||||
if rind < len(arpara):
|
||||
rind = len(arpara)
|
||||
if rind > len(data) - lpred :
|
||||
if rind > len(data) - lpred:
|
||||
rind = len(data) - lpred
|
||||
if lpred < 1:
|
||||
lpred = 1
|
||||
@ -426,7 +428,6 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
|
||||
class ARHcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from both horizontal traces ...'
|
||||
@ -434,41 +435,42 @@ class ARHcf(CharacteristicFunction):
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
xnp[0].data[n0] = 0
|
||||
xnp[0].data[n0] = 0
|
||||
n1 = np.isnan(xnp[1].data)
|
||||
if len(n1) > 1:
|
||||
xnp[1].data[n1] = 0
|
||||
xnp[1].data[n1] = 0
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
||||
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist()] )
|
||||
Xnoise = np.array([xenoise.tolist(), xnnoise.tolist()])
|
||||
tend = len(xnp[0].data)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = lpred + self.getOrder() - 1 #AR-calculation index
|
||||
#arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
arcalci = lpred + self.getOrder() - 1 # AR-calculation index
|
||||
# arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
for i in range(lpred + self.getOrder() - 1, tend - 2 * lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
# determination of AR coefficients
|
||||
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetH(Xnoise, self.getOrder(), i - ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredH(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
# prediction error = CF
|
||||
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (2 * lpred))
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (
|
||||
2 * lpred))
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
#remove zeros and artefacts
|
||||
cf[nn] = 0
|
||||
# remove zeros and artefacts
|
||||
tap = np.hanning(len(cf))
|
||||
cf = tap * cf
|
||||
io = np.where(cf == 0)
|
||||
@ -500,24 +502,24 @@ class ARHcf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k]
|
||||
rhs[k] = rhs[k] + data[0, i] * data[0, i - k] + data[1, i] * data[1, i - k]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4,4))
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4, 4))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki]
|
||||
A[ki, ji] = A[ki, ji] + data[0, i - ji] * data[0, i - ki] + data[1, i - ji] * data[1, i - ki]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
A[ji, ki] = A[ki, ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPredH(self, data, arpara, rind, lpred):
|
||||
@ -540,7 +542,7 @@ class ARHcf(CharacteristicFunction):
|
||||
Output: predicted waveform z
|
||||
:type: structured array
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
# be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data[0]) - lpred + 1:
|
||||
@ -558,11 +560,11 @@ class ARHcf(CharacteristicFunction):
|
||||
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
|
||||
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
||||
|
||||
z = np.array( [z1.tolist(), z2.tolist()] )
|
||||
z = np.array([z1.tolist(), z2.tolist()])
|
||||
self.xpred = z
|
||||
|
||||
class AR3Ccf(CharacteristicFunction):
|
||||
|
||||
class AR3Ccf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from all 3 components ...'
|
||||
@ -570,46 +572,47 @@ class AR3Ccf(CharacteristicFunction):
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
xnp[0].data[n0] = 0
|
||||
xnp[0].data[n0] = 0
|
||||
n1 = np.isnan(xnp[1].data)
|
||||
if len(n1) > 1:
|
||||
xnp[1].data[n1] = 0
|
||||
xnp[1].data[n1] = 0
|
||||
n2 = np.isnan(xnp[2].data)
|
||||
if len(n2) > 1:
|
||||
xnp[2].data[n2] = 0
|
||||
xnp[2].data[n2] = 0
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
||||
xznoise = xnp[2].data + np.random.normal(0.0, 1.0, len(xnp[2].data)) * self.getFnoise() * max(abs(xnp[2].data))
|
||||
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist(), xznoise.tolist()] )
|
||||
Xnoise = np.array([xenoise.tolist(), xnnoise.tolist(), xznoise.tolist()])
|
||||
tend = len(xnp[0].data)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
arcalci = ldet + self.getOrder() - 1 # AR-calculation index
|
||||
for i in range(ldet + self.getOrder() - 1, tend - 2 * lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
|
||||
# determination of AR coefficients
|
||||
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDet3C(Xnoise, self.getOrder(), i - ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPred3C(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
# prediction error = CF
|
||||
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (3 * lpred))
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (
|
||||
3 * lpred))
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
#remove zeros and artefacts
|
||||
cf[nn] = 0
|
||||
# remove zeros and artefacts
|
||||
tap = np.hanning(len(cf))
|
||||
cf = tap * cf
|
||||
io = np.where(cf == 0)
|
||||
@ -641,26 +644,26 @@ class AR3Ccf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k] \
|
||||
+ data[2,i] * data[2,i - k]
|
||||
rhs[k] = rhs[k] + data[0, i] * data[0, i - k] + data[1, i] * data[1, i - k] \
|
||||
+ data[2, i] * data[2, i - k]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4,4))
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4, 4))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki] \
|
||||
+ data[2,i - ji] *data[2,i - ki]
|
||||
A[ki, ji] = A[ki, ji] + data[0, i - ji] * data[0, i - ki] + data[1, i - ji] * data[1, i - ki] \
|
||||
+ data[2, i - ji] * data[2, i - ki]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
A[ji, ki] = A[ki, ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPred3C(self, data, arpara, rind, lpred):
|
||||
@ -683,7 +686,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
Output: predicted waveform z
|
||||
:type: structured array
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
# be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data[0]) - lpred + 1:
|
||||
@ -703,5 +706,5 @@ class AR3Ccf(CharacteristicFunction):
|
||||
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
||||
z3[i] = z3[i] + arpara[ji] * z3[i - ji]
|
||||
|
||||
z = np.array( [z1.tolist(), z2.tolist(), z3.tolist()] )
|
||||
z = np.array([z1.tolist(), z2.tolist(), z3.tolist()])
|
||||
self.xpred = z
|
259
pylot/core/pick/compare.py
Normal file
259
pylot/core/pick/compare.py
Normal file
@ -0,0 +1,259 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
|
||||
import numpy as np
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from obspy import read_events
|
||||
|
||||
from pylot.core.read.io import picks_from_evt
|
||||
from pylot.core.util.pdf import ProbabilityDensityFunction
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
||||
__version__ = _getVersionString()
|
||||
__author__ = 'sebastianw'
|
||||
|
||||
|
||||
class Comparison(object):
|
||||
"""
|
||||
A Comparison object contains information on the evaluated picks' probability
|
||||
density function and compares these in terms of building the difference of
|
||||
compared pick sets. The results can be displayed as histograms showing its
|
||||
properties.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
names = list()
|
||||
self._pdfs = dict()
|
||||
for name, fn in kwargs.items():
|
||||
self._pdfs[name] = PDFDictionary.from_quakeml(fn)
|
||||
names.append(name)
|
||||
if len(names) > 2:
|
||||
raise ValueError('Comparison is only defined for two '
|
||||
'arguments!')
|
||||
self._names = names
|
||||
self._compare = self.compare_picksets()
|
||||
|
||||
def __nonzero__(self):
|
||||
if not len(self.names) == 2 or not self._pdfs:
|
||||
return False
|
||||
return True
|
||||
|
||||
def get(self, name):
|
||||
return self._pdfs[name]
|
||||
|
||||
@property
|
||||
def names(self):
|
||||
return self._names
|
||||
|
||||
@names.setter
|
||||
def names(self, names):
|
||||
assert isinstance(names, list) and len(names) == 2, 'variable "names"' \
|
||||
' is either not a' \
|
||||
' list or its ' \
|
||||
'length is not 2:' \
|
||||
'names : {names}'.format(
|
||||
names=names)
|
||||
self._names = names
|
||||
|
||||
@property
|
||||
def comparison(self):
|
||||
return self._compare
|
||||
|
||||
@property
|
||||
def stations(self):
|
||||
return self.comparison.keys()
|
||||
|
||||
@property
|
||||
def nstations(self):
|
||||
return len(self.stations)
|
||||
|
||||
def compare_picksets(self, type='exp'):
|
||||
"""
|
||||
Compare two picksets A and B and return a dictionary compiling the results.
|
||||
Comparison is carried out with the help of pdf representation of the picks
|
||||
and a probabilistic approach to the time difference of two onset
|
||||
measurements.
|
||||
:param a: filename for pickset A
|
||||
:type a: str
|
||||
:param b: filename for pickset B
|
||||
:type b: str
|
||||
:return: dictionary containing the resulting comparison pdfs for all picks
|
||||
:rtype: dict
|
||||
"""
|
||||
compare_pdfs = dict()
|
||||
|
||||
pdf_a = self.get(self.names[0]).pdf_data(type)
|
||||
pdf_b = self.get(self.names[1]).pdf_data(type)
|
||||
|
||||
for station, phases in pdf_a.items():
|
||||
if station in pdf_b.keys():
|
||||
compare_pdf = dict()
|
||||
for phase in phases:
|
||||
if phase in pdf_b[station].keys():
|
||||
compare_pdf[phase] = phases[phase] - pdf_b[station][
|
||||
phase]
|
||||
if compare_pdf is not None:
|
||||
compare_pdfs[station] = compare_pdf
|
||||
|
||||
return compare_pdfs
|
||||
|
||||
def plot(self):
|
||||
nstations = self.nstations
|
||||
stations = self.stations
|
||||
istations = range(nstations)
|
||||
fig, axarr = plt.subplots(nstations, 2, sharex='col', sharey='row')
|
||||
|
||||
for n in istations:
|
||||
station = stations[n]
|
||||
compare_pdf = self.comparison[station]
|
||||
for l, phase in enumerate(compare_pdf.keys()):
|
||||
axarr[n, l].plot(compare_pdf[phase].axis,
|
||||
compare_pdf[phase].data)
|
||||
if n is 0:
|
||||
axarr[n, l].set_title(phase)
|
||||
if l is 0:
|
||||
axann = axarr[n, l].annotate(station, xy=(.05, .5),
|
||||
xycoords='axes fraction')
|
||||
bbox_props = dict(boxstyle='round', facecolor='lightgrey',
|
||||
alpha=.7)
|
||||
axann.set_bbox(bbox_props)
|
||||
if n == int(np.median(istations)) and l is 0:
|
||||
label = 'probability density (qualitative)'
|
||||
axarr[n, l].set_ylabel(label)
|
||||
plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False)
|
||||
plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False)
|
||||
plt.setp([a.get_yticklabels() for a in axarr[:, 0]], visible=False)
|
||||
|
||||
plt.show()
|
||||
|
||||
def get_expectation_array(self, phase):
|
||||
pdf_dict = self.comparison
|
||||
exp_array = list()
|
||||
for station, phases in pdf_dict.items():
|
||||
try:
|
||||
exp_array.append(phases[phase].expectation())
|
||||
except KeyError as e:
|
||||
print('{err_msg}; station = {station}, phase = {phase}'.format(
|
||||
err_msg=str(e), station=station, phase=phase))
|
||||
continue
|
||||
return exp_array
|
||||
|
||||
def get_std_array(self, phase):
|
||||
pdf_dict = self.comparison
|
||||
std_array = list()
|
||||
for station, phases in pdf_dict.items():
|
||||
try:
|
||||
std_array.append(phases[phase].standard_deviation())
|
||||
except KeyError as e:
|
||||
print('{err_msg}; station = {station}, phase = {phase}'.format(
|
||||
err_msg=str(e), station=station, phase=phase))
|
||||
continue
|
||||
return std_array
|
||||
|
||||
def hist_expectation(self, phases='all', bins=20, normed=False):
|
||||
phases.strip()
|
||||
if phases.find('all') is 0:
|
||||
phases = 'ps'
|
||||
phases = phases.upper()
|
||||
nsp = len(phases)
|
||||
fig, axarray = plt.subplots(1, nsp, sharey=True)
|
||||
for n, phase in enumerate(phases):
|
||||
ax = axarray[n]
|
||||
data = self.get_expectation_array(phase)
|
||||
xlims = [min(data), max(data)]
|
||||
ax.hist(data, range=xlims, bins=bins, normed=normed)
|
||||
title_str = 'phase: {0}, samples: {1}'.format(phase, len(data))
|
||||
ax.set_title(title_str)
|
||||
ax.set_xlabel('expectation [s]')
|
||||
if n is 0:
|
||||
ax.set_ylabel('abundance [-]')
|
||||
plt.setp([a.get_yticklabels() for a in axarray[1:]], visible=False)
|
||||
plt.show()
|
||||
|
||||
def hist_standard_deviation(self, phases='all', bins=20, normed=False):
|
||||
phases.strip()
|
||||
if phases.find('all') == 0:
|
||||
phases = 'ps'
|
||||
phases = phases.upper()
|
||||
nsp = len(phases)
|
||||
fig, axarray = plt.subplots(1, nsp, sharey=True)
|
||||
for n, phase in enumerate(phases):
|
||||
ax = axarray[n]
|
||||
data = self.get_std_array(phase)
|
||||
xlims = [min(data), max(data)]
|
||||
ax.hist(data, range=xlims, bins=bins, normed=normed)
|
||||
title_str = 'phase: {0}, samples: {1}'.format(phase, len(data))
|
||||
ax.set_title(title_str)
|
||||
ax.set_xlabel('standard deviation [s]')
|
||||
if n is 0:
|
||||
ax.set_ylabel('abundance [-]')
|
||||
plt.setp([a.get_yticklabels() for a in axarray[1:]], visible=False)
|
||||
plt.show()
|
||||
|
||||
def hist(self, type='std'):
|
||||
pass
|
||||
|
||||
|
||||
class PDFDictionary(object):
|
||||
"""
|
||||
A PDFDictionary is a dictionary like object containing structured data on
|
||||
the probability density function of seismic phase onsets.
