Merge branch 'develop' of 134.147.164.251:/data/git/pylot into develop
This commit is contained in:
commit
e6e38dbb95
99
autoPyLoT.in
Normal file
99
autoPyLoT.in
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
%This is a parameter input file for autoPyLoT.
|
||||||
|
%All main and special settings regarding data handling
|
||||||
|
%and picking are to be set here!
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
#main settings#
|
||||||
|
/DATA/Insheim #rootpath# %project path
|
||||||
|
EVENT_DATA/LOCAL #datapath# %data path
|
||||||
|
2013.02_Insheim #database# %name of data base
|
||||||
|
e0019.048.13 #eventID# %certain evnt ID for processing
|
||||||
|
PILOT #datastructure# %choose data structure
|
||||||
|
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
|
||||||
|
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
|
||||||
|
AUTOLOC_AIC_HOS4_ARH #locfile# %name of autoPILOT output location file
|
||||||
|
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing polarities
|
||||||
|
HYPOSAT #locrt# %location routine used ("HYPOINVERSE" or "HYPOSAT")
|
||||||
|
6 #pmin# %minimum required P picks for location
|
||||||
|
4 #p0min# %minimum required P picks for location if at least
|
||||||
|
%3 excellent P picks are found
|
||||||
|
2 #smin# %minimum required S picks for location
|
||||||
|
/home/ludger/bin/run_HYPOSAT4autoPILOT.csh #cshellp# %path and name of c-shell script to run location routine
|
||||||
|
7.6 8.5 #blon# %longitude bounding for location map
|
||||||
|
49 49.4 #blat# %lattitude bounding for location map
|
||||||
|
#parameters for moment magnitude estimation#
|
||||||
|
5000 #vp# %average P-wave velocity
|
||||||
|
2800 #vs# %average S-wave velocity
|
||||||
|
2200 #rho# %rock density [kg/m^3]
|
||||||
|
300 #Qp# %quality factor for P waves
|
||||||
|
100 #Qs# %quality factor for S waves
|
||||||
|
#common settings picker#
|
||||||
|
15 #pstart# %start time [s] for calculating CF for P-picking
|
||||||
|
40 #pstop# %end time [s] for calculating CF for P-picking
|
||||||
|
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
||||||
|
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||||
|
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||||
|
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||||
|
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||||
|
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
|
||||||
|
#special settings for calculating CF#
|
||||||
|
%!!Be careful when editing the following!!
|
||||||
|
#Z-component#
|
||||||
|
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
|
||||||
|
7 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
|
||||||
|
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
|
||||||
|
2 #Parorder# %for AR-picker, order of AR process of Z-component
|
||||||
|
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
|
||||||
|
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
|
||||||
|
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
|
||||||
|
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
|
||||||
|
0.001 #addnoise# %add noise to seismogram for stable AR prediction
|
||||||
|
3 0.1 0.5 0.1 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||||
|
3 #pickwinP# %for initial AIC pick, length of P-pick window [s]
|
||||||
|
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
|
||||||
|
0 #peps4aic# %for HOS/AR, artificial uplift of samples of AIC-function (P)
|
||||||
|
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
|
||||||
|
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
|
||||||
|
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
|
||||||
|
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
|
||||||
|
#H-components#
|
||||||
|
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
|
||||||
|
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
|
||||||
|
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
|
||||||
|
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
|
||||||
|
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
|
||||||
|
4 #Sarorder# %for AR-picker, order of AR process of H-components
|
||||||
|
6 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
|
||||||
|
3 #pickwinS# %for initial AIC pick, length of S-pick window [s]
|
||||||
|
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||||
|
0.05 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
|
||||||
|
0.02 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
|
||||||
|
0.2 #pepsS# %for AR-picker, artificial uplift of samples of CF (S)
|
||||||
|
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
|
||||||
|
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
|
