Merge branch 'develop' of ariadne.geophysik.ruhr-uni-bochum.de:/data/git/pylot into develop
This commit is contained in:
commit
e51704f2b7
@ -2,6 +2,7 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
import operator
|
||||
import os
|
||||
import numpy as np
|
||||
import glob
|
||||
@ -11,6 +12,7 @@ from obspy import read_events
|
||||
|
||||
from pylot.core.io.phases import picksdict_from_picks
|
||||
from pylot.core.util.pdf import ProbabilityDensityFunction
|
||||
from pylot.core.util.utils import find_in_list
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
||||
__version__ = _getVersionString()
|
||||
@ -151,7 +153,6 @@ class Comparison(object):
|
||||
return rlist
|
||||
|
||||
def get_array(self, phase, method_name):
|
||||
import operator
|
||||
method = operator.methodcaller(method_name)
|
||||
pdf_list = self.get_all(phase)
|
||||
rarray = map(method, pdf_list)
|
||||
@ -258,6 +259,15 @@ class PDFDictionary(object):
|
||||
'time is not implemented yet! Sorry!')
|
||||
return PDFDictionary(picksdict_from_picks(cat[0]))
|
||||
|
||||
def get_all(self, phase):
|
||||
rlist = list()
|
||||
for phases in self.pdf_data.values():
|
||||
try:
|
||||
rlist.append(phases[phase])
|
||||
except KeyError:
|
||||
continue
|
||||
return rlist
|
||||
|
||||
def generate_pdf_data(self, type='exp'):
|
||||
"""
|
||||
Returns probabiliy density function dictionary containing the
|
||||
@ -339,143 +349,148 @@ class PDFDictionary(object):
|
||||
|
||||
|
||||
class PDFstatistics(object):
|
||||
'''
|
||||
To do:
|
||||
plots for std, quantiles,
|
||||
'''
|
||||
"""
|
||||
This object can be used to get various statistic values from probabillity density functions.
|
||||
Takes a path as argument.
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self, directory):
|
||||
self.directory = directory
|
||||
self.evtlist = list()
|
||||
self.return_phase = None
|
||||
"""Initiates some values needed when dealing with pdfs later"""
|
||||
self._rootdir = directory
|
||||
self._evtlist = list()
|
||||
self._rphase = None
|
||||
self.make_fnlist()
|
||||
|
||||
def readTheta(self, arname, dir, fnpattern):
|
||||
exec('self.' + arname +' = []')
|
||||
filelist = glob.glob1(dir, fnpattern)
|
||||
for file in filelist:
|
||||
fid = open(os.path.join(dir,file), 'r')
|
||||
list = []
|
||||
for line in fid.readlines():
|
||||
list.append(eval(line))
|
||||
exec('self.' + arname + ' += list')
|
||||
fid.close()
|
||||
|
||||
def makeFileList(self, fn_pattern='*.xml'):
|
||||
def make_fnlist(self, fn_pattern='*.xml'):
|
||||
"""
|
||||
Takes a file pattern and searches for that recursively in the set path for the object.
|
||||
:param fn_pattern: A pattern that can identify all datafiles. Default Value = '*.xml'
|
||||
:type fn_pattern: string
|
||||
:return: creates a list of events saved in the PDFstatistics object.
|
||||
"""
|
||||
evtlist = list()
|
||||
evtlist = glob.glob1((os.path.join(self.directory)), fn_pattern)
|
||||
if not evtlist:
|
||||
for root, _, files in os.walk(self.directory):
|
||||
for file in files:
|
||||
if file.endswith(fn_pattern[1:]):
|
||||
evtlist.append(os.path.join(root, file))
|
||||
self.evtlist = evtlist
|
||||
for root, _, files in os.walk(self.root):
|
||||
for file in files:
|
||||
if file.endswith(fn_pattern[1:]):
|
||||
evtlist.append(os.path.join(root, file))
|
||||
self._evtlist = evtlist
|
||||
|
||||
def __iter__(self):
|
||||
assert isinstance(self.return_phase, str), 'phase has to be set before being able to iterate over items...'
|
||||
for evt in self.evtlist:
|
||||
self.getPDFDict(self.directory, evt)
|
||||
for station, pdfs in self.pdfdict.pdf_data.items():
|
||||
try:
|
||||
yield pdfs[self.return_phase]
|
||||
except KeyError:
|
||||
continue
|
||||
for evt in self._evtlist:
|
||||
yield PDFDictionary.from_quakeml(evt)
|
||||
|
||||
def set_return_phase(self, type):
|
||||
def __getitem__(self, item):
|
||||
evt = find_in_list(self._evtlist, item)
|
||||
if evt:
|
||||
return PDFDictionary.from_quakeml(evt)
|
||||
return None
|
||||
|
||||
@property
|
||||
def root(self):
|
||||
return self._rootdir
|
||||
|
||||
@root.setter
|
||||
def root(self, value):
|
||||
if os.path.exists(value):
|
||||
self._rootdir = value
|
||||
else:
|
||||
raise ValueError("path doesn't exist: %s" % value)
|
||||
|
||||
@property
|
||||
def curphase(self):
|
||||
"""
|
||||
return the current phase type of interest
|
||||
:return: current phase
|
||||
"""
|
||||
return self._rphase
|
||||
|
||||
@curphase.setter
|
||||
def curphase(self, type):
|
||||
"""
|
||||
setter method for property curphase
|
||||
:param type: specify the phase type of interest
|
||||
:type type: string ('p' or 's')
|
||||
:return: -
|
||||
"""
|
||||
if type.upper() not in 'PS':
|
||||
raise ValueError("phase type must be either 'P' or 'S'!")
|
||||
else:
|
||||
self.return_phase = type.upper()
|
||||
self._rphase = type.upper()
|
||||
|
||||
def getQD(self,value):
|
||||
QDlist = []
|
||||
for pdf in self:
|
||||
QD = pdf.quantile_distance(value)
|
||||
QDlist.append(QD)
|
||||
return QDlist
|
||||
def get(self, property='std', value=None):
|
||||
"""
|
||||
takes a property str and a probability value and returns all
|
||||
property's values for the current phase of interest
|
||||
:func:`self.curphase`
|
||||
|
||||
:param property: property name (default: 'std')
|
||||
:type property: str
|
||||
:param value: probability value :math:\alpha
|
||||
:type value: float
|
||||
:return: list containing all property's values
|
||||
"""
|
||||
assert isinstance(self.curphase,
|
||||
str), 'phase has to be set before being ' \
|
||||
'able to iterate over items...'
|
||||
rlist = []
|
||||
method_options = dict(STD='standard_deviation',
|
||||
Q='quantile',
|
||||
QD='quantile_distance',
|
||||
QDF='quantile_dist_frac')
|
||||
|
||||
def getQDQ(self,value):
|
||||
QDQlist = []
|
||||
for pdf in self:
|
||||
QDQ = pdf.qtile_dist_quot(value)
|
||||
QDQlist.append(QDQ)
|
||||
return QDQlist
|
||||
|
||||
|
||||
def getSTD(self):
|
||||
std = []
|
||||
for pdf in self:
|
||||
# create method caller for easy mapping
|
||||
if property.upper() == 'STD':
|
||||
method = operator.methodcaller(method_options[property.upper()])
|
||||
elif value is not None:
|
||||
try:
|
||||
std.append(pdf.standard_deviation())
|
||||
method = operator.methodcaller(method_options[property.upper()],
|
||||
value)
|
||||
except KeyError:
|
||||
continue
|
||||
std = np.array(std)
|
||||
self.set_stdarray(std)
|
||||
|
||||
|
||||
def set_stdarray(self, array):
|
||||
if self.return_phase == 'P':
|
||||
self.p_stdarray = array
|
||||
elif self.return_phase == 'S':
|
||||
self.s_stdarray = array
|
||||
raise KeyError('unknwon property: {0}'.format(property.upper()))
|
||||
else:
|
||||
raise ValueError('phase type not set properly...\n'
|
||||
'Actual phase type: {0}'.format(self.return_phase))
|
||||
raise ValueError("for call to method {0} value has to be "
|
||||
"defined but is 'None' ".format(method_options[
|
||||
property.upper()]))
|
||||
|
||||
for pdf_dict in self:
|
||||
# create worklist
|
||||
wlist = pdf_dict.get_all(self.curphase)
|
||||
# map method calls to object in worklist
|
||||
rlist += map(method, wlist)
|
||||
|
||||
def getBinList(self,l_boundary,u_boundary,nbins = 100):
|
||||
binlist = []
|
||||
for i in range(nbins):
|
||||
binlist.append(l_boundary + i*(u_boundary-l_boundary)/nbins)
|
||||
return binlist
|
||||
return rlist
|
||||
|
||||
|
||||
def histplot(self, array, binlist, xlab = 'Values',
|
||||
ylab = 'Frequency', title = None, label=None,
|
||||
fnout = None):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.hist(array,bins = binlist)
|
||||
plt.xlabel('Values')
|
||||
plt.ylabel('Frequency')
|
||||
if title:
|
||||
title_str = 'Quantile distance quotient distribution'
|
||||
if label:
|
||||
title_str += ' (' + label + ')'
|
||||
plt.title(title_str)
|
||||
if fnout:
|
||||
plt.savefig(fnout+'histplot.png')
|
||||
else:
|
||||
plt.show()
|
||||
|
||||
|
||||
def getPDFDict(self, month, evt):
|
||||
self.pdfdict = PDFDictionary.from_quakeml(os.path.join(self.directory,month,evt))
|
||||
|
||||
|
||||
def getStatistics(self):
|
||||
self.p_mean = self.p_stdarray.mean()
|
||||
self.p_std_std = self.p_stdarray.std()
|
||||
self.p_median = np.median(self.p_stdarray)
|
||||
self.s_mean = self.s_stdarray.mean()
|
||||
self.s_std_std = self.s_stdarray.std()
|
||||
self.s_median = np.median(self.s_stdarray)
|
||||
|
||||
|
||||
def writeThetaToFile(self,array,out_dir,filename = None):
|
||||
fid = open(os.path.join(out_dir,filename), 'w')
|
||||
def writeThetaToFile(self,array,out_dir):
|
||||
"""
|
||||
Method to write array like data to file. Useful since acquiring can take
|
||||
serious amount of time when dealing with large databases.
|
||||
:param array: List of values.
|
||||
:type array: list
|
||||
:param out_dir: Path to save file to including file name.
|
||||
:type out_dir: str
|
||||
:return: Saves a file at given output directory.
|
||||
"""
|
||||
fid = open(os.path.join(out_dir), 'w')
|
||||
for val in array:
|
||||
fid.write(str(val)+'\n')
|
||||
fid.close()
|
||||
|
||||
|
||||
def main():
|
||||
root_dir ='/home/sebastianp/Codetesting/xmls/'
|
||||
Insheim = PDFstatistics(root_dir)
|
||||
Insheim.makeFileList()
|
||||
Insheim.set_return_phase('p')
|
||||
Insheim.getSTD()
|
||||
qdlist = Insheim.getQDQ(0.3)
|
||||
binlist = Insheim.getBinList(0.,3.)
|
||||
Insheim.curphase = 'p'
|
||||
qdlist = Insheim.get('qdf', 0.2)
|
||||
print qdlist
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import cProfile
|
||||
|
||||
pr = cProfile.Profile()
|
||||
pr.enable()
|
||||
main()
|
||||
pr.disable()
|
||||
# after your program ends
|
||||
pr.print_stats(sort="calls")
|
@ -326,7 +326,7 @@ class ProbabilityDensityFunction(object):
|
||||
raise ValueError('value out of bounds: {0}'.format(value))
|
||||
return self.prob_limits((value, self.axis[-1]))
|
||||
|
||||
def prob_limits(self, limits, oversampling=10.):
|
||||
def prob_limits(self, limits, oversampling=1.):
|
||||
sampling = self.incr / oversampling
|
||||
lim = np.arange(limits[0], limits[1], sampling)
|
||||
data = self.data(lim)
|
||||
@ -363,13 +363,40 @@ class ProbabilityDensityFunction(object):
|
||||
return m
|
||||
|
||||
def quantile_distance(self, prob_value):
|
||||
"""
|
||||
takes a probability value and and returns the distance
|
||||
between two complementary quantiles
|
||||
|
||||
.. math::
|
||||
|
||||
QA_\alpha = Q(1 - \alpha) - Q(\alpha)
|
||||
|
||||
:param value: probability value :math:\alpha
|
||||
:type value: float
|
||||
:return: quantile distance
|
||||
"""
|
||||
if 0 >= prob_value or prob_value >= 0.5:
|
||||
raise ValueError('Value out of range.')
|
||||
ql = self.quantile(prob_value)
|
||||
qu = self.quantile(1 - prob_value)
|
||||
return qu - ql
|
||||
|
||||
|
||||
def qtile_dist_quot(self,x):
|
||||
if x <= 0 or x >= 0.5:
|
||||
def quantile_dist_frac(self, x):
|
||||
"""
|
||||
takes a probability value and returns the fraction of two
|
||||
corresponding quantile distances (
|
||||
:func:`pylot.core.util.pdf.ProbabilityDensityFunction
|
||||
#quantile_distance`)
|
||||
|
||||
.. math::
|
||||
|
||||
Q\Theta_\alpha = \frac{QA(0.5 - \alpha)}{QA(\alpha)}
|
||||
|
||||
:param value: probability value :math:\alpha
|
||||
:return: quantile distance fraction
|
||||
"""
|
||||
if x <= 0 or x >= 0.25:
|
||||
raise ValueError('Value out of range.')
|
||||
return self.quantile_distance(0.5-x)/self.quantile_distance(x)
|
||||
|
||||
|
57
pylot/core/util/plotting.py
Normal file
57
pylot/core/util/plotting.py
Normal file
@ -0,0 +1,57 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def create_bin_list(l_boundary, u_boundary, nbins=100):
|
||||
"""
|
||||
takes two boundaries and a number of bins and creates a list of bins for
|
||||
histogram plotting
|
||||
:param l_boundary: Any number.
|
||||
:type l_boundary: float
|
||||
:param u_boundary: Any number that is greater than l_boundary.
|
||||
:type u_boundary: float
|
||||
:param nbins: Any positive integer.
|
||||
:type nbins: int
|
||||
:return: A list of equidistant bins.
|
||||
"""
|
||||
if u_boundary <= l_boundary:
|
||||
raise ValueError('Upper boundary must be greather than lower!')
|
||||
elif nbins <= 0:
|
||||
raise ValueError('Number of bins is not valid.')
|
||||
binlist = []
|
||||
for i in range(nbins):
|
||||
binlist.append(l_boundary + i * (u_boundary - l_boundary) / nbins)
|
||||
return binlist
|
||||
|
||||
|
||||
def histplot(array, binlist, xlab='Values',
|
||||
ylab='Frequency', title=None, fnout=None):
|
||||
"""
|
||||
function to quickly show some distribution of data. Takes array like data,
|
||||
and a list of bins. Editing detail and inserting a legend is not possible.
|
||||
:param array: List of values.
|
||||
:type array: Array like
|
||||
:param binlist: List of bins.
|
||||
:type binlist: list
|
||||
:param xlab: A label for the x-axes.
|
||||
:type xlab: str
|
||||
:param ylab: A label for the y-axes.
|
||||
:type ylab: str
|
||||
:param title: A title for the Plot.
|
||||
:type title: str
|
||||
:param fnout: A path to save the plot instead of showing.
|
||||
Has to contain filename and type. Like: 'path/to/file.png'
|
||||
:type fnout. str
|
||||
:return: -
|
||||
"""
|
||||
|
||||
plt.hist(array, bins=binlist)
|
||||
plt.xlabel(xlab)
|
||||
plt.ylabel(ylab)
|
||||
if title:
|
||||
plt.title(title)
|
||||
if fnout:
|
||||
plt.savefig(fnout)
|
||||
else:
|
||||
plt.show()
|
@ -18,7 +18,6 @@ def _pickle_method(m):
|
||||
return getattr, (m.im_self, m.im_func.func_name)
|
||||
|
||||
def fit_curve(x, y):
|
||||
|
||||
return splev, splrep(x, y)
|
||||
|
||||
def getindexbounds(f, eta):
|
||||
@ -83,8 +82,8 @@ def clims(lim1, lim2):
|
||||
|
||||
def demeanTrace(trace, window):
|
||||
"""
|
||||
returns the DATA where each trace is demean by the average value within
|
||||
WINDOW
|
||||
takes a trace object and returns the same trace object but with data
|
||||
demeaned within a certain time window
|
||||
:param trace: waveform trace object
|
||||
:type trace: `~obspy.core.stream.Trace`
|
||||
:param window:
|
||||
@ -101,31 +100,73 @@ def findComboBoxIndex(combo_box, val):
|
||||
Function findComboBoxIndex takes a QComboBox object and a string and
|
||||
returns either 0 or the index throughout all QComboBox items.
|
||||
:param combo_box: Combo box object.
|
||||
:type combo_box: QComboBox
|
||||
:type combo_box: `~QComboBox`
|
||||
:param val: Name of a combo box to search for.
|
||||
:type val:
|
||||
:type val: basestring
|
||||
:return: index value of item with name val or 0
|
||||
"""
|
||||
return combo_box.findText(val) if combo_box.findText(val) is not -1 else 0
|
||||
|
||||
def find_in_list(list, str):
|
||||
"""
|
||||
takes a list of strings and a string and returns the first list item
|
||||
matching the string pattern
|
||||
:param list: list to search in
|
||||
:param str: pattern to search for
|
||||
:return: first list item containing pattern
|
||||
|
||||
.. example::
|
||||
|
||||
>>> l = ['/dir/e1234.123.12', '/dir/e2345.123.12', 'abc123', 'def456']
|
||||
>>> find_in_list(l, 'dir')
|
||||
'/dir/e1234.123.12'
|
||||
>>> find_in_list(l, 'e1234')
|
||||
'/dir/e1234.123.12'
|
||||
>>> find_in_list(l, 'e2')
|
||||
'/dir/e2345.123.12'
|
||||
>>> find_in_list(l, 'ABC')
|
||||
'abc123'
|
||||
>>> find_in_list(l, 'f456')
|
||||
'def456'
|
||||
>>> find_in_list(l, 'gurke')
|
||||
|
||||
"""
|
||||
rlist = [s for s in list if str.lower() in s.lower()]
|
||||
if rlist:
|
||||
return rlist[0]
|
||||
return None
|
||||
|
||||
def find_nearest(array, value):
|
||||
'''
|
||||
Function find_nearest takes an array and a value and returns the
|
||||
index of the nearest value found in the array.
|
||||
:param array:
|
||||
:param value:
|
||||
:return:
|
||||
function find_nearest takes an array and a value and returns the
|
||||
index of the nearest value found in the array
|
||||
:param array: array containing values
|
||||
:type array: `~numpy.ndarray`
|
||||
:param value: number searched for
|
||||
:return: index of the array item being nearest to the value
|
||||
|
||||
>>> a = np.array([ 1.80339578, -0.72546654, 0.95769195, -0.98320759, 0.85922623])
|
||||
>>> find_nearest(a, 1.3)
|
||||
2
|
||||
>>> find_nearest(a, 0)
|
||||
1
|
||||
>>> find_nearest(a, 2)
|
||||
0
|
||||
>>> find_nearest(a, -1)
|
||||
3
|
||||
>>> a = np.array([ 1.1, -0.7, 0.9, -0.9, 0.8])
|
||||
>>> find_nearest(a, 0.849)
|
||||
4
|
||||
'''
|
||||
return (np.abs(array - value)).argmin()
|
||||
|
||||
|
||||
def fnConstructor(s):
|
||||
'''
|
||||
|
||||
:param s:
|
||||
:type s:
|
||||
:return:
|
||||
takes a string and returns a valid filename (especially on windows machines)
|
||||
:param s: desired filename
|
||||
:type s: str
|
||||
:return: valid filename
|
||||
'''
|
||||
if type(s) is str:
|
||||
s = s.split(':')[-1]
|
||||
@ -143,7 +184,21 @@ def fnConstructor(s):
|
||||
|
||||
|
||||
def four_digits(year):
|
||||
if year + 2000 < UTCDateTime.utcnow().year:
|
||||
"""
|
||||
takes a two digit year integer and returns the correct four digit equivalent
|
||||
from the last 100 years
|
||||
:param year: two digit year
|
||||
:type year: int
|
||||
:return: four digit year correspondant
|
||||
|
||||
>>> four_digits(20)
|
||||
1920
|
||||
>>> four_digits(16)
|
||||
2016
|
||||
>>> four_digits(00)
|
||||
2000
|
||||
"""
|
||||
if year + 2000 <= UTCDateTime.utcnow().year:
|
||||
year += 2000
|
||||
else:
|
||||
year += 1900
|
||||
@ -152,10 +207,11 @@ def four_digits(year):
|
||||
|
||||
def getGlobalTimes(stream):
|
||||
'''
|
||||
|
||||
:param stream:
|
||||
:type stream
|
||||
:return:
|
||||
takes a stream object and returns the latest end and the earliest start
|
||||
time of all contained trace objects
|
||||
:param stream: seismological data stream
|
||||
:type stream: `~obspy.core.stream.Stream`
|
||||
:return: minimum start time and maximum end time
|
||||
'''
|
||||
min_start = UTCDateTime()
|
||||
max_end = None
|
||||
@ -169,6 +225,8 @@ def getGlobalTimes(stream):
|
||||
|
||||
def getHash(time):
|
||||
'''
|
||||
takes a time object and returns the corresponding SHA1 hash of the
|
||||
formatted date string
|
||||
:param time: time object for which a hash should be calculated
|
||||
:type time: :class: `~obspy.core.utcdatetime.UTCDateTime` object
|
||||
:return: str
|
||||
@ -180,32 +238,31 @@ def getHash(time):
|
||||
|
||||
def getLogin():
|
||||
'''
|
||||
|
||||
:return:
|
||||
returns the actual user's login ID
|
||||
:return: login ID
|
||||
'''
|
||||
return pwd.getpwuid(os.getuid())[0]
|
||||
|
||||
|
||||
def getOwner(fn):
|
||||
'''
|
||||
|
||||
:param fn:
|
||||
:type fn:
|
||||
:return:
|
||||
takes a filename and return the login ID of the actual owner of the file
|
||||
:param fn: filename of the file tested
|
||||
:type fn: str
|
||||
:return: login ID of the file's owner
|
||||
'''
|
||||
return pwd.getpwuid(os.stat(fn).st_uid).pw_name
|
||||
|
||||
|
||||
def getPatternLine(fn, pattern):
|
||||
"""
|
||||
Takes a file name and a pattern string to search for in the file and
|
||||
returns the first line which contains the pattern string otherwise None.
|
||||
|
||||
takes a file name and a pattern string to search for in the file and
|
||||
returns the first line which contains the pattern string otherwise 'None'
|
||||
:param fn: file name
|
||||
:type fn: str
|
||||
:param pattern: pattern string to search for
|
||||
:type pattern: str
|
||||
:return: the complete line containing pattern or None
|
||||
:return: the complete line containing the pattern string or None
|
||||
|
||||
>>> getPatternLine('utils.py', 'python')
|
||||
'#!/usr/bin/env python\\n'
|
||||
@ -223,22 +280,52 @@ def getPatternLine(fn, pattern):
|
||||
|
||||
def isSorted(iterable):
|
||||
'''
|
||||
|
||||
:param iterable:
|
||||
takes an iterable and returns 'True' if the items are in order otherwise
|
||||
'False'
|
||||
:param iterable: an iterable object
|
||||
:type iterable:
|
||||
:return:
|
||||
:return: Boolean
|
||||
|
||||
>>> isSorted(1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
AssertionError: object is not iterable; object: 1
|
||||
>>> isSorted([1,2,3,4])
|
||||
True
|
||||
>>> isSorted('abcd')
|
||||
True
|
||||
>>> isSorted('bcad')
|
||||
False
|
||||
>>> isSorted([2,3,1,4])
|
||||
False
|
||||
'''
|
||||
assert isIterable(iterable), 'object is not iterable; object: {' \
|
||||
'0}'.format(iterable)
|
||||
if type(iterable) is str:
|
||||
iterable = [s for s in iterable]
|
||||
return sorted(iterable) == iterable
|
||||
|
||||
|
||||
def isIterable(obj):
|
||||
"""
|
||||
takes a python object and returns 'True' is the object is iterable and
|
||||
'False' otherwise
|
||||
:param obj: a python object
|
||||
:return: True of False
|
||||
"""
|
||||
try:
|
||||
iterator = iter(obj)
|
||||
except TypeError as te:
|
||||
return False
|
||||
return True
|
||||
|
||||
def prepTimeAxis(stime, trace):
|
||||
'''
|
||||
|
||||
:param stime:
|
||||
:type stime:
|
||||
:param trace:
|
||||
:type trace:
|
||||
:return:
|
||||
takes a starttime and a trace object and returns a valid time axis for
|
||||
plotting
|
||||
:param stime: start time of the actual seismogram as UTCDateTime
|
||||
:param trace: seismic trace object
|
||||
:return: valid numpy array with time stamps for plotting
|
||||
'''
|
||||
nsamp = trace.stats.npts
|
||||
srate = trace.stats.sampling_rate
|
||||
@ -294,7 +381,6 @@ def runProgram(cmd, parameter=None):
|
||||
"""
|
||||
run an external program specified by cmd with parameters input returning the
|
||||
stdout output
|
||||
|
||||
:param cmd: name of the command to run
|
||||
:type cmd: str
|
||||
:param parameter: filename of parameter file or parameter string
|
||||
|
Loading…
Reference in New Issue
Block a user