|
||||
"""
|
||||
|
||||
def __init__(self, data):
|
||||
self._pickdata = data
|
||||
|
||||
def __nonzero__(self):
|
||||
if len(self.pick_data) < 1:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
@property
|
||||
def pick_data(self):
|
||||
return self._pickdata
|
||||
|
||||
@pick_data.setter
|
||||
def pick_data(self, data):
|
||||
self._pickdata = data
|
||||
|
||||
@classmethod
|
||||
def from_quakeml(self, fn):
|
||||
cat = read_events(fn)
|
||||
if len(cat) > 1:
|
||||
raise NotImplementedError('reading more than one event at the same '
|
||||
'time is not implemented yet! Sorry!')
|
||||
return PDFDictionary(picks_from_evt(cat[0]))
|
||||
|
||||
def pdf_data(self, type='exp'):
|
||||
"""
|
||||
Returns probabiliy density function dictionary containing the
|
||||
representation of the actual pick_data.
|
||||
:param type: type of the returned
|
||||
`~pylot.core.util.pdf.ProbabilityDensityFunction` object
|
||||
:type type: str
|
||||
:return: a dictionary containing the picks represented as pdfs
|
||||
"""
|
||||
|
||||
pdf_picks = copy.deepcopy(self.pick_data)
|
||||
|
||||
for station, phases in pdf_picks.items():
|
||||
for phase, values in phases.items():
|
||||
phases[phase] = ProbabilityDensityFunction.from_pick(
|
||||
values['epp'],
|
||||
values['mpp'],
|
||||
values['lpp'],
|
||||
type=type)
|
||||
|
||||
return pdf_picks
|
||||
|
||||
|
||||
#comp_obj = Comparison(manual='/home/sebastianp/Data/Insheim/e0019.048.13.xml',
|
||||
# auto='/data/Geothermie/Insheim/EVENT_DATA/LOCAL/RefDB/e0019.048.13/autoPyLoT.xml')
|
||||
#comp_obj.plot()
|
||||
#comp_obj.hist_expectation()
|
||||
#comp_obj.hist_standard_deviation()
|
@ -22,10 +22,11 @@ calculated after Diehl & Kissling (2009).
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from pylot.core.pick.utils import getnoisewin, getsignalwin
|
||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||
from pylot.core.pick.charfuns import CharacteristicFunction
|
||||
import warnings
|
||||
|
||||
class AutoPicking(object):
|
||||
|
||||
class AutoPicker(object):
|
||||
'''
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
using AIC, HOS, or AR prediction.
|
||||
@ -87,7 +88,6 @@ class AutoPicking(object):
|
||||
Tsmooth=self.getTsmooth(),
|
||||
Pick1=self.getpick1())
|
||||
|
||||
|
||||
def getTSNR(self):
|
||||
return self.TSNR
|
||||
|
||||
@ -137,7 +137,7 @@ class AutoPicking(object):
|
||||
self.Pick = None
|
||||
|
||||
|
||||
class AICPicker(AutoPicking):
|
||||
class AICPicker(AutoPicker):
|
||||
'''
|
||||
Method to derive the onset time of an arriving phase based on CF
|
||||
derived from AIC. In order to get an impression of the quality of this inital pick,
|
||||
@ -152,14 +152,14 @@ class AICPicker(AutoPicking):
|
||||
self.Pick = None
|
||||
self.slope = None
|
||||
self.SNR = None
|
||||
#find NaN's
|
||||
# find NaN's
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
self.cf[nn] = 0
|
||||
#taper AIC-CF to get rid off side maxima
|
||||
# taper AIC-CF to get rid off side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
#smooth AIC-CF
|
||||
# smooth AIC-CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
aicsmooth = np.zeros(len(aic))
|
||||
if len(aic) < ismooth:
|
||||
@ -171,32 +171,32 @@ class AICPicker(AutoPicking):
|
||||
ii1 = i - ismooth
|
||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
||||
else:
|
||||
aicsmooth[i] = np.mean(aic[1 : i])
|
||||
#remove offset
|
||||
aicsmooth[i] = np.mean(aic[1: i])
|
||||
# remove offset
|
||||
offset = abs(min(aic) - min(aicsmooth))
|
||||
aicsmooth = aicsmooth - offset
|
||||
#get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
||||
# get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
||||
diffcf = np.diff(aicsmooth)
|
||||
#find NaN's
|
||||
# find NaN's
|
||||
nn = np.isnan(diffcf)
|
||||
if len(nn) > 1:
|
||||
diffcf[nn] = 0
|
||||
#taper CF to get rid off side maxima
|
||||
# taper CF to get rid off side maxima
|
||||
tap = np.hanning(len(diffcf))
|
||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||
icfmax = np.argmax(diffcf)
|
||||
|
||||
#find minimum in AIC-CF front of maximum
|
||||
# find minimum in AIC-CF front of maximum
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
#if no minimum could be found:
|
||||
#search in 1st derivative of AIC-CF
|
||||
# if no minimum could be found:
|
||||
# search in 1st derivative of AIC-CF
|
||||
if self.Pick is None:
|
||||
for i in range(icfmax -1, max([icfmax -lpickwindow, 2]), -1):
|
||||
if diffcf[i -1] >= diffcf[i]:
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if diffcf[i - 1] >= diffcf[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
|
||||
@ -215,7 +215,7 @@ class AICPicker(AutoPicking):
|
||||
max(abs(aic[inoise] - np.mean(aic[inoise])))
|
||||
# calculate slope from CF after initial pick
|
||||
# get slope window
|
||||
tslope = self.TSNR[3] #slope determination window
|
||||
tslope = self.TSNR[3] # slope determination window
|
||||
islope = np.where((self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)])) \
|
||||
& (self.Tcf >= self.Pick))
|
||||
# find maximum within slope determination window
|
||||
@ -237,7 +237,7 @@ class AICPicker(AutoPicking):
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
return
|
||||
islope = islope[0][0 :imax]
|
||||
islope = islope[0][0:imax]
|
||||
dataslope = self.Data[0].data[islope]
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope = np.arange(0, len(dataslope), 1)
|
||||
@ -258,7 +258,7 @@ class AICPicker(AutoPicking):
|
||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||
if self.Pick is not None:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1 , 0.5], 'b', linewidth=2)
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||
else:
|
||||
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
||||
@ -273,7 +273,8 @@ class AICPicker(AutoPicking):
|
||||
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r')
|
||||
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'],
|
||||
plt.legend([p11, p12, p13, p14, p15],
|
||||
['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'],
|
||||
loc='best')
|
||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
|
||||
self.SNR, self.slope))
|
||||
@ -289,7 +290,7 @@ class AICPicker(AutoPicking):
|
||||
print('AICPicker: Could not find minimum, picking window too short?')
|
||||
|
||||
|
||||
class PragPicker(AutoPicking):
|
||||
class PragPicker(AutoPicker):
|
||||
'''
|
||||
Method of pragmatic picking exploiting information given by CF.
|
||||
'''
|
||||
@ -303,7 +304,7 @@ class PragPicker(AutoPicking):
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
pickflag = 0
|
||||
#smooth CF
|
||||
# smooth CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
cfsmooth = np.zeros(len(self.cf))
|
||||
if len(self.cf) < ismooth:
|
||||
@ -315,28 +316,28 @@ class PragPicker(AutoPicking):
|
||||
ii1 = i - ismooth
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
||||
cfsmooth[i] = np.mean(self.cf[1: i])
|
||||
|
||||
#select picking window
|
||||
#which is centered around tpick1
|
||||
# select picking window
|
||||
# which is centered around tpick1
|
||||
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
||||
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
||||
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
||||
Tcfpick = self.Tcf[ipick]
|
||||
cfsmoothipick = cfsmooth[ipick]- np.mean(self.cf[ipick])
|
||||
cfsmoothipick = cfsmooth[ipick] - np.mean(self.cf[ipick])
|
||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||
cfpick1 = 2 * self.cf[ipick1]
|
||||
|
||||
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
#prominent trend: decrease aus
|
||||
#flat: use given aus
|
||||
# check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
# prominent trend: decrease aus
|
||||
# flat: use given aus
|
||||
cfdiff = np.diff(cfipick)
|
||||
i0diff = np.where(cfdiff > 0)
|
||||
cfdiff = cfdiff[i0diff]
|
||||
minaus = min(cfdiff * (1 + self.aus))
|
||||
aus1 = max([minaus, self.aus])
|
||||
|
||||
#at first we look to the right until the end of the pick window is reached
|
||||
# at first we look to the right until the end of the pick window is reached
|
||||
flagpick_r = 0
|
||||
flagpick_l = 0
|
||||
cfpick_r = 0
|
||||
@ -380,8 +381,8 @@ class PragPicker(AutoPicking):
|
||||
|
||||
if self.getiplot() > 1:
|
||||
p = plt.figure(self.getiplot())
|
||||
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
||||
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
||||
p1, = plt.plot(Tcfpick, cfipick, 'k')
|
||||
p2, = plt.plot(Tcfpick, cfsmoothipick, 'r')
|
||||
if pickflag > 0:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
@ -15,7 +15,7 @@ from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode=False):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||
@ -70,7 +70,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
|
||||
# get earliest possible pick
|
||||
|
||||
EPick = np.nan; count = 0
|
||||
EPick = np.nan;
|
||||
count = 0
|
||||
pis = isignal
|
||||
|
||||
# if EPick stays NaN the signal window size will be doubled
|
||||
@ -78,10 +79,10 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
if count > 0:
|
||||
if stealthMode is False:
|
||||
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
||||
"because of NaN for earliest pick." %count)
|
||||
"because of NaN for earliest pick." % count)
|
||||
isigDoubleWinStart = pis[-1] + 1
|
||||
isignalDoubleWin = np.arange(isigDoubleWinStart,
|
||||
isigDoubleWinStart + len(pis))
|
||||
isigDoubleWinStart + len(pis))
|
||||
if (isigDoubleWinStart + len(pis)) < X[0].data.size:
|
||||
pis = np.concatenate((pis, isignalDoubleWin))
|
||||
else:
|
||||
@ -92,8 +93,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
zc = crossings_nonzero_all(x[pis] - x[pis].mean())
|
||||
# calculate mean half period T0 of signal as the average of the
|
||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length!