||||||
|
%first-motion picker%
|
||||||
|
1 #minfmweight# %minimum required p weight for first-motion determination
|
||||||
|
2 #minFMSNR# %miniumum required SNR for first-motion determination
|
||||||
|
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
|
||||||
|
%quality assessment%
|
||||||
|
#inital AIC onset#
|
||||||
|
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
||||||
|
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
||||||
|
80 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
|
||||||
|
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
|
||||||
|
50 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
|
||||||
|
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
|
||||||
|
#check duration of signal using envelope function#
|
||||||
|
1.5 #prepickwin# %pre-signal window length [s] for noise level estimation
|
||||||
|
0.7 #minsiglength# %minimum required length of signal [s]
|
||||||
|
0.2 #sgap# %safety gap between noise and signal window [s]
|
||||||
|
2 #noisefactor# %noiselevel*noisefactor=threshold
|
||||||
|
60 #minpercent# %per cent of samples required higher than threshold
|
||||||
|
#check for spuriously picked S-onsets#
|
||||||
|
3.0 #zfac# %P-amplitude must exceed zfac times RMS-S amplitude
|
||||||
|
#jackknife-processing for P-picks#
|
||||||
|
3 #thresholdweight#%minimum required weight of picks
|
||||||
|
3 #dttolerance# %maximum allowed deviation of P picks from median [s]
|
||||||
|
4 #minstats# %minimum number of stations with reliable P picks
|
||||||
|
3 #Sdttolerance# %maximum allowed deviation from Wadati-diagram
|
||||||
|
|
73
autoPyLoT.py
73
autoPyLoT.py
@ -6,15 +6,17 @@ import os
|
|||||||
import argparse
|
import argparse
|
||||||
import glob
|
import glob
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from obspy.core import read
|
||||||
from pylot.core.util import _getVersionString
|
from pylot.core.util import _getVersionString
|
||||||
from pylot.core.read import Data, AutoPickParameter
|
from pylot.core.read import Data, AutoPickParameter
|
||||||
from pylot.core.pick.CharFuns import HOScf, AICcf
|
from pylot.core.pick.run_autopicking import run_autopicking
|
||||||
from pylot.core.util.structure import DATASTRUCTURE
|
from pylot.core.util.structure import DATASTRUCTURE
|
||||||
|
|
||||||
|
|
||||||
__version__ = _getVersionString()
|
__version__ = _getVersionString()
|
||||||
|
|
||||||
METHOD = {'HOS':HOScf, 'AIC':AICcf}
|
#METHOD = {'HOS':HOScf, 'AIC':AICcf}
|
||||||
|
|
||||||
def autoPyLoT(inputfile):
|
def autoPyLoT(inputfile):
|
||||||
'''
|
'''
|
||||||
@ -37,16 +39,6 @@ def autoPyLoT(inputfile):
|
|||||||
|
|
||||||
data = Data()
|
data = Data()
|
||||||
|
|
||||||
# declaring parameter variables (only for convenience)
|
|
||||||
|
|
||||||
meth = parameter.getParam('algoP')
|
|
||||||
tsnr1 = parameter.getParam('tsnr1')
|
|
||||||
tsnr2 = parameter.getParam('tsnr2')
|
|
||||||
tnoise = parameter.getParam('pnoiselen')
|
|
||||||
tsignal = parameter.getParam('tlim')
|
|
||||||
order = parameter.getParam('hosorder')
|
|
||||||
thosmw = parameter.getParam('tlta')
|
|
||||||
|
|
||||||
# getting information on data structure
|
# getting information on data structure
|
||||||
|
|
||||||
if parameter.hasParam('datastructure'):
|
if parameter.hasParam('datastructure'):
|
||||||
@ -60,30 +52,63 @@ def autoPyLoT(inputfile):
|
|||||||
if parameter.hasParam('eventID'):
|
if parameter.hasParam('eventID'):
|
||||||
dsfields['eventID'] = parameter.getParam('eventID')
|
dsfields['eventID'] = parameter.getParam('eventID')
|
||||||
exf.append('eventID')
|
exf.append('eventID')
|
||||||
datastructure.modifyFields(**dsfields)
|
|
||||||
|
|
||||||
|
datastructure.modifyFields(**dsfields)
|
||||||
datastructure.setExpandFields(exf)
|
datastructure.setExpandFields(exf)
|
||||||
|
|
||||||
# process each event in database
|
# get streams
|
||||||
# process each event in database
|
# read each event in database
|
||||||
datapath = datastructure.expandDataPath()
|
datapath = datastructure.expandDataPath()
|
||||||
if not parameter.hasParam('eventID'):
|
if not parameter.hasParam('eventID'):
|
||||||
for event in [events for events in
|
for event in [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)]:
|
||||||
glob.glob(os.path.join(datapath, '*'))
|
|
||||||
if os.path.isdir(events)]:
|
|
||||||
data.setWFData(glob.glob(os.path.join(datapath, event, '*')))
|
data.setWFData(glob.glob(os.path.join(datapath, event, '*')))
|
||||||
|
print 'Working on event %s' %event
|
||||||
print data
|
print data
|
||||||
else:
|
|
||||||
data.setWFData(glob.glob(os.path.join(datapath,
|
|
||||||
parameter.getParam('eventID'),
|
|
||||||
'*')))
|
|
||||||
print data
|
|
||||||
|
|
||||||
|
wfdat = data.getWFData() # all available streams
|
||||||
|
##########################################################
|
||||||
|
# !automated picking starts here!
|
||||||
|
procstats = []
|
||||||
|
for i in range(len(wfdat)):
|
||||||
|
stationID = wfdat[i].stats.station
|
||||||
|
#check if station has already been processed
|
||||||
|
if stationID not in procstats:
|
||||||
|
procstats.append(stationID)
|
||||||
|
#find corresponding streams
|
||||||
|
statdat = wfdat.select(station=stationID)
|
||||||
|
run_autopicking(statdat, parameter)
|
||||||
|
print '------------------------------------------'
|
||||||
|
print '-----Finished event %s!-----' % event
|
||||||
|
print '------------------------------------------'
|
||||||
|
|
||||||
|
#for single event processing
|
||||||
|
else:
|
||||||
|
data.setWFData(glob.glob(os.path.join(datapath, parameter.getParam('eventID'), '*')))
|
||||||
|
print 'Working on event ', parameter.getParam('eventID')
|
||||||
|
print data
|
||||||
|
|
||||||
|
wfdat = data.getWFData() # all available streams
|
||||||
|
##########################################################
|
||||||
|
# !automated picking starts here!
|
||||||
|
procstats = []
|
||||||
|
for i in range(len(wfdat)):
|
||||||
|
stationID = wfdat[i].stats.station
|
||||||
|
#check if station has already been processed
|
||||||
|
if stationID not in procstats:
|
||||||
|
procstats.append(stationID)
|
||||||
|
#find corresponding streams
|
||||||
|
statdat = wfdat.select(station=stationID)
|
||||||
|
run_autopicking(statdat, parameter)
|
||||||
|
print '------------------------------------------'
|
||||||
|
print '-------Finished event %s!-------' % parameter.getParam('eventID')
|
||||||
|
print '------------------------------------------'
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# parse arguments
|
# parse arguments
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description='''This program ''')
|
description='''autoPyLoT automatically picks phase onset times using higher order statistics,
|
||||||
|
autoregressive prediction and AIC''')
|
||||||
|
|
||||||
parser.add_argument('-i', '-I', '--inputfile', type=str,
|
parser.add_argument('-i', '-I', '--inputfile', type=str,
|
||||||
action='store',
|
action='store',
|
||||||
|
@ -218,13 +218,12 @@ class AICcf(CharacteristicFunction):
|
|||||||
nn = np.isnan(xnp)
|
nn = np.isnan(xnp)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
xnp[nn] = 0
|
xnp[nn] = 0
|
||||||
i0 = np.where(xnp == 0)
|
|
||||||
i = np.where(xnp > 0)
|
|
||||||
xnp[i0] = xnp[i[0][0]]
|
|
||||||
datlen = len(xnp)
|
datlen = len(xnp)
|
||||||
k = np.arange(1, datlen)
|
k = np.arange(1, datlen)
|
||||||
cf = np.zeros(datlen)
|
cf = np.zeros(datlen)
|
||||||
cumsumcf = np.cumsum(np.power(xnp, 2))
|
cumsumcf = np.cumsum(np.power(xnp, 2))
|
||||||
|
i = np.where(cumsumcf == 0)
|
||||||
|
cumsumcf[i] = np.finfo(np.float64).eps
|
||||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) * \
|
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) * \
|
||||||
np.log((cumsumcf[datlen - 1] - cumsumcf[k - 1]) / (datlen - k + 1)))
|
np.log((cumsumcf[datlen - 1] - cumsumcf[k - 1]) / (datlen - k + 1)))
|
||||||
cf[0] = cf[1]
|
cf[0] = cf[1]
|
||||||
@ -236,7 +235,6 @@ class AICcf(CharacteristicFunction):
|
|||||||
self.cf = cf - np.mean(cf)
|
self.cf = cf - np.mean(cf)
|
||||||
self.xcf = x
|
self.xcf = x
|
||||||
|
|
||||||
|
|
||||||
class HOScf(CharacteristicFunction):
|
class HOScf(CharacteristicFunction):
|
||||||
'''
|
'''
|
||||||
Function to calculate skewness (statistics of order 3) or kurtosis
|
Function to calculate skewness (statistics of order 3) or kurtosis
|
||||||
@ -310,8 +308,8 @@ class ARZcf(CharacteristicFunction):
|
|||||||
|
|
||||||
cf = np.zeros(len(xnp))
|
cf = np.zeros(len(xnp))
|
||||||
loopstep = self.getARdetStep()
|
loopstep = self.getARdetStep()
|
||||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
arcalci = ldet + self.getOrder() #AR-calculation index
|
||||||
for i in range(ldet + self.getOrder() - 1, tend - 2 * lpred + 1):
|
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||||
if i == arcalci:
|
if i == arcalci:
|
||||||
#determination of AR coefficients
|
#determination of AR coefficients
|
||||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||||
@ -320,10 +318,17 @@ class ARZcf(CharacteristicFunction):
|
|||||||
#AR prediction of waveform using calculated AR coefficients
|
#AR prediction of waveform using calculated AR coefficients
|
||||||
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
||||||
#prediction error = CF
|
#prediction error = CF
|
||||||
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
|
cf[i + lpred-1] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred-1] - xnp[i:i + lpred-1], 2)) / lpred)
|
||||||
nn = np.isnan(cf)
|
nn = np.isnan(cf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
cf[nn] = 0
|
cf[nn] = 0
|
||||||
|
#remove zeros and artefacts
|
||||||
|
tap = np.hanning(len(cf))
|
||||||
|
cf = tap * cf
|
||||||
|
io = np.where(cf == 0)
|
||||||
|
ino = np.where(cf > 0)
|
||||||
|
cf[io] = cf[ino[0][0]]
|
||||||
|
|
||||||
self.cf = cf
|
self.cf = cf
|
||||||
self.xcf = x
|
self.xcf = x
|
||||||
|
|
||||||
@ -350,17 +355,18 @@ class ARZcf(CharacteristicFunction):
|
|||||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||||
rhs = np.zeros(self.getOrder())
|
rhs = np.zeros(self.getOrder())
|
||||||
for k in range(0, self.getOrder()):
|
for k in range(0, self.getOrder()):
|
||||||
for i in range(rind, ldet):
|
for i in range(rind, ldet+1):
|
||||||
rhs[k] = rhs[k] + data[i] * data[i - k]
|
ki = k + 1
|
||||||
|
rhs[k] = rhs[k] + data[i] * data[i - ki]
|
||||||
|
|
||||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||||
A = np.zeros((2,2))
|
A = np.zeros((self.getOrder(),self.getOrder()))
|
||||||
for k in range(1, self.getOrder() + 1):
|
for k in range(1, self.getOrder() + 1):
|
||||||
for j in range(1, k + 1):
|
for j in range(1, k + 1):
|
||||||
for i in range(rind, ldet):
|
for i in range(rind, ldet+1):
|
||||||
ki = k - 1
|
ki = k - 1
|
||||||
ji = j - 1
|
ji = j - 1
|
||||||
A[ki,ji] = A[ki,ji] + data[i - ji] * data[i - ki]
|
A[ki,ji] = A[ki,ji] + data[i - j] * data[i - k]
|
||||||
|
|
||||||
A[ji,ki] = A[ki,ji]
|
A[ji,ki] = A[ki,ji]
|
||||||
|
|
||||||
@ -387,20 +393,20 @@ class ARZcf(CharacteristicFunction):
|
|||||||
Output: predicted waveform z
|
Output: predicted waveform z
|
||||||
'''
|
'''
|
||||||
#be sure of the summation indeces
|
#be sure of the summation indeces
|
||||||
if rind < len(arpara) + 1:
|
if rind < len(arpara):
|
||||||
rind = len(arpara) + 1
|
rind = len(arpara)
|
||||||
if rind > len(data) - lpred + 1:
|
if rind > len(data) - lpred :
|
||||||
rind = len(data) - lpred + 1
|
rind = len(data) - lpred
|
||||||
if lpred < 1:
|
if lpred < 1:
|
||||||
lpred = 1
|
lpred = 1
|
||||||
if lpred > len(data) - 1:
|
if lpred > len(data) - 2:
|
||||||
lpred = