[refactor] removed unused parameter "data" from calcCF methods
This commit is contained in:
parent
431dbe8924
commit
e1b0d48527
@ -59,7 +59,7 @@ class CharacteristicFunction(object):
|
||||
self.setOrder(order)
|
||||
self.setFnoise(fnoise)
|
||||
self.setARdetStep(t2)
|
||||
self.calcCF(self.getDataArray())
|
||||
self.calcCF()
|
||||
self.arpara = np.array([])
|
||||
self.xpred = np.array([])
|
||||
|
||||
@ -211,17 +211,15 @@ class CharacteristicFunction(object):
|
||||
data = self.orig_data.copy()
|
||||
return data
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
def calcCF(self):
|
||||
pass
|
||||
|
||||
|
||||
class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate the Akaike Information Criterion (AIC) after Maeda (1985).
|
||||
:param data: data, time series (whether seismogram or CF)
|
||||
:type data: tuple
|
||||
:return: AIC function
|
||||
:rtype:
|
||||
"""
|
||||
@ -259,13 +257,11 @@ class HOScf(CharacteristicFunction):
|
||||
"""
|
||||
super(HOScf, self).__init__(data, cut, pickparams["tlta"], pickparams["hosorder"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate skewness (statistics of order 3) or kurtosis
|
||||
(statistics of order 4), using one long moving window, as published
|
||||
in Kueperkoch et al. (2010), or order 2, i.e. STA/LTA.
|
||||
:param data: data, time series (whether seismogram or CF)
|
||||
:type data: tuple
|
||||
:return: HOS cf
|
||||
:rtype:
|
||||
"""
|
||||
@ -342,12 +338,10 @@ class ARZcf(CharacteristicFunction):
|
||||
super(ARZcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Parorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
function used to calculate the AR prediction error from a single vertical trace. Can be used to pick
|
||||
P onsets.
|
||||
:param data:
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: ARZ cf
|
||||
:rtype:
|
||||
"""
|
||||
@ -478,14 +472,12 @@ class ARHcf(CharacteristicFunction):
|
||||
super(ARHcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
||||
both horizontal traces.
|
||||
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
||||
between the predicted and the actual waveform servers as a characteristic function.
|
||||
:param data: wavefor stream
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: ARH cf
|
||||
:rtype:
|
||||
"""
|
||||
@ -634,14 +626,12 @@ class AR3Ccf(CharacteristicFunction):
|
||||
super(AR3Ccf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
||||
all three traces.
|
||||
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
||||
between the predicted and the actual waveform servers as a characteristic function
|
||||
:param data: stream holding all three traces
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: AR3C cf
|
||||
:rtype:
|
||||
"""
|
||||
|
@ -173,7 +173,7 @@ class AICPicker(AutoPicker):
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
self.cf[nn] = 0
|
||||
# taper AIC-CF to get rid off side maxima
|
||||
# taper AIC-CF to get rid of side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
# smooth AIC-CF
|
||||
|
Loading…
Reference in New Issue
Block a user