|
||||
EPick = Pick1 - T0 # half wavelength as suggested by Diehl et al.
|
||||
|
||||
EPick = Pick1 - T0 # half wavelength as suggested by Diehl et al.
|
||||
|
||||
# get symmetric pick error as mean from earliest and latest possible pick
|
||||
# by weighting latest possible pick two times earliest possible pick
|
||||
@ -133,117 +133,6 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
return EPick, LPick, PickError
|
||||
|
||||
|
||||
def gauss_parameter(te, tm, tl, eta):
|
||||
'''
|
||||
takes three onset times and returns the parameters sig1, sig2, a1 and a2
|
||||
to represent the pick as a probability density funtion (PDF) with two
|
||||
Gauss branches
|
||||
:param te:
|
||||
:param tm:
|
||||
:param tl:
|
||||
:param eta:
|
||||
:return:
|
||||
'''
|
||||
|
||||
sig1 = (tm - te) / np.sqrt(2 * np.log(1 / eta))
|
||||
sig2 = (tl - tm) / np.sqrt(2 * np.log(1 / eta))
|
||||
|
||||
a1 = 2 / (1 + sig2 / sig1)
|
||||
a2 = 2 / (1 + sig1 / sig2)
|
||||
|
||||
return sig1, sig2, a1, a2
|
||||
|
||||
|
||||
def exp_parameter(te, tm, tl, eta):
|
||||
'''
|
||||
takes three onset times te, tm and tl and returns the parameters sig1,
|
||||
sig2 and a to represent the pick as a probability density function (PDF)
|
||||
with two exponential decay branches
|
||||
:param te:
|
||||
:param tm:
|
||||
:param tl:
|
||||
:param eta:
|
||||
:return:
|
||||
'''
|
||||
|
||||
sig1 = np.log(eta) / (te - tm)
|
||||
sig2 = np.log(eta) / (tm - tl)
|
||||
a = 1 / (1 / sig1 + 1 / sig2)
|
||||
|
||||
return sig1, sig2, a
|
||||
|
||||
|
||||
def gauss_branches(x, mu, sig1, sig2, a1, a2):
|
||||
'''
|
||||
function gauss_branches takes an axes x, a center value mu, two sigma
|
||||
values sig1 and sig2 and two scaling factors a1 and a2 and return a
|
||||
list containing the values of a probability density function (PDF)
|
||||
consisting of gauss branches
|
||||
:param x:
|
||||
:type x:
|
||||
:param mu:
|
||||
:type mu:
|
||||
:param sig1:
|
||||
:type sig1:
|
||||
:param sig2:
|
||||
:type sig2:
|
||||
:param a1:
|
||||
:type a1:
|
||||
:param a2:
|
||||
:returns fun_vals: list with function values along axes x
|
||||
'''
|
||||
fun_vals = []
|
||||
for k in x:
|
||||
if k < mu:
|
||||
fun_vals.append(a1 * 1 / (np.sqrt(2 * np.pi) * sig1) * np.exp(-((k - mu) / sig1)**2 / 2 ))
|
||||
else:
|
||||
fun_vals.append(a2 * 1 / (np.sqrt(2 * np.pi) * sig2) * np.exp(-((k - mu) / sig2)**2 / 2))
|
||||
return fun_vals
|
||||
|
||||
|
||||
def exp_branches(x, mu, sig1, sig2, a):
|
||||
'''
|
||||
function exp_branches takes an axes x, a center value mu, two sigma
|
||||
values sig1 and sig2 and a scaling factor a and return a
|
||||
list containing the values of a probability density function (PDF)
|
||||
consisting of exponential decay branches
|
||||
:param x:
|
||||
:param mu:
|
||||
:param sig1:
|
||||
:param sig2:
|
||||
:param a:
|
||||
:returns fun_vals: list with function values along axes x:
|
||||
'''
|
||||
fun_vals = []
|
||||
for k in x:
|
||||
if k < mu:
|
||||
fun_vals.append(a * np.exp(sig1 * (k - mu)))
|
||||
else:
|
||||
fun_vals.append(a * np.exp(-sig2 * (k - mu)))
|
||||
return fun_vals
|
||||
|
||||
|
||||
def pick_pdf(t, te, tm, tl, type='gauss', eta=0.01):
|
||||
'''
|
||||
|
||||
:param t:
|
||||
:param te:
|
||||
:param tm:
|
||||
:param tl:
|
||||
:param type:
|
||||
:param eta:
|
||||
:param args:
|
||||
:return:
|
||||
'''
|
||||
|
||||
parameter = dict(gauss=gauss_parameter, exp=exp_parameter)
|
||||
branches = dict(gauss=gauss_branches, exp=exp_branches)
|
||||
|
||||
params = parameter[type](te, tm, tl, eta)
|
||||
|
||||
return branches[type](t, tm, *params)
|
||||
|
||||
|
||||
def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
'''
|
||||
Function to derive first motion (polarity) of given phase onset Pick.
|
||||
@ -432,7 +321,7 @@ def crossings_nonzero_all(data):
|
||||
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
||||
|
||||
|
||||
def getSNR(X, TSNR, t1):
|
||||
def getSNR(X, TSNR, t1, tracenum=0):
|
||||
'''
|
||||
Function to calculate SNR of certain part of seismogram relative to
|
||||
given time (onset) out of given noise and signal windows. A safety gap
|
||||
@ -451,9 +340,11 @@ def getSNR(X, TSNR, t1):
|
||||
|
||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
x = X[tracenum].data
|
||||
npts = X[tracenum].stats.npts
|
||||
sr = X[tracenum].stats.sampling_rate
|
||||
dt = X[tracenum].stats.delta
|
||||
t = np.arange(0, npts / sr, dt)
|
||||
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
|
||||
@ -471,8 +362,12 @@ def getSNR(X, TSNR, t1):
|
||||
x = x - np.mean(x[inoise])
|
||||
|
||||
# calculate ratios
|
||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
||||
# noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
# signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
||||
|
||||
noiselevel = np.abs(x[inoise]).max()
|
||||
signallevel = np.abs(x[isignal]).max()
|
||||
|
||||
SNR = signallevel / noiselevel
|
||||
SNRdB = 10 * np.log10(SNR)
|
||||
|
||||
@ -500,7 +395,7 @@ def getnoisewin(t, t1, tnoise, tgap):
|
||||
|
||||
# get noise window
|
||||
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||
if np.size(inoise) < 1:
|
||||
print ("getnoisewin: Empty array inoise, check noise window!")
|
||||
|
||||
@ -524,7 +419,7 @@ def getsignalwin(t, t1, tsignal):
|
||||
|
||||
# get signal window
|
||||
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
||||
& (t >= t1))
|
||||
& (t >= t1))
|
||||
if np.size(isignal) < 1:
|
||||
print ("getsignalwin: Empty array isignal, check signal window!")
|
||||
|
||||
@ -565,7 +460,7 @@ def getResolutionWindow(snr):
|
||||
else:
|
||||
time_resolution = res_wins['HRW']
|
||||
|
||||
return time_resolution/2
|
||||
return time_resolution / 2
|
||||
|
||||
|
||||
def wadaticheck(pickdic, dttolerance, iplot):
|
||||
@ -593,17 +488,16 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
SPtimes = []
|
||||
for key in pickdic:
|
||||
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
||||
# calculate S-P time
|
||||
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
# add S-P time to dictionary
|
||||
pickdic[key]['SPt'] = spt
|
||||
# add P onsets and corresponding S-P times to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
Spicks.append(UTCSpick.timestamp)
|
||||
SPtimes.append(spt)
|
||||
|
||||
# calculate S-P time
|
||||
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
# add S-P time to dictionary
|
||||
pickdic[key]['SPt'] = spt
|
||||
# add P onsets and corresponding S-P times to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
Spicks.append(UTCSpick.timestamp)
|
||||
SPtimes.append(spt)
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
@ -635,7 +529,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
ibad += 1
|
||||
else:
|
||||
marker = 'goodWadatiCheck'
|
||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
checkedPpicks.append(checkedPpick.timestamp)
|
||||
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
checkedSpicks.append(checkedSpick.timestamp)
|
||||
@ -747,7 +641,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
# calculate minimum adjusted signal level
|
||||
minsiglevel = max(rms[inoise]) * nfac
|
||||
# minimum adjusted number of samples over minimum signal level
|
||||
minnum = len(isignal) * minpercent/100
|
||||
minnum = len(isignal) * minpercent / 100
|
||||
# get number of samples above minimum adjusted signal level
|
||||
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
|
||||
|
||||
@ -762,10 +656,10 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p1, = plt.plot(t, rms, 'k')
|
||||
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]],
|
||||
p3, = plt.plot(t[isignal], rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
||||
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
||||
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window',
|
||||
@ -806,15 +700,15 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
stations = []
|
||||
for key in pickdic:
|
||||
if pickdic[key]['P']['weight'] < 4:
|
||||
# add P onsets to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
stations.append(key)
|
||||
# add P onsets to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
stations.append(key)
|
||||
|
||||
# apply jackknife bootstrapping on variance of P onsets
|
||||
print ("###############################################")
|
||||
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
|
||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
# get pseudo variances smaller than average variances
|
||||
# (times safety factor), these picks passed jackknife test
|
||||
ij = np.where(PHI_pseudo <= 2 * xjack)
|
||||
@ -835,7 +729,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
|
||||
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
|
||||
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
|
||||
+ len(badjkstations), len(stations)))
|
||||
+ len(badjkstations), len(stations)))
|
||||
|
||||
goodmarker = 'goodPonsetcheck'
|
||||
badmarker = 'badPonsetcheck'
|
||||
@ -986,10 +880,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
if len(ndat) == 0: # check for other components
|
||||
ndat = X.select(component="1")
|
||||
|
||||
|
||||
z = zdat[0].data
|
||||
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
|
||||
zdat[0].stats.delta)
|
||||
zdat[0].stats.delta)
|
||||
|
||||
# calculate RMS trace from vertical component
|
||||
absz = np.sqrt(np.power(z, 2))
|
||||
@ -1021,9 +914,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
|
||||
if iplot > 1:
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
edat[0].stats.delta)
|
||||
edat[0].stats.delta)
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
ndat[0].stats.delta)
|
||||
ndat[0].stats.delta)
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
|
||||
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
||||
@ -1065,65 +958,64 @@ def writephases(arrivals, fformat, filename):
|
||||
:type: string
|
||||
'''
|
||||
|
||||
|
||||
if fformat == 'NLLoc':
|
||||
print ("Writing phases to %s for NLLoc" % filename)
|
||||
fid = open("%s" % filename, 'w')
|
||||
# write header
|
||||
fid.write('# EQEVENT: Label: EQ001 Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n')
|
||||
for key in arrivals:
|
||||
# P onsets
|
||||
if arrivals[key]['P']:
|
||||
fm = arrivals[key]['P']['fm']
|
||||
if fm == None:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['P']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['P']['weight'] < 4:
|
||||
pweight = 1 # use pick
|
||||
else:
|
||||
pweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? P %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
pweight))
|
||||
# S onsets
|
||||
if arrivals[key]['S']:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['S']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['S']['weight'] < 4:
|
||||
sweight = 1 # use pick
|
||||
else:
|
||||
sweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? S %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
sweight))
|
||||
# P onsets
|
||||
if arrivals[key]['P']:
|
||||
fm = arrivals[key]['P']['fm']
|
||||
if fm == None:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['P']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['P']['weight'] < 4:
|
||||
pweight = 1 # use pick
|
||||
else:
|
||||
pweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? P %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
pweight))
|
||||
# S onsets
|
||||
if arrivals[key]['S']:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['S']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['S']['weight'] < 4:
|
||||
sweight = 1 # use pick
|
||||
else:
|
||||
sweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? S %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
sweight))
|
||||
|
||||
fid.close()
|
||||
|
||||
@ -1148,9 +1040,9 @@ def writephases(arrivals, fformat, filename):
|
||||
Ao = str('%7.2f' % Ao)
|
||||
year = Ponset.year
|
||||
if year >= 2000:
|
||||
year = year -2000
|
||||
year = year - 2000
|
||||
else:
|
||||
year = year - 1900
|
||||
year = year - 1900
|
||||
month = Ponset.month
|
||||
day = Ponset.day
|
||||
hh = Ponset.hour
|
||||
@ -1159,9 +1051,9 @@ def writephases(arrivals, fformat, filename):
|
||||
ms = Ponset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if pweight < 2:
|
||||
pstr = 'I'
|
||||
pstr = 'I'
|
||||
elif pweight >= 2:
|
||||
pstr = 'E'
|
||||
pstr = 'E'
|
||||
if arrivals[key]['S']['weight'] < 4:
|
||||
Sss = Sonset.second
|
||||
Sms = Sonset.microsecond
|
||||
@ -1172,35 +1064,36 @@ def writephases(arrivals, fformat, filename):
|
||||
elif sweight >= 2:
|
||||
sstr = 'E'
|
||||
fid.write('%s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s%sS %d %s\n' % (key,
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Sss_ms,
|
||||
sstr,
|
||||
sweight,
|
||||
Ao))
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Sss_ms,
|
||||
sstr,
|
||||
sweight,
|
||||
Ao))
|
||||
else:
|
||||
fid.write('%s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s\n' % (key,
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Ao))
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Ao))
|
||||
|
||||
fid.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -3,9 +3,10 @@
|
||||
|
||||
import os
|
||||
import glob
|
||||
from obspy.xseed import Parser
|
||||
import warnings
|
||||
from obspy.io.xseed import Parser
|
||||
from obspy.core import read, Stream, UTCDateTime
|
||||
from obspy import readEvents, read_inventory
|
||||
from obspy import read_events, read_inventory
|
||||
from obspy.core.event import Event, ResourceIdentifier, Pick, WaveformStreamID
|
||||
|
||||
from pylot.core.read.io import readPILOTEvent
|
||||
@ -37,9 +38,10 @@ class Data(object):
|
||||
if isinstance(evtdata, Event):
|
||||
self.evtdata = evtdata
|
||||
elif isinstance(evtdata, dict):
|
||||
cat = readPILOTEvent(**evtdata)
|
||||
evt = readPILOTEvent(**evtdata)
|
||||
self.evtdata = evt
|
||||
elif evtdata:
|
||||
cat = readEvents(evtdata)
|
||||
cat = read_events(evtdata)
|
||||
self.evtdata = cat[0]
|
||||
else: # create an empty Event object
|
||||
self.setNew()
|
||||
@ -79,7 +81,6 @@ class Data(object):
|
||||
picks_str += str(pick) + '\n'
|
||||
return picks_str
|
||||
|
||||
|
||||
def getParent(self):
|
||||
"""
|
||||
|
||||
@ -186,8 +187,11 @@ class Data(object):
|
||||
self.wforiginal = None
|
||||
if fnames is not None:
|
||||
self.appendWFData(fnames)
|
||||
else:
|
||||
return False
|
||||
self.wforiginal = self.getWFData().copy()
|
||||
self.dirty = False
|
||||
return True
|
||||
|
||||
def appendWFData(self, fnames):
|
||||
"""
|
||||
@ -413,16 +417,24 @@ class Data(object):
|
||||
for station, onsets in picks.items():
|
||||
print('Reading picks on station %s' % station)
|
||||
for label, phase in onsets.items():
|
||||
if not isinstance(phase, dict):
|
||||
continue
|
||||
onset = phase['mpp']
|
||||
epp = phase['epp']
|
||||
lpp = phase['lpp']
|
||||
error = phase['spe']
|
||||
try:
|
||||
picker = phase['picker']
|
||||
except KeyError as e:
|
||||
warnings.warn(str(e), Warning)
|
||||
picker = 'Unknown'
|
||||
pick = Pick()
|
||||
pick.time = onset
|
||||
pick.time_errors.lower_uncertainty = onset - epp
|
||||
pick.time_errors.upper_uncertainty = lpp - onset
|
||||
pick.time_errors.uncertainty = error
|
||||
pick.phase_hint = label
|
||||
pick.method_id = ResourceIdentifier(id=picker)
|
||||
pick.waveform_id = WaveformStreamID(station_code=station)
|
||||
self.getEvtData().picks.append(pick)
|
||||
try:
|
||||
@ -432,11 +444,13 @@ class Data(object):
|
||||
if firstonset is None or firstonset > onset:
|
||||
firstonset = onset
|
||||
|
||||
if 'smi:local' in self.getID():
|
||||
if 'smi:local' in self.getID() and firstonset:
|
||||
fonset_str = firstonset.strftime('%Y_%m_%d_%H_%M_%S')
|
||||
ID = ResourceIdentifier('event/' + fonset_str)
|
||||
ID.convertIDToQuakeMLURI(authority_id=authority_id)
|
||||
self.getEvtData().resource_id = ID
|
||||
else:
|
||||
print('No picks to apply!')
|
||||
|
||||
def applyArrivals(arrivals):
|
||||
"""
|
||||
|
@ -1,6 +1,8 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from pylot.core.util.errors import ParameterError
|
||||
|
||||
|
||||
class AutoPickParameter(object):
|
||||
'''
|
||||
@ -49,7 +51,7 @@ class AutoPickParameter(object):
|
||||
parFileCont[key] = val
|
||||
|
||||
if self.__filename is not None:
|
||||
inputFile = open(self.__filename, 'r')
|
||||
inputFile = open(self.__filename, 'r')
|
||||
else:
|
||||
return
|
||||
try:
|
||||
@ -57,7 +59,7 @@ class AutoPickParameter(object):
|
||||
for line in lines:
|
||||
parspl = line.split('\t')[:2]
|
||||
parFileCont[parspl[0].strip()] = parspl[1]
|
||||
except Exception as e:
|
||||
except IndexError as e:
|
||||
self._printParameterError(e)
|
||||
inputFile.seek(0)
|
||||
lines = inputFile.readlines()
|
||||
@ -136,16 +138,18 @@ class AutoPickParameter(object):
|
||||
return self.__getitem__(param)
|
||||
except KeyError as e:
|
||||
self._printParameterError(e)
|
||||
raise ParameterError(e)
|
||||
except TypeError:
|
||||
try:
|
||||
return self.__getitem__(args)
|
||||
except KeyError as e:
|
||||
self._printParameterError(e)
|
||||
raise ParameterError(e)
|
||||
|
||||
def setParam(self, **kwargs):
|
||||
for param, value in kwargs.items():
|
||||
self.__setitem__(param, value)
|
||||
#print(self)
|
||||
# print(self)
|
||||
|
||||
@staticmethod
|
||||
def _printParameterError(errmsg):
|
||||
@ -190,6 +194,7 @@ class FilterOptions(object):
|
||||
``'highpass'``
|
||||
Butterworth-Highpass
|
||||
'''
|
||||
|
||||
def __init__(self, filtertype='bandpass', freq=[2., 5.], order=3,
|
||||
**kwargs):
|
||||
self._order = order
|
||||
|
@ -7,9 +7,10 @@ import scipy.io as sio
|
||||
import obspy.core.event as ope
|
||||
from obspy.core import UTCDateTime
|
||||
|
||||
from pylot.core.util.utils import getOwner, createPick, createArrival,\
|
||||
from pylot.core.util.utils import getOwner, createPick, createArrival, \
|
||||
createEvent, createOrigin, createMagnitude
|
||||
|
||||
|
||||
def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
"""
|
||||
readPILOTEvent - function
|
||||
@ -134,4 +135,57 @@ def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
raise AttributeError('{0} - Matlab LOC files {1} and {2} contains \
|
||||
insufficient data!'.format(e, phasfn, locfn))
|
||||
|
||||
def picks_from_obs(fn):
|
||||
picks = dict()
|
||||
station_name = str()
|
||||
for line in open(fn, 'r'):
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
else:
|
||||
phase_line = line.split()
|
||||
if not station_name == phase_line[0]:
|
||||
phase = dict()
|
||||
station_name = phase_line[0]
|
||||
phase_name = phase_line[4].upper()
|
||||
pick = UTCDateTime(phase_line[6] + phase_line[7] + phase_line[8])
|
||||
phase[phase_name] = dict(mpp=pick, fm=phase_line[5])
|
||||
picks[station_name] = phase
|
||||
return picks
|
||||
|
||||
|
||||
def picks_from_evt(evt):
|
||||
'''
|
||||
Takes an Event object and return the pick dictionary commonly used within
|
||||
PyLoT
|
||||
:param evt: Event object contain all available information
|
||||
:type evt: `~obspy.core.event.Event`
|
||||
:return: pick dictionary
|
||||
'''
|
||||
picks = {}
|
||||
for pick in evt.picks:
|
||||
phase = {}
|
||||
station = pick.waveform_id.station_code
|
||||
try:
|
||||
onsets = picks[station]
|
||||
except KeyError as e:
|
||||
print(e)
|
||||
onsets = {}
|
||||
mpp = pick.time
|
||||
lpp = mpp + pick.time_errors.upper_uncertainty
|
||||
epp = mpp - pick.time_errors.lower_uncertainty
|
||||
spe = pick.time_errors.uncertainty
|
||||
phase['mpp'] = mpp
|
||||
phase['epp'] = epp
|
||||
phase['lpp'] = lpp
|
||||
phase['spe'] = spe
|
||||
try:
|
||||
picker = str(pick.method_id)
|
||||
if picker.startswith('smi:local/'):
|
||||
picker = picker.split('smi:local/')[1]
|
||||
phase['picker'] = picker
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
onsets[pick.phase_hint] = phase.copy()
|
||||
picks[station] = onsets.copy()
|
||||
return picks
|
||||
|
@ -7,7 +7,7 @@ from pylot.core.pick.utils import getnoisewin
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--t', type=~numpy.array, help='numpy array of time stamps')
|
||||
parser.add_argument('--t', type=numpy.array, help='numpy array of time stamps')
|
||||
parser.add_argument('--t1', type=float, help='time from which relativ to it noise window is extracted')
|
||||
parser.add_argument('--tnoise', type=float, help='length of time window [s] for noise part extraction')
|
||||
parser.add_argument('--tgap', type=float, help='safety gap between signal (t1=onset) and noise')
|
@ -14,11 +14,12 @@ import argparse
|
||||
import obspy
|
||||
from pylot.core.pick.utils import earllatepicker
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--X', type=~obspy.core.stream.Stream, help='time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--nfac', type=int, help='(noise factor), nfac times noise level to calculate latest possible pick')
|
||||
parser.add_argument('--X', type=~obspy.core.stream.Stream,
|
||||
help='time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--nfac', type=int,
|
||||
help='(noise factor), nfac times noise level to calculate latest possible pick')
|
||||
parser.add_argument('--TSNR', type=tuple, help='length of time windows around pick used to determine SNR \
|
||||
[s] (Tnoise, Tgap, Tsignal)')
|
||||
parser.add_argument('--Pick1', type=float, help='Onset time of most likely pick')
|
@ -13,11 +13,12 @@ from pylot.core.pick.utils import fmpicker
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--Xraw', type=~obspy.core.stream.Stream, help='unfiltered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xfilt', type=~obspy.core.stream.Stream, help='filtered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xraw', type=obspy.core.stream.Stream,
|
||||
help='unfiltered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xfilt', type=obspy.core.stream.Stream,
|
||||
help='filtered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--pickwin', type=float, help='length of pick window [s] for first motion determination')
|
||||
parser.add_argument('--Pick', type=float, help='Onset time of most likely pick')
|
||||
parser.add_argument('--iplot', type=int, help='if set, figure no. iplot occurs')
|
||||
args = parser.parse_args()
|
||||
fmpicker(args.Xraw, args.Xfilt, args.pickwin, args.Pick, args.iplot)
|
||||
|
@ -7,7 +7,7 @@ from pylot.core.pick.utils import getsignalwin
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--t', type=~numpy.array, help='numpy array of time stamps')
|
||||
parser.add_argument('--t', type=numpy.array, help='numpy array of time stamps')
|
||||
parser.add_argument('--t1', type=float, help='time from which relativ to it signal window is extracted')
|
||||
parser.add_argument('--tsignal', type=float, help='length of time window [s] for signal part extraction')
|
||||
args = parser.parse_args()
|
@ -14,7 +14,7 @@ from pylot.core.pick.utils import getSNR
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data', '-d', type=~obspy.core.stream.Stream,
|
||||
parser.add_argument('--data', '-d', type=obspy.core.stream.Stream,
|
||||
help='time series (seismogram) read with obspy module '
|
||||
'read',
|
||||
dest='data')
|
@ -9,8 +9,8 @@
|
||||
from obspy.core import read
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||
from pylot.core.pick.Picker import AutoPicking
|
||||
from pylot.core.pick.charfuns import CharacteristicFunction
|
||||
from pylot.core.pick.picker import AutoPicker
|
||||
from pylot.core.pick.utils import *
|
||||
import glob
|
||||
import argparse
|
@ -11,6 +11,7 @@ from pylot.core.loc import nll
|
||||
from pylot.core.loc import hsat
|
||||
from pylot.core.loc import velest
|
||||
|
||||
|
||||
def readFilterInformation(fname):
|
||||
def convert2FreqRange(*args):
|
||||
if len(args) > 1:
|
||||
@ -18,6 +19,7 @@ def readFilterInformation(fname):
|
||||
elif len(args) == 1:
|
||||
return float(args[0])
|
||||
return None
|
||||
|
||||
filter_file = open(fname, 'r')
|
||||
filter_information = dict()
|
||||
for filter_line in filter_file.readlines():
|
||||
@ -26,14 +28,14 @@ def readFilterInformation(fname):
|
||||
if pos == '\n':
|
||||
filter_line[n] = ''
|
||||
filter_information[filter_line[0]] = {'filtertype': filter_line[1]
|
||||
if filter_line[1]
|
||||
else None,
|
||||
if filter_line[1]
|
||||
else None,
|
||||
'order': int(filter_line[2])
|
||||
if filter_line[1]
|
||||
else None,
|
||||
if filter_line[1]
|
||||
else None,
|
||||
'freq': convert2FreqRange(*filter_line[3:])
|
||||
if filter_line[1]
|
||||
else None}
|
||||
if filter_line[1]
|
||||
else None}
|
||||
return filter_information
|
||||
|
||||
|
||||
@ -41,8 +43,19 @@ FILTERDEFAULTS = readFilterInformation(os.path.join(os.path.expanduser('~'),
|
||||
'.pylot',
|
||||
'filter.in'))
|
||||
|
||||
OUTPUTFORMATS = {'.xml':'QUAKEML',
|
||||
'.cnv':'CNV',
|
||||
'.obs':'NLLOC_OBS'}
|
||||
AUTOMATIC_DEFAULTS = os.path.join(os.path.expanduser('~'),
|
||||
'.pylot',
|
||||
'autoPyLoT.in')
|
||||
|
||||
LOCTOOLS = dict(nll = nll, hsat = hsat, velest = velest)
|
||||
OUTPUTFORMATS = {'.xml': 'QUAKEML',
|
||||
'.cnv': 'CNV',
|
||||
'.obs': 'NLLOC_OBS'}
|
||||
|
||||
LOCTOOLS = dict(nll=nll, hsat=hsat, velest=velest)
|
||||
|
||||
COMPPOSITION_MAP = dict(Z=2, N=1, E=0)
|
||||
COMPPOSITION_MAP['1'] = 1
|
||||
COMPPOSITION_MAP['2'] = 0
|
||||
COMPPOSITION_MAP['3'] = 2
|
||||
|
||||
COMPNAME_MAP = dict(Z='3', N='1', E='2')
|
||||
|
@ -20,3 +20,7 @@ class DatastructureError(Exception):
|
||||
|
||||
class OverwriteError(IOError):
|
||||
pass
|
||||
|
||||
|
||||
class ParameterError(Exception):
|
||||
pass
|
||||
|
395
pylot/core/util/pdf.py
Normal file
395
pylot/core/util/pdf.py
Normal file
@ -0,0 +1,395 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import warnings
|
||||
import numpy as np
|
||||
from obspy import UTCDateTime
|
||||
from pylot.core.util.utils import find_nearest
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
||||
__version__ = _getVersionString()
|
||||
__author__ = 'sebastianw'
|
||||
|
||||
def create_axis(x0, incr, npts):
|
||||
ax = np.zeros(npts)
|
||||
for i in range(npts):
|
||||
ax[i] = x0 + incr * i
|
||||
return ax
|
||||
|
||||
def gauss_parameter(te, tm, tl, eta):
|
||||
'''
|
||||
takes three onset times and returns the parameters sig1, sig2, a1 and a2
|
||||
to represent the pick as a probability density funtion (PDF) with two
|
||||
Gauss branches
|
||||
:param te:
|
||||
:param tm:
|
||||
:param tl:
|
||||
:param eta:
|
||||
:return:
|
||||
'''
|
||||
|
||||
sig1 = (tm - te) / np.sqrt(2 * np.log(1 / eta))
|
||||
sig2 = (tl - tm) / np.sqrt(2 * np.log(1 / eta))
|
||||
|
||||
a1 = 2 / (1 + sig2 / sig1)
|
||||
a2 = 2 / (1 + sig1 / sig2)
|
||||
|
||||
return sig1, sig2, a1, a2
|
||||
|
||||
|
||||
def exp_parameter(te, tm, tl, eta):
|
||||
'''
|
||||
takes three onset times te, tm and tl and returns the parameters sig1,
|
||||
sig2 and a to represent the pick as a probability density function (PDF)
|
||||
with two exponential decay branches
|
||||
:param te:
|
||||
:param tm:
|
||||
:param tl:
|
||||
:param eta:
|
||||
:return:
|
||||
'''
|
||||
|
||||
sig1 = np.log(eta) / (te - tm)
|
||||
sig2 = np.log(eta) / (tm - tl)
|
||||
a = 1 / (1 / sig1 + 1 / sig2)
|
||||
|
||||
return sig1, sig2, a
|
||||
|
||||
|
||||
def gauss_branches(x, mu, sig1, sig2, a1, a2):
|
||||
'''
|
||||
function gauss_branches takes an axes x, a center value mu, two sigma
|
||||
values sig1 and sig2 and two scaling factors a1 and a2 and return a
|
||||
list containing the values of a probability density function (PDF)
|
||||
consisting of gauss branches
|
||||
:param x:
|
||||
:type x:
|
||||
:param mu:
|
||||
:type mu:
|
||||
:param sig1:
|
||||
:type sig1:
|
||||
:param sig2:
|
||||
:type sig2:
|
||||
:param a1:
|
||||
:type a1:
|
||||
:param a2:
|
||||
:returns fun_vals: list with function values along axes x
|
||||
'''
|
||||
fun_vals = []
|
||||
for k in x:
|
||||
if k < mu:
|
||||
fun_vals.append(a1 * 1 / (np.sqrt(2 * np.pi) * sig1) * np.exp(-((k - mu) / sig1) ** 2 / 2))
|
||||
else:
|
||||
fun_vals.append(a2 * 1 / (np.sqrt(2 * np.pi) * sig2) * np.exp(-((k - mu) / sig2) ** 2 / 2))
|
||||
return np.array(fun_vals)
|
||||
|
||||
|
||||
def exp_branches(x, mu, sig1, sig2, a):
|
||||
'''
|
||||
function exp_branches takes an axes x, a center value mu, two sigma
|
||||
values sig1 and sig2 and a scaling factor a and return a
|
||||
list containing the values of a probability density function (PDF)
|
||||
consisting of exponential decay branches
|
||||
:param x:
|
||||
:param mu:
|
||||
:param sig1:
|
||||
:param sig2:
|
||||
:param a:
|
||||
:returns fun_vals: list with function values along axes x:
|
||||
'''
|
||||
fun_vals = []
|
||||
for k in x:
|
||||
if k < mu:
|
||||
fun_vals.append(a * np.exp(sig1 * (k - mu)))
|
||||
else:
|
||||
fun_vals.append(a * np.exp(-sig2 * (k - mu)))
|
||||
return np.array(fun_vals)
|
||||
|
||||
# define container dictionaries for different types of pdfs
|
||||
parameter = dict(gauss=gauss_parameter, exp=exp_parameter)
|
||||
branches = dict(gauss=gauss_branches, exp=exp_branches)
|
||||
|
||||
|
||||
class ProbabilityDensityFunction(object):
|
||||
'''
|
||||
A probability density function toolkit.
|
||||
'''
|
||||
|
||||
version = __version__
|
||||
|
||||
def __init__(self, x0, incr, npts, pdf):
|
||||
self.x0 = x0
|
||||
self.incr = incr
|
||||
self.npts = npts
|
||||
self.axis = create_axis(x0, incr, npts)
|
||||
self.data = pdf
|
||||
|
||||
def __add__(self, other):
|
||||
assert isinstance(other, ProbabilityDensityFunction), \
|
||||
'both operands must be of type ProbabilityDensityFunction'
|
||||
|
||||
x0, incr, npts, pdf_self, pdf_other = self.rearrange(other)
|
||||
pdf = np.convolve(pdf_self, pdf_other, 'full') * incr
|
||||
|
||||
# shift axis values for correct plotting
|
||||
npts = pdf.size
|
||||
x0 *= 2
|
||||
return ProbabilityDensityFunction(x0, incr, npts, pdf)
|
||||
|
||||
def __sub__(self, other):
|
||||
assert isinstance(other, ProbabilityDensityFunction), \
|
||||
'both operands must be of type ProbabilityDensityFunction'
|
||||
|
||||
x0, incr, npts, pdf_self, pdf_other = self.rearrange(other)
|
||||
|
||||
pdf = np.correlate(pdf_self, pdf_other, 'same') * incr
|
||||
|
||||
# shift axis values for correct plotting
|
||||
midpoint = npts / 2
|
||||
x0 = -incr * midpoint
|
||||
|
||||
return ProbabilityDensityFunction(x0, incr, npts, pdf)
|
||||
|
||||
def __nonzero__(self):
|
||||
prec = self.precision(self.incr)
|
||||
gtzero = np.all(self.data >= 0)
|
||||
probone = bool(np.round(self.prob_gt_val(self.axis[0]), prec) == 1.)
|
||||
return bool(gtzero and probone)
|
||||
|
||||
def __str__(self):
|
||||
return str(self.data)
|
||||
|
||||
@staticmethod
|
||||
def precision(incr):
|
||||
prec = int(np.ceil(np.abs(np.log10(incr)))) - 2
|
||||
return prec if prec >= 0 else 0
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
return self._pdf
|
||||
|
||||
@data.setter
|
||||
def data(self, pdf):
|
||||
self._pdf = np.array(pdf)
|
||||
|
||||
@property
|
||||
def axis(self):
|
||||
return self._x
|
||||
|
||||
@axis.setter
|
||||
def axis(self, x):
|
||||
self._x = np.array(x)
|
||||
|
||||
@classmethod
|
||||
def from_pick(self, lbound, barycentre, rbound, incr=0.001, decfact=0.01,
|
||||
type='gauss'):
|
||||
'''
|
||||
Initialize a new ProbabilityDensityFunction object.
|
||||
Takes incr, lbound, barycentre and rbound to derive x0 and the number
|
||||
of points npts for the axis vector.
|
||||
Maximum density
|
||||
is given at the barycentre and on the boundaries the function has
|
||||
declined to decfact times the maximum value. Integration of the
|
||||
function over a particular interval gives the probability for the
|
||||
variable value to be in that interval.
|
||||
'''
|
||||
|
||||
# derive adequate window of definition
|
||||
margin = 2. * np.max([barycentre - lbound, rbound - barycentre])
|
||||
|
||||
# find midpoint accounting also for `~obspy.UTCDateTime` object usage
|
||||
try:
|
||||
midpoint = (rbound + lbound) / 2
|
||||
except TypeError:
|
||||
try:
|
||||
midpoint = (rbound + float(lbound)) / 2
|
||||
except TypeError:
|
||||
midpoint = float(rbound + float(lbound)) / 2
|
||||
|
||||
# find x0 on a grid point and sufficient npts
|
||||
was_datetime = None
|
||||
if isinstance(barycentre, UTCDateTime):
|
||||
barycentre = float(barycentre)
|
||||
was_datetime = True
|
||||
n = int(np.ceil((barycentre - midpoint) / incr))
|
||||
m = int(np.ceil((margin / incr)))
|
||||
midpoint = barycentre - n * incr
|
||||
margin = m * incr
|
||||
x0 = midpoint - margin
|
||||
npts = 2 * m
|
||||
|
||||
if was_datetime:
|
||||
barycentre = UTCDateTime(barycentre)
|
||||
|
||||
# calculate parameter for pdf representing function
|
||||
params = parameter[type](lbound, barycentre, rbound, decfact)
|
||||
|
||||
# calculate pdf values
|
||||
try:
|
||||
pdf = branches[type](create_axis(x0, incr, npts), barycentre, *params)
|
||||
except TypeError as e:
|
||||
print('Warning:\n' + e.message + '\n' + 'trying timestamp instead')
|
||||
assert isinstance(barycentre, UTCDateTime), 'object not capable of' \
|
||||
' timestamp representation'
|
||||
pdf = branches[type](create_axis(x0, incr, npts),
|
||||
barycentre.timestamp, *params)
|
||||
|
||||
# return the object
|
||||
return ProbabilityDensityFunction(x0, incr, npts, pdf)
|
||||
|
||||
def broadcast(self, pdf, si, ei, data):
|
||||
try:
|
||||
pdf[si:ei] = data
|
||||
except ValueError as e:
|
||||
warnings.warn(str(e), Warning)
|
||||
return self.broadcast(pdf, si, ei, data[:-1])
|
||||
return pdf
|
||||
|
||||
def expectation(self):
|
||||
'''
|
||||
returns the expectation value of the actual pdf object
|
||||
|
||||
..formula::
|
||||
mu_{\Delta t} = \int\limits_{-\infty}^\infty x \cdot f(x)dx
|
||||
|
||||
:return float: rval
|
||||
'''
|
||||
|
||||
rval = 0
|
||||
for n, x in enumerate(self.axis):
|
||||
rval += x * self.data[n]
|
||||
return rval * self.incr
|
||||
|
||||
def standard_deviation(self):
|
||||
mu = self.expectation()
|
||||
rval = 0
|
||||
for n, x in enumerate(self.axis):
|
||||
rval += (x - mu) ** 2 * self.data[n]
|
||||
return rval * self.incr
|
||||
|
||||
def prob_lt_val(self, value):
|
||||
if value <= self.axis[0] or value > self.axis[-1]:
|
||||
raise ValueError('value out of bounds: {0}'.format(value))
|
||||
return self.prob_limits((self.axis[0], value))
|
||||
|
||||
def prob_gt_val(self, value):
|
||||
if value < self.axis[0] or value >= self.axis[-1]:
|
||||
raise ValueError('value out of bounds: {0}'.format(value))
|
||||
return self.prob_limits((value, self.axis[-1]))
|
||||
|
||||
def prob_limits(self, limits):
|
||||
lim_ind = np.logical_and(limits[0] <= self.axis, self.axis <= limits[1])
|
||||
data = self.data[lim_ind]
|
||||
min_est, max_est = 0., 0.
|
||||
for n in range(len(data) - 1):
|
||||
min_est += min(data[n], data[n + 1])
|
||||
max_est += max(data[n], data[n + 1])
|
||||
return (min_est + max_est) / 2. * self.incr
|
||||
|
||||
def prob_val(self, value):
|
||||
if not (self.axis[0] <= value <= self.axis[-1]):
|
||||
Warning('{0} not on axis'.format(value))
|
||||
return None
|
||||
return self.data[find_nearest(self.axis, value)] * self.incr
|
||||
|
||||
def plot(self, label=None):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.plot(self.axis, self.data)
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('f(x)')
|
||||
plt.autoscale(axis='x', tight=True)
|
||||
if self:
|
||||
title_str = 'Probability density function '
|
||||
if label:
|
||||
title_str += label
|
||||
title_str.strip()
|
||||
else:
|
||||
title_str = 'Function not suitable as probability density function'
|
||||
plt.title(title_str)
|
||||
plt.show()
|
||||
|
||||
def commonlimits(self, incr, other, max_npts=1e5):
|
||||
'''
|
||||
Takes an increment incr and two left and two right limits and returns
|
||||
the left most limit and the minimum number of points needed to cover
|
||||
the whole given interval.
|
||||
:param incr:
|
||||
:param l1:
|
||||
:param l2:
|
||||
:param r1:
|
||||
:param r2:
|
||||
:param max_npts:
|
||||
:return:
|
||||
|
||||
'''
|
||||
# >>> manu = ProbabilityDensityFunction.from_pick(0.01, 0.3, 0.5, 0.54)
|
||||
# >>> auto = ProbabilityDensityFunction.from_pick(0.01, 0.3, 0.34, 0.54)
|
||||
# >>> manu.commonlimits(0.01, auto)
|
||||
# (
|
||||
|
||||
l1 = self.x0
|
||||
r1 = l1 + self.incr * self.npts
|
||||
l2 = other.x0
|
||||
r2 = l2 + other.incr * other.npts
|
||||
|
||||
if l1 < l2:
|
||||
x0 = l1
|
||||
else:
|
||||
x0 = l2
|
||||
|
||||
# calculate index for rounding
|
||||
ri = self.precision(incr)
|
||||
|
||||
if r1 < r2:
|
||||
npts = int(round(r2 - x0, ri) // incr)
|
||||
else:
|
||||
npts = int(round(r1 - x0, ri) // incr)
|
||||
|
||||
if npts > max_npts:
|
||||
raise ValueError('Maximum number of points exceeded:\n'
|
||||
'max_npts - %d\n'
|
||||
'npts - %d\n' % (max_npts, npts))
|
||||
|
||||
npts = np.max([npts, self.npts, other.npts])
|
||||
|
||||
if npts < self.npts or npts < other.npts:
|
||||
raise ValueError('new npts is to small')
|
||||
|
||||
return x0, npts
|
||||
|
||||
|
||||
def rearrange(self, other):
|
||||
'''
|
||||
Method rearrange takes another Probability Density Function and returns
|
||||
a new axis with mid-point 0 and covering positive and negative range
|
||||
of axis values, either containing the maximum value of both axis or
|
||||
the sum of the maxima
|
||||
:param other:
|
||||
:return:
|
||||
'''
|
||||
|
||||
assert isinstance(other, ProbabilityDensityFunction), \
|
||||
'both operands must be of type ProbabilityDensityFunction'
|
||||
|
||||
if not self.incr == other.incr:
|
||||
raise NotImplementedError('Upsampling of the lower sampled PDF not implemented yet!')
|
||||
else:
|
||||
incr = self.incr
|
||||
|
||||
x0, npts = self.commonlimits(incr, other)
|
||||
|
||||
pdf_self = np.zeros(npts)
|
||||
pdf_other = np.zeros(npts)
|
||||
|
||||
x = create_axis(x0, incr, npts)
|
||||
|
||||
sstart = find_nearest(x, self.x0)
|
||||
s_end = sstart + self.data.size
|
||||
ostart = find_nearest(x, other.x0)
|
||||
o_end = ostart + other.data.size
|
||||
|
||||
pdf_self = self.broadcast(pdf_self, sstart, s_end, self.data)
|
||||
pdf_other = self.broadcast(pdf_other, ostart, o_end, other.data)
|
||||
|
||||
return x0, incr, npts, pdf_self, pdf_other
|
@ -2,6 +2,7 @@
|
||||
import sys
|
||||
from PySide.QtCore import QThread, Signal
|
||||
|
||||
|
||||
class AutoPickThread(QThread):
|
||||
message = Signal(str)
|
||||
finished = Signal()
|
||||
@ -28,6 +29,5 @@ class AutoPickThread(QThread):
|
||||
sys.stdout = sys.__stdout__
|
||||
self.finished.emit()
|
||||
|
||||
|
||||
def write(self, text):
|
||||
self.message.emit(text)
|
||||
|
@ -10,6 +10,7 @@ import numpy as np
|
||||
from obspy.core import UTCDateTime
|
||||
import obspy.core.event as ope
|
||||
|
||||
|
||||
def createAmplitude(pickID, amp, unit, category, cinfo):
|
||||
'''
|
||||
|
||||
@ -28,6 +29,7 @@ def createAmplitude(pickID, amp, unit, category, cinfo):
|
||||
amplitude.pick_id = pickID
|
||||
return amplitude
|
||||
|
||||
|
||||
def createArrival(pickresID, cinfo, phase, azimuth=None, dist=None):
|
||||
'''
|
||||
createArrival - function to create an Obspy Arrival
|
||||
@ -56,6 +58,7 @@ def createArrival(pickresID, cinfo, phase, azimuth=None, dist=None):
|
||||
arrival.distance = dist
|
||||
return arrival
|
||||
|
||||
|
||||
def createCreationInfo(agency_id=None, creation_time=None, author=None):
|
||||
'''
|
||||
|
||||
@ -71,6 +74,7 @@ def createCreationInfo(agency_id=None, creation_time=None, author=None):
|
||||
return ope.CreationInfo(agency_id=agency_id, author=author,
|
||||
creation_time=creation_time)
|
||||
|
||||
|
||||
def createEvent(origintime, cinfo, originloc=None, etype=None, resID=None,
|
||||
authority_id=None):
|
||||
'''
|
||||
@ -115,6 +119,7 @@ def createEvent(origintime, cinfo, originloc=None, etype=None, resID=None,
|
||||
event.origins = [o]
|
||||
return event
|
||||
|
||||
|
||||
def createMagnitude(originID, cinfo):
|
||||
'''
|
||||
createMagnitude - function to create an ObsPy Magnitude object
|
||||
@ -129,6 +134,7 @@ def createMagnitude(originID, cinfo):
|
||||
magnitude.origin_id = originID
|
||||
return magnitude
|
||||
|
||||
|
||||
def createOrigin(origintime, cinfo, latitude, longitude, depth):
|
||||
'''
|
||||
createOrigin - function to create an ObsPy Origin
|
||||
@ -158,6 +164,7 @@ def createOrigin(origintime, cinfo, latitude, longitude, depth):
|
||||
origin.depth = depth
|
||||
return origin
|
||||
|
||||
|
||||
def createPick(origintime, picknum, picktime, eventnum, cinfo, phase, station,
|
||||
wfseedstr, authority_id):
|
||||
'''
|
||||
@ -196,6 +203,7 @@ def createPick(origintime, picknum, picktime, eventnum, cinfo, phase, station,
|
||||
pick.waveform_id = ope.ResourceIdentifier(id=wfseedstr, prefix='file:/')
|
||||
return pick
|
||||
|
||||
|
||||
def createResourceID(timetohash, restype, authority_id=None, hrstr=None):
|
||||
'''
|
||||
|
||||
@ -220,6 +228,7 @@ def createResourceID(timetohash, restype, authority_id=None, hrstr=None):
|
||||
resID.convertIDToQuakeMLURI(authority_id=authority_id)
|
||||
return resID
|
||||
|
||||
|
||||
def demeanTrace(trace, window):
|
||||
"""
|
||||
returns the DATA where each trace is demean by the average value within
|
||||
@ -234,6 +243,7 @@ def demeanTrace(trace, window):
|
||||
trace.data -= trace.data[window].mean()
|
||||
return trace
|
||||
|
||||
|
||||
def findComboBoxIndex(combo_box, val):
|
||||
"""
|
||||
Function findComboBoxIndex takes a QComboBox object and a string and
|
||||
@ -246,6 +256,18 @@ def findComboBoxIndex(combo_box, val):
|
||||
"""
|
||||
return combo_box.findText(val) if combo_box.findText(val) is not -1 else 0
|
||||
|
||||
|
||||
def find_nearest(array, value):
|
||||
'''
|
||||
Function find_nearest takes an array and a value and returns the
|
||||
index of the nearest value found in the array.
|
||||
:param array:
|
||||
:param value:
|
||||
:return:
|
||||
'''
|
||||
return (np.abs(array - value)).argmin()
|
||||
|
||||
|
||||
def fnConstructor(s):
|
||||
'''
|
||||
|
||||
@ -267,6 +289,7 @@ def fnConstructor(s):
|
||||
fn = '_' + fn
|
||||
return fn
|
||||
|
||||
|
||||
def getGlobalTimes(stream):
|
||||
'''
|
||||
|
||||
@ -283,6 +306,7 @@ def getGlobalTimes(stream):
|
||||
max_end = trace.stats.endtime
|
||||
return min_start, max_end
|
||||
|
||||
|
||||
def getHash(time):
|
||||
'''
|
||||
:param time: time object for which a hash should be calculated
|
||||
@ -293,6 +317,7 @@ def getHash(time):
|
||||
hg.update(time.strftime('%Y-%m-%d %H:%M:%S.%f'))
|
||||
return hg.hexdigest()
|
||||
|
||||
|
||||
def getLogin():
|
||||
'''
|
||||
|
||||
@ -300,6 +325,7 @@ def getLogin():
|
||||
'''
|
||||
return pwd.getpwuid(os.getuid())[0]
|
||||
|
||||
|
||||
def getOwner(fn):
|
||||
'''
|
||||
|
||||
@ -309,6 +335,7 @@ def getOwner(fn):
|
||||
'''
|
||||
return pwd.getpwuid(os.stat(fn).st_uid).pw_name
|
||||
|
||||
|
||||
def getPatternLine(fn, pattern):
|
||||
"""
|
||||
Takes a file name and a pattern string to search for in the file and
|
||||
@ -333,6 +360,7 @@ def getPatternLine(fn, pattern):
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def isSorted(iterable):
|
||||
'''
|
||||
|
||||
@ -342,6 +370,7 @@ def isSorted(iterable):
|
||||
'''
|
||||
return sorted(iterable) == iterable
|
||||
|
||||
|
||||
def prepTimeAxis(stime, trace):
|
||||
'''
|
||||
|
||||
@ -368,6 +397,7 @@ def prepTimeAxis(stime, trace):
|
||||
'delta: {2}'.format(nsamp, len(time_ax), tincr))
|
||||
return time_ax
|
||||
|
||||
|
||||
def scaleWFData(data, factor=None, components='all'):
|
||||
"""
|
||||
produce scaled waveforms from given waveform data and a scaling factor,
|
||||
@ -399,6 +429,7 @@ def scaleWFData(data, factor=None, components='all'):
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def runProgram(cmd, parameter=None):
|
||||
"""
|
||||
run an external program specified by cmd with parameters input returning the
|
||||
@ -417,8 +448,10 @@ def runProgram(cmd, parameter=None):
|
||||
cmd += ' %s 2>&1' % parameter
|
||||
|
||||
output = subprocess.check_output('{} | tee /dev/stderr'.format(cmd),
|
||||
shell = True)
|
||||
shell=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -31,16 +31,19 @@
|
||||
#
|
||||
# include RELEASE-VERSION
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
__all__ = "get_git_version"
|
||||
|
||||
# NO IMPORTS FROM PYLOT IN THIS FILE! (file gets used at installation time)
|
||||
import os
|
||||
import inspect
|
||||
from subprocess import Popen, PIPE
|
||||
|
||||
# NO IMPORTS FROM PYLOT IN THIS FILE! (file gets used at installation time)
|
||||
|
||||
script_dir = os.path.abspath(os.path.dirname(inspect.getfile(
|
||||
inspect.currentframe())))
|
||||
inspect.currentframe())))
|
||||
PYLOT_ROOT = os.path.abspath(os.path.join(script_dir, os.pardir,
|
||||
os.pardir, os.pardir))
|
||||
VERSION_FILE = os.path.join(PYLOT_ROOT, "pylot", "RELEASE-VERSION")
|
||||
@ -108,4 +111,4 @@ def get_git_version(abbrev=4):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print get_git_version()
|
||||
print(get_git_version())
|
||||
|
@ -5,10 +5,12 @@ Created on Wed Mar 19 11:27:35 2014
|
||||
@author: sebastianw
|
||||
"""
|
||||
|
||||
import warnings
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
from matplotlib.figure import Figure
|
||||
|
||||
try:
|
||||
from matplotlib.backends.backend_qt4agg import FigureCanvas
|
||||
except ImportError:
|
||||
@ -23,9 +25,10 @@ from PySide.QtCore import QSettings, Qt, QUrl, Signal, Slot
|
||||
from PySide.QtWebKit import QWebView
|
||||
from obspy import Stream, UTCDateTime
|
||||
from pylot.core.read.inputs import FilterOptions
|
||||
from pylot.core.pick.utils import getSNR, earllatepicker, getnoisewin,\
|
||||
from pylot.core.pick.utils import getSNR, earllatepicker, getnoisewin, \
|
||||
getResolutionWindow
|
||||
from pylot.core.util.defaults import OUTPUTFORMATS, FILTERDEFAULTS, LOCTOOLS
|
||||
from pylot.core.util.defaults import OUTPUTFORMATS, FILTERDEFAULTS, LOCTOOLS, \
|
||||
COMPPOSITION_MAP
|
||||
from pylot.core.util.utils import prepTimeAxis, getGlobalTimes, scaleWFData, \
|
||||
demeanTrace, isSorted, findComboBoxIndex
|
||||
|
||||
@ -63,7 +66,7 @@ class MPLWidget(FigureCanvas):
|
||||
# clear axes each time plot is called
|
||||
self.axes.hold(True)
|
||||
# initialize super class
|
||||
FigureCanvas.__init__(self, self.figure)
|
||||
super(MPLWidget, self).__init__(self.figure)
|
||||
# add an cursor for station selection
|
||||
self.multiCursor = MultiCursor(self.figure.canvas, (self.axes,),
|
||||
horizOn=True,
|
||||
@ -87,13 +90,19 @@ class MPLWidget(FigureCanvas):
|
||||
self._parent = parent
|
||||
|
||||
def plotWFData(self, wfdata, title=None, zoomx=None, zoomy=None,
|
||||
noiselevel=None, scaleddata=False):
|
||||
noiselevel=None, scaleddata=False, mapping=True):
|
||||
self.getAxes().cla()
|
||||
self.clearPlotDict()
|
||||
wfstart, wfend = getGlobalTimes(wfdata)
|
||||
nmax = 0
|
||||
for n, trace in enumerate(wfdata):
|
||||
channel = trace.stats.channel
|
||||
station = trace.stats.station
|
||||
if mapping:
|
||||
comp = channel[-1]
|
||||
n = COMPPOSITION_MAP[comp]
|
||||
if n > nmax:
|
||||
nmax = n
|
||||
msg = 'plotting %s channel of station %s' % (channel, station)
|
||||
print(msg)
|
||||
stime = trace.stats.starttime - wfstart
|
||||
@ -110,7 +119,7 @@ class MPLWidget(FigureCanvas):
|
||||
ylabel = ''
|
||||
self.updateWidget(xlabel, ylabel, title)
|
||||
self.setXLims([0, wfend - wfstart])
|
||||
self.setYLims([-0.5, n + 0.5])
|
||||
self.setYLims([-0.5, nmax + 0.5])
|
||||
if zoomx is not None:
|
||||
self.setXLims(zoomx)
|
||||
if zoomy is not None:
|
||||
@ -157,9 +166,10 @@ class MPLWidget(FigureCanvas):
|
||||
def insertLabel(self, pos, text):
|
||||
pos = pos / max(self.getAxes().ylim)
|
||||
axann = self.getAxes().annotate(text, xy=(.03, pos),
|
||||
xycoords='axes fraction')
|
||||
xycoords='axes fraction')
|
||||
axann.set_bbox(dict(facecolor='lightgrey', alpha=.6))
|
||||
|
||||
|
||||
class PickDlg(QDialog):
|
||||
def __init__(self, parent=None, data=None, station=None, picks=None,
|
||||
rotate=False):
|
||||
@ -169,11 +179,14 @@ class PickDlg(QDialog):
|
||||
self.station = station
|
||||
self.rotate = rotate
|
||||
self.components = 'ZNE'
|
||||
settings = QSettings()
|
||||
self._user = settings.value('user/Login', 'anonymous')
|
||||
if picks:
|
||||
self.picks = picks
|
||||
else:
|
||||
self.picks = {}
|
||||
self.filteroptions = FILTERDEFAULTS
|
||||
self.pick_block = False
|
||||
|
||||
# initialize panning attributes
|
||||
self.press = None
|
||||
@ -247,15 +260,14 @@ class PickDlg(QDialog):
|
||||
slot=self.filterWFData,
|
||||
icon=filter_icon,
|
||||
tip='Toggle filtered/original'
|
||||
' waveforms',
|
||||
checkable=True)
|
||||
' waveforms')
|
||||
self.zoomAction = createAction(parent=self, text='Zoom',
|
||||
slot=self.zoom, icon=zoom_icon,
|
||||
tip='Zoom into waveform',
|
||||
checkable=True)
|
||||
self.resetZoomAction = createAction(parent=self, text='Home',
|
||||
slot=self.resetZoom, icon=home_icon,
|
||||
tip='Reset zoom to original limits')
|
||||
slot=self.resetZoom, icon=home_icon,
|
||||
tip='Reset zoom to original limits')
|
||||
self.resetPicksAction = createAction(parent=self, text='Delete Picks',
|
||||
slot=self.delPicks, icon=del_icon,
|
||||
tip='Delete current picks.')
|
||||
@ -337,6 +349,10 @@ class PickDlg(QDialog):
|
||||
return widget.mpl_connect('button_release_event', slot)
|
||||
|
||||
def verifyPhaseSelection(self):
|
||||
if self.pick_block:
|
||||
self.pick_block = self.togglePickBlocker()
|
||||
warnings.warn('Changed selection before phase was set!',
|
||||
UserWarning)
|
||||
phase = self.selectPhase.currentText()
|
||||
self.updateCurrentLimits()
|
||||
if phase:
|
||||
@ -348,6 +364,7 @@ class PickDlg(QDialog):
|
||||
self.disconnectPressEvent()
|
||||
self.cidpress = self.connectPressEvent(self.setIniPick)
|
||||
self.filterWFData()
|
||||
self.pick_block = self.togglePickBlocker()
|
||||
else:
|
||||
self.disconnectPressEvent()
|
||||
self.cidpress = self.connectPressEvent(self.panPress)
|
||||
@ -383,6 +400,9 @@ class PickDlg(QDialog):
|
||||
traceIDs.append(traceID)
|
||||
return traceIDs
|
||||
|
||||
def getUser(self):
|
||||
return self._user
|
||||
|
||||
def getFilterOptions(self, phase):
|
||||
options = self.filteroptions[phase]
|
||||
return FilterOptions(**options)
|
||||
@ -422,6 +442,11 @@ class PickDlg(QDialog):
|
||||
trace = selectTrace(trace, 'NE')
|
||||
if trace:
|
||||
wfdata.append(trace)
|
||||
elif component == '1' or component == '2':
|
||||
for trace in self.getWFData():
|
||||
trace = selectTrace(trace, '12')
|
||||
if trace:
|
||||
wfdata.append(trace)
|
||||
elif component == 'Z':
|
||||
wfdata = self.getWFData().select(component=component)
|
||||
return wfdata
|
||||
@ -470,8 +495,22 @@ class PickDlg(QDialog):
|
||||
noise_win = settings.value('picking/noise_win_P', 5.)
|
||||
gap_win = settings.value('picking/gap_win_P', .2)
|
||||
signal_win = settings.value('picking/signal_win_P', 3.)
|
||||
itrace = int(trace_number)
|
||||
|
||||
result = getSNR(wfdata, (noise_win, gap_win, signal_win), ini_pick)
|
||||
while itrace > len(wfdata) - 1:
|
||||
itrace -= 1
|
||||
|
||||
# copy data for plotting
|
||||
data = self.getWFData().copy()
|
||||
|
||||
# filter data and trace on which is picked prior to determination of SNR
|
||||
phase = self.selectPhase.currentText()
|
||||
filteroptions = self.getFilterOptions(phase).parseFilterOptions()
|
||||
if filteroptions:
|
||||
data.filter(**filteroptions)
|
||||
wfdata.filter(**filteroptions)
|
||||
|
||||
result = getSNR(wfdata, (noise_win, gap_win, signal_win), ini_pick, itrace)
|
||||
|
||||
snr = result[0]
|
||||
noiselevel = result[2] * nfac
|
||||
@ -479,8 +518,7 @@ class PickDlg(QDialog):
|
||||
x_res = getResolutionWindow(snr)
|
||||
|
||||
# remove mean noise level from waveforms
|
||||
wfdata = self.getWFData().copy()
|
||||
for trace in wfdata:
|
||||
for trace in data:
|
||||
t = prepTimeAxis(trace.stats.starttime - self.getStartTime(), trace)
|
||||
inoise = getnoisewin(t, ini_pick, noise_win, gap_win)
|
||||
trace = demeanTrace(trace=trace, window=inoise)
|
||||
@ -488,7 +526,7 @@ class PickDlg(QDialog):
|
||||
self.setXLims([ini_pick - x_res, ini_pick + x_res])
|
||||
self.setYLims(np.array([-noiselevel * 2.5, noiselevel * 2.5]) +
|
||||
trace_number)
|
||||
self.getPlotWidget().plotWFData(wfdata=wfdata,
|
||||
self.getPlotWidget().plotWFData(wfdata=data,
|
||||
title=self.getStation() +
|
||||
' picking mode',
|
||||
zoomx=self.getXLims(),
|
||||
@ -502,30 +540,40 @@ class PickDlg(QDialog):
|
||||
|
||||
settings = QSettings()
|
||||
|
||||
nfac = settings.value('picking/nfac_P', 1.5)
|
||||
noise_win = settings.value('picking/noise_win_P', 5.)
|
||||
gap_win = settings.value('picking/gap_win_P', .2)
|
||||
signal_win = settings.value('picking/signal_win_P', 3.)
|
||||
nfac = settings.value('picking/nfac_S', 1.5)
|
||||
noise_win = settings.value('picking/noise_win_S', 5.)
|
||||
gap_win = settings.value('picking/gap_win_S', .2)
|
||||
signal_win = settings.value('picking/signal_win_S', 3.)
|
||||
|
||||
# copy data for plotting
|
||||
data = self.getWFData().copy()
|
||||
|
||||
# filter data and trace on which is picked prior to determination of SNR
|
||||
phase = self.selectPhase.currentText()
|
||||
filteroptions = self.getFilterOptions(phase).parseFilterOptions()
|
||||
if filteroptions:
|
||||
data.filter(**filteroptions)
|
||||
wfdata.filter(**filteroptions)
|
||||
|
||||
# determine SNR and noiselevel
|
||||
result = getSNR(wfdata, (noise_win, gap_win, signal_win), ini_pick)
|
||||
|
||||
snr = result[0]
|
||||
noiselevel = result[2] * nfac
|
||||
|
||||
data = self.getWFData().copy()
|
||||
|
||||
phase = self.selectPhase.currentText()
|
||||
filteroptions = self.getFilterOptions(phase).parseFilterOptions()
|
||||
data.filter(**filteroptions)
|
||||
|
||||
# prepare plotting of data
|
||||
for trace in data:
|
||||
t = prepTimeAxis(trace.stats.starttime - self.getStartTime(), trace)
|
||||
inoise = getnoisewin(t, ini_pick, noise_win, gap_win)
|
||||
trace = demeanTrace(trace, inoise)
|
||||
|
||||
horiz_comp = ('n', 'e')
|
||||
|
||||
data = scaleWFData(data, noiselevel * 2.5, horiz_comp)
|
||||
# account for non-oriented horizontal waveforms
|
||||
try:
|
||||
horiz_comp = ('n', 'e')
|
||||
data = scaleWFData(data, noiselevel * 2.5, horiz_comp)
|
||||
except IndexError as e:
|
||||
print('warning: {0}'.format(e))
|
||||
horiz_comp = ('1', '2')
|
||||
data = scaleWFData(data, noiselevel * 2.5, horiz_comp)
|
||||
|
||||
x_res = getResolutionWindow(snr)
|
||||
|
||||
@ -533,8 +581,8 @@ class PickDlg(QDialog):
|
||||
traces = self.getTraceID(horiz_comp)
|
||||
traces.sort()
|
||||
self.setYLims(tuple(np.array([-0.5, +0.5]) +
|
||||
np.array(traces)))
|
||||
noiselevels = [trace + 1 / (2.5 * 2) for trace in traces] +\
|
||||
np.array(traces)))
|
||||
noiselevels = [trace + 1 / (2.5 * 2) for trace in traces] + \
|
||||
[trace - 1 / (2.5 * 2) for trace in traces]
|
||||
|
||||
self.getPlotWidget().plotWFData(wfdata=data,
|
||||
@ -554,21 +602,28 @@ class PickDlg(QDialog):
|
||||
pick = gui_event.xdata # get pick time relative to the traces timeaxis not to the global
|
||||
channel = self.getChannelID(round(gui_event.ydata))
|
||||
|
||||
wfdata = self.getWFData().copy().select(channel=channel)
|
||||
stime = self.getStartTime()
|
||||
# get earliest and latest possible pick and symmetric pick error
|
||||
[epp, lpp, spe] = earllatepicker(wfdata, 1.5, (5., .5, 2.), pick)
|
||||
|
||||
# get name of phase actually picked
|
||||
phase = self.selectPhase.currentText()
|
||||
|
||||
# get filter parameter for the phase to be picked
|
||||
filteroptions = self.getFilterOptions(phase).parseFilterOptions()
|
||||
|
||||
# copy and filter data for earliest and latest possible picks
|
||||
wfdata = self.getWFData().copy().select(channel=channel)
|
||||
wfdata.filter(**filteroptions)
|
||||
|
||||
# get earliest and latest possible pick and symmetric pick error
|
||||
[epp, lpp, spe] = earllatepicker(wfdata, 1.5, (5., .5, 2.), pick)
|
||||
|
||||
# return absolute time values for phases
|
||||
stime = self.getStartTime()
|
||||
epp = stime + epp
|
||||
mpp = stime + pick
|
||||
lpp = stime + lpp
|
||||
|
||||
# save pick times for actual phase
|
||||
phasepicks = {'epp': epp, 'lpp': lpp, 'mpp': mpp, 'spe': spe}
|
||||
phasepicks = dict(epp=epp, lpp=lpp, mpp=mpp, spe=spe,
|
||||
picker=self.getUser())
|
||||
|
||||
try:
|
||||
oldphasepick = self.picks[phase]
|
||||
@ -601,6 +656,7 @@ class PickDlg(QDialog):
|
||||
self.drawPicks()
|
||||
self.disconnectPressEvent()
|
||||
self.zoomAction.setEnabled(True)
|
||||
self.pick_block = self.togglePickBlocker()
|
||||
self.selectPhase.setCurrentIndex(-1)
|
||||
self.setPlotLabels()
|
||||
|
||||
@ -660,7 +716,12 @@ class PickDlg(QDialog):
|
||||
|
||||
ax.figure.canvas.draw()
|
||||
|
||||
def togglePickBlocker(self):
|
||||
return not self.pick_block
|
||||
|
||||
def filterWFData(self):
|
||||
if self.pick_block:
|
||||
return
|
||||
self.updateCurrentLimits()
|
||||
data = self.getWFData().copy()
|
||||
old_title = self.getPlotWidget().getAxes().get_title()
|
||||
@ -675,13 +736,15 @@ class PickDlg(QDialog):
|
||||
filtoptions = filtoptions.parseFilterOptions()
|
||||
if filtoptions is not None:
|
||||
data.filter(**filtoptions)
|
||||
if old_title.endswith(')'):
|
||||
title = old_title[:-1] + ', filtered)'
|
||||
else:
|
||||
if not old_title.endswith(')'):
|
||||
title = old_title + ' (filtered)'
|
||||
elif not old_title.endswith(' (filtered)') and not old_title.endswith(', filtered)'):
|
||||
title = old_title[:-1] + ', filtered)'
|
||||
else:
|
||||
if old_title.endswith(' (filtered)'):
|
||||
title = old_title.replace(' (filtered)', '')
|
||||
elif old_title.endswith(', filtered)'):
|
||||
title = old_title.replace(', filtered)', ')')
|
||||
if title is None:
|
||||
title = old_title
|
||||
self.getPlotWidget().plotWFData(wfdata=data, title=title,
|
||||
@ -702,7 +765,6 @@ class PickDlg(QDialog):
|
||||
self.drawPicks()
|
||||
self.draw()
|
||||
|
||||
|
||||
def setPlotLabels(self):
|
||||
|
||||
# get channel labels
|
||||
@ -715,7 +777,9 @@ class PickDlg(QDialog):
|
||||
self.getPlotWidget().setYLims(self.getYLims())
|
||||
|
||||
def zoom(self):
|
||||
if self.zoomAction.isChecked():
|
||||
if self.zoomAction.isChecked() and self.pick_block:
|
||||
self.zoomAction.setChecked(False)
|
||||
elif self.zoomAction.isChecked():
|
||||
self.disconnectPressEvent()
|
||||
self.disconnectMotionEvent()
|
||||
self.disconnectReleaseEvent()
|
||||
@ -984,7 +1048,7 @@ class LocalisationTab(PropTab):
|
||||
self.binlabel.setText("{0} bin directory".format(curtool))
|
||||
|
||||
def selectDirectory(self, edit):
|
||||
selected_directory = QFileDialog.getExistingDirectory()
|
||||
selected_directory = QFileDialog.getExistingDirectory()
|
||||
edit.setText(selected_directory)
|
||||
|
||||
def getValues(self):
|
||||
@ -995,7 +1059,6 @@ class LocalisationTab(PropTab):
|
||||
return values
|
||||
|
||||
|
||||
|
||||
class NewEventDlg(QDialog):
|
||||
def __init__(self, parent=None, titleString="Create a new event"):
|
||||
"""
|
||||
@ -1236,6 +1299,8 @@ class HelpForm(QDialog):
|
||||
def updatePageTitle(self):
|
||||
self.pageLabel.setText(self.webBrowser.documentTitle())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -9,8 +9,8 @@
|
||||
from obspy.core import read
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pylot.core.pick.CharFuns import *
|
||||
from pylot.core.pick.Picker import *
|
||||
from pylot.core.pick.charfuns import *
|
||||
from pylot.core.pick.picker import *
|
||||
import glob
|
||||
import argparse
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user