[reorganize] some reorganization done to hand program to partner

This commit is contained in:
2016-04-28 14:18:42 +02:00
parent 37f9292c39
commit df44979337
18 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import numpy
from pylot.core.pick.utils import getnoisewin
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--t', type=numpy.array, help='numpy array of time stamps')
parser.add_argument('--t1', type=float, help='time from which relativ to it noise window is extracted')
parser.add_argument('--tnoise', type=float, help='length of time window [s] for noise part extraction')
parser.add_argument('--tgap', type=float, help='safety gap between signal (t1=onset) and noise')
args = parser.parse_args()
getnoisewin(args.t, args.t1, args.tnoise, args.tgap)

View File

@@ -0,0 +1,28 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Created Mar 2015
Transcription of the rezipe of Diehl et al. (2009) for consistent phase
picking. For a given inital (the most likely) pick, the corresponding earliest
and latest possible pick is calculated based on noise measurements in front of
the most likely pick and signal wavelength derived from zero crossings.
:author: Ludger Kueperkoch / MAGS2 EP3 working group
"""
import argparse
import obspy
from pylot.core.pick.utils import earllatepicker
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--X', type=~obspy.core.stream.Stream,
help='time series (seismogram) read with obspy module read')
parser.add_argument('--nfac', type=int,
help='(noise factor), nfac times noise level to calculate latest possible pick')
parser.add_argument('--TSNR', type=tuple, help='length of time windows around pick used to determine SNR \
[s] (Tnoise, Tgap, Tsignal)')
parser.add_argument('--Pick1', type=float, help='Onset time of most likely pick')
parser.add_argument('--iplot', type=int, help='if set, figure no. iplot occurs')
args = parser.parse_args()
earllatepicker(args.X, args.nfac, args.TSNR, args.Pick1, args.iplot)

View File

@@ -0,0 +1,24 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Created Mar 2015
Function to derive first motion (polarity) for given phase onset based on zero crossings.
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import argparse
import obspy
from pylot.core.pick.utils import fmpicker
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--Xraw', type=obspy.core.stream.Stream,
help='unfiltered time series (seismogram) read with obspy module read')
parser.add_argument('--Xfilt', type=obspy.core.stream.Stream,
help='filtered time series (seismogram) read with obspy module read')
parser.add_argument('--pickwin', type=float, help='length of pick window [s] for first motion determination')
parser.add_argument('--Pick', type=float, help='Onset time of most likely pick')
parser.add_argument('--iplot', type=int, help='if set, figure no. iplot occurs')
args = parser.parse_args()
fmpicker(args.Xraw, args.Xfilt, args.pickwin, args.Pick, args.iplot)

View File

@@ -0,0 +1,14 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import numpy
from pylot.core.pick.utils import getsignalwin
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--t', type=numpy.array, help='numpy array of time stamps')
parser.add_argument('--t1', type=float, help='time from which relativ to it signal window is extracted')
parser.add_argument('--tsignal', type=float, help='length of time window [s] for signal part extraction')
args = parser.parse_args()
getsignalwin(args.t, args.t1, args.tsignal)

30
scripts/pylot-snr.py Normal file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Created Mar/Apr 2015
Function to calculate SNR of certain part of seismogram relative
to given time. Returns SNR and SNR [dB].
:author: Ludger Kueperkoch /MAGS EP3 working group
"""
import argparse
import obspy
from pylot.core.pick.utils import getSNR
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d', type=obspy.core.stream.Stream,
help='time series (seismogram) read with obspy module '
'read',
dest='data')
parser.add_argument('--tsnr', '-s', type=tuple,
help='length of time windows around pick used to '
'determine SNR [s] (Tnoise, Tgap, Tsignal)',
dest='tsnr')
parser.add_argument('--time', '-t', type=float,
help='initial time from which noise and signal windows '
'are calculated',
dest='time')
args = parser.parse_args()
print getSNR(args.data, args.tsnr, args.time)

307
scripts/run_makeCF.py Executable file
View File

@@ -0,0 +1,307 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Script to run autoPyLoT-script "run_makeCF.py".
Only for test purposes!
"""
from obspy.core import read
import matplotlib.pyplot as plt
import numpy as np
from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.picker import AutoPicker
from pylot.core.pick.utils import *
import glob
import argparse
def run_makeCF(project, database, event, iplot, station=None):
#parameters for CF calculation
t2 = 7 #length of moving window for HOS calculation [sec]
p = 4 #order of HOS
cuttimes = [10, 50] #start and end time for CF calculation
bpz = [2, 30] #corner frequencies of bandpass filter, vertical component
bph = [2, 15] #corner frequencies of bandpass filter, horizontal components
tdetz= 1.2 #length of AR-determination window [sec], vertical component
tdeth= 0.8 #length of AR-determination window [sec], horizontal components
tpredz = 0.4 #length of AR-prediction window [sec], vertical component
tpredh = 0.4 #length of AR-prediction window [sec], horizontal components
addnoise = 0.001 #add noise to seismogram for stable AR prediction
arzorder = 2 #chosen order of AR process, vertical component
arhorder = 4 #chosen order of AR process, horizontal components
TSNRhos = [5, 0.5, 1, .6] #window lengths [s] for calculating SNR for earliest/latest pick and quality assessment
#from HOS-CF [noise window, safety gap, signal window, slope determination window]
TSNRarz = [5, 0.5, 1, 1.0] #window lengths [s] for calculating SNR for earliest/lates pick and quality assessment
#from ARZ-CF
#get waveform data
if station:
dpz = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/%s*HZ.msd' % (project, database, event, station)
dpe = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/%s*HE.msd' % (project, database, event, station)
dpn = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/%s*HN.msd' % (project, database, event, station)
#dpz = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/%s*_z.gse' % (project, database, event, station)
#dpe = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/%s*_e.gse' % (project, database, event, station)
#dpn = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/%s*_n.gse' % (project, database, event, station)
else:
dpz = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/*HZ.msd' % (project, database, event)
dpe = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/*HE.msd' % (project, database, event)
dpn = '/DATA/%s/EVENT_DATA/LOCAL/%s/%s/*HN.msd' % (project, database, event)
wfzfiles = glob.glob(dpz)
wfefiles = glob.glob(dpe)
wfnfiles = glob.glob(dpn)
if wfzfiles:
for i in range(len(wfzfiles)):
print 'Vertical component data found ...'
print wfzfiles[i]
st = read('%s' % wfzfiles[i])
st_copy = st.copy()
#filter and taper data
tr_filt = st[0].copy()
tr_filt.filter('bandpass', freqmin=bpz[0], freqmax=bpz[1], zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann')
st_copy[0].data = tr_filt.data
##############################################################
#calculate HOS-CF using subclass HOScf of class CharacteristicFunction
hoscf = HOScf(st_copy, cuttimes, t2, p) #instance of HOScf
##############################################################
#calculate AIC-HOS-CF using subclass AICcf of class CharacteristicFunction
#class needs stream object => build it
tr_aic = tr_filt.copy()
tr_aic.data = hoscf.getCF()
st_copy[0].data = tr_aic.data
aiccf = AICcf(st_copy, cuttimes) #instance of AICcf
##############################################################
#get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking
aicpick = AICPicker(aiccf, TSNRhos, 3, 10, None, 0.1)
##############################################################
#get refined onset time from HOS-CF using class Picker
hospick = PragPicker(hoscf, TSNRhos, 2, 10, 0.001, 0.2, aicpick.getpick())
#############################################################
#get earliest and latest possible picks
st_copy[0].data = tr_filt.data
[lpickhos, epickhos, pickerrhos] = earllatepicker(st_copy, 1.5, TSNRhos, hospick.getpick(), 10)
#############################################################
#get SNR
[SNR, SNRdB] = getSNR(st_copy, TSNRhos, hospick.getpick())
print 'SNR:', SNR, 'SNR[dB]:', SNRdB
##########################################################
#get first motion of onset
hosfm = fmpicker(st, st_copy, 0.2, hospick.getpick(), 11)
##############################################################
#calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction
arzcf = ARZcf(st, cuttimes, tpredz, arzorder, tdetz, addnoise) #instance of ARZcf
##############################################################
#calculate AIC-ARZ-CF using subclass AICcf of class CharacteristicFunction
#class needs stream object => build it
tr_arzaic = tr_filt.copy()
tr_arzaic.data = arzcf.getCF()
st_copy[0].data = tr_arzaic.data
araiccf = AICcf(st_copy, cuttimes, tpredz, 0, tdetz) #instance of AICcf
##############################################################
#get onset time from AIC-ARZ-CF using subclass AICPicker of class AutoPicking
aicarzpick = AICPicker(araiccf, TSNRarz, 2, 10, None, 0.1)
##############################################################
#get refined onset time from ARZ-CF using class Picker
arzpick = PragPicker(arzcf, TSNRarz, 2.0, 10, 0.1, 0.05, aicarzpick.getpick())
#get earliest and latest possible picks
st_copy[0].data = tr_filt.data
[lpickarz, epickarz, pickerrarz] = earllatepicker(st_copy, 1.5, TSNRarz, arzpick.getpick(), 10)
elif not wfzfiles:
print 'No vertical component data found!'
if wfefiles and wfnfiles:
for i in range(len(wfefiles)):
print 'Horizontal component data found ...'
print wfefiles[i]
print wfnfiles[i]
#merge streams
H = read('%s' % wfefiles[i])
H += read('%s' % wfnfiles[i])
H_copy = H.copy()
#filter and taper data
trH1_filt = H[0].copy()
trH2_filt = H[1].copy()
trH1_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
H_copy[0].data = trH1_filt.data
H_copy[1].data = trH2_filt.data
##############################################################
#calculate ARH-CF using subclass ARHcf of class CharcteristicFunction
arhcf = ARHcf(H_copy, cuttimes, tpredh, arhorder, tdeth, addnoise) #instance of ARHcf
##############################################################
#calculate AIC-ARH-CF using subclass AICcf of class CharacteristicFunction
#class needs stream object => build it
tr_arhaic = trH1_filt.copy()
tr_arhaic.data = arhcf.getCF()
H_copy[0].data = tr_arhaic.data
#calculate ARH-AIC-CF
arhaiccf = AICcf(H_copy, cuttimes, tpredh, 0, tdeth) #instance of AICcf
##############################################################
#get onset time from AIC-ARH-CF using subclass AICPicker of class AutoPicking
aicarhpick = AICPicker(arhaiccf, TSNRarz, 4, 10, None, 0.1)
###############################################################
#get refined onset time from ARH-CF using class Picker
arhpick = PragPicker(arhcf, TSNRarz, 2.5, 10, 0.1, 0.05, aicarhpick.getpick())
#get earliest and latest possible picks
H_copy[0].data = trH1_filt.data
[lpickarh1, epickarh1, pickerrarh1] = earllatepicker(H_copy, 1.5, TSNRarz, arhpick.getpick(), 10)
H_copy[0].data = trH2_filt.data
[lpickarh2, epickarh2, pickerrarh2] = earllatepicker(H_copy, 1.5, TSNRarz, arhpick.getpick(), 10)
#get earliest pick of both earliest possible picks
epick = [epickarh1, epickarh2]
lpick = [lpickarh1, lpickarh2]
pickerr = [pickerrarh1, pickerrarh2]
ipick =np.argmin([epickarh1, epickarh2])
epickarh = epick[ipick]
lpickarh = lpick[ipick]
pickerrarh = pickerr[ipick]
#create stream with 3 traces
#merge streams
AllC = read('%s' % wfefiles[i])
AllC += read('%s' % wfnfiles[i])
AllC += read('%s' % wfzfiles[i])
#filter and taper data
All1_filt = AllC[0].copy()
All2_filt = AllC[1].copy()
All3_filt = AllC[2].copy()
All1_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
All2_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
All3_filt.filter('bandpass', freqmin=bpz[0], freqmax=bpz[1], zerophase=False)
All1_filt.taper(max_percentage=0.05, type='hann')
All2_filt.taper(max_percentage=0.05, type='hann')
All3_filt.taper(max_percentage=0.05, type='hann')
AllC[0].data = All1_filt.data
AllC[1].data = All2_filt.data
AllC[2].data = All3_filt.data
#calculate AR3C-CF using subclass AR3Ccf of class CharacteristicFunction
ar3ccf = AR3Ccf(AllC, cuttimes, tpredz, arhorder, tdetz, addnoise) #instance of AR3Ccf
##############################################################
if iplot:
#plot vertical trace
plt.figure()
tr = st[0]
tdata = np.arange(0, tr.stats.npts / tr.stats.sampling_rate, tr.stats.delta)
p1, = plt.plot(tdata, tr_filt.data/max(tr_filt.data), 'k')
p2, = plt.plot(hoscf.getTimeArray(), hoscf.getCF() / max(hoscf.getCF()), 'r')
p3, = plt.plot(aiccf.getTimeArray(), aiccf.getCF()/max(aiccf.getCF()), 'b')
p4, = plt.plot(arzcf.getTimeArray(), arzcf.getCF()/max(arzcf.getCF()), 'g')
p5, = plt.plot(araiccf.getTimeArray(), araiccf.getCF()/max(araiccf.getCF()), 'y')
plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'b--')
plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [1, 1], 'b')
plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [-1, -1], 'b')
plt.plot([hospick.getpick(), hospick.getpick()], [-1.3, 1.3], 'r', linewidth=2)
plt.plot([hospick.getpick()-0.5, hospick.getpick()+0.5], [1.3, 1.3], 'r')
plt.plot([hospick.getpick()-0.5, hospick.getpick()+0.5], [-1.3, -1.3], 'r')
plt.plot([lpickhos, lpickhos], [-1.1, 1.1], 'r--')
plt.plot([epickhos, epickhos], [-1.1, 1.1], 'r--')
plt.plot([aicarzpick.getpick(), aicarzpick.getpick()], [-1.2, 1.2], 'y', linewidth=2)
plt.plot([aicarzpick.getpick()-0.5, aicarzpick.getpick()+0.5], [1.2, 1.2], 'y')
plt.plot([aicarzpick.getpick()-0.5, aicarzpick.getpick()+0.5], [-1.2, -1.2], 'y')
plt.plot([arzpick.getpick(), arzpick.getpick()], [-1.4, 1.4], 'g', linewidth=2)
plt.plot([arzpick.getpick()-0.5, arzpick.getpick()+0.5], [1.4, 1.4], 'g')
plt.plot([arzpick.getpick()-0.5, arzpick.getpick()+0.5], [-1.4, -1.4], 'g')
plt.plot([lpickarz, lpickarz], [-1.2, 1.2], 'g--')
plt.plot([epickarz, epickarz], [-1.2, 1.2], 'g--')
plt.yticks([])
plt.ylim([-1.5, 1.5])
plt.xlabel('Time [s]')
plt.ylabel('Normalized Counts')
plt.title('%s, %s, CF-SNR=%7.2f, CF-Slope=%12.2f' % (tr.stats.station,
tr.stats.channel, aicpick.getSNR(), aicpick.getSlope()))
plt.suptitle(tr.stats.starttime)
plt.legend([p1, p2, p3, p4, p5], ['Data', 'HOS-CF', 'HOSAIC-CF', 'ARZ-CF', 'ARZAIC-CF'])
#plot horizontal traces
plt.figure(2)
plt.subplot(2,1,1)
tsteph = tpredh / 4
th1data = np.arange(0, trH1_filt.stats.npts / trH1_filt.stats.sampling_rate, trH1_filt.stats.delta)
th2data = np.arange(0, trH2_filt.stats.npts / trH2_filt.stats.sampling_rate, trH2_filt.stats.delta)
tarhcf = np.arange(0, len(arhcf.getCF()) * tsteph, tsteph) + cuttimes[0] + tdeth +tpredh
p21, = plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k')
p22, = plt.plot(arhcf.getTimeArray(), arhcf.getCF()/max(arhcf.getCF()), 'r')
p23, = plt.plot(arhaiccf.getTimeArray(), arhaiccf.getCF()/max(arhaiccf.getCF()))
plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'b')
plt.plot([aicarhpick.getpick()-0.5, aicarhpick.getpick()+0.5], [1, 1], 'b')
plt.plot([aicarhpick.getpick()-0.5, aicarhpick.getpick()+0.5], [-1, -1], 'b')
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'r')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'r')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'r')
plt.plot([lpickarh, lpickarh], [-0.8, 0.8], 'r--')
plt.plot([epickarh, epickarh], [-0.8, 0.8], 'r--')
plt.plot([arhpick.getpick() + pickerrarh, arhpick.getpick() + pickerrarh], [-0.2, 0.2], 'r--')
plt.plot([arhpick.getpick() - pickerrarh, arhpick.getpick() - pickerrarh], [-0.2, 0.2], 'r--')
plt.yticks([])
plt.ylim([-1.5, 1.5])
plt.ylabel('Normalized Counts')
plt.title([trH1_filt.stats.station, trH1_filt.stats.channel])
plt.suptitle(trH1_filt.stats.starttime)
plt.legend([p21, p22, p23], ['Data', 'ARH-CF', 'ARHAIC-CF'])
plt.subplot(2,1,2)
plt.plot(th2data, trH2_filt.data/max(trH2_filt.data), 'k')
plt.plot(arhcf.getTimeArray(), arhcf.getCF()/max(arhcf.getCF()), 'r')
plt.plot(arhaiccf.getTimeArray(), arhaiccf.getCF()/max(arhaiccf.getCF()))
plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'b')
plt.plot([aicarhpick.getpick()-0.5, aicarhpick.getpick()+0.5], [1, 1], 'b')
plt.plot([aicarhpick.getpick()-0.5, aicarhpick.getpick()+0.5], [-1, -1], 'b')
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'r')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'r')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'r')
plt.plot([lpickarh, lpickarh], [-0.8, 0.8], 'r--')
plt.plot([epickarh, epickarh], [-0.8, 0.8], 'r--')
plt.plot([arhpick.getpick() + pickerrarh, arhpick.getpick() + pickerrarh], [-0.2, 0.2], 'r--')
plt.plot([arhpick.getpick() - pickerrarh, arhpick.getpick() - pickerrarh], [-0.2, 0.2], 'r--')
plt.title([trH2_filt.stats.station, trH2_filt.stats.channel])
plt.yticks([])
plt.ylim([-1.5, 1.5])
plt.xlabel('Time [s]')
plt.ylabel('Normalized Counts')
#plot 3-component window
plt.figure(3)
plt.subplot(3,1,1)
p31, = plt.plot(tdata, tr_filt.data/max(tr_filt.data), 'k')
p32, = plt.plot(ar3ccf.getTimeArray(), ar3ccf.getCF()/max(ar3ccf.getCF()), 'r')
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'b')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'b')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'b')
plt.yticks([])
plt.xticks([])
plt.ylabel('Normalized Counts')
plt.title([tr.stats.station, tr.stats.channel])
plt.suptitle(trH1_filt.stats.starttime)
plt.legend([p31, p32], ['Data', 'AR3C-CF'])
plt.subplot(3,1,2)
plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k')
plt.plot(ar3ccf.getTimeArray(), ar3ccf.getCF()/max(ar3ccf.getCF()), 'r')
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'b')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'b')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'b')
plt.yticks([])
plt.xticks([])
plt.ylabel('Normalized Counts')
plt.title([trH1_filt.stats.station, trH1_filt.stats.channel])
plt.subplot(3,1,3)
plt.plot(th2data, trH2_filt.data/max(trH2_filt.data), 'k')
plt.plot(ar3ccf.getTimeArray(), ar3ccf.getCF()/max(ar3ccf.getCF()), 'r')
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'b')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'b')
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'b')
plt.yticks([])
plt.ylabel('Normalized Counts')
plt.title([trH2_filt.stats.station, trH2_filt.stats.channel])
plt.xlabel('Time [s]')
plt.show()
raw_input()
plt.close()
parser = argparse.ArgumentParser()
parser.add_argument('--project', type=str, help='project name (e.g. Insheim)')
parser.add_argument('--database', type=str, help='event data base (e.g. 2014.09_Insheim)')
parser.add_argument('--event', type=str, help='event ID (e.g. e0010.015.14)')
parser.add_argument('--iplot', help='anything, if set, figure occurs')
parser.add_argument('--station', type=str, help='Station ID (e.g. INS3) (optional)')
args = parser.parse_args()
run_makeCF(args.project, args.database, args.event, args.iplot, args.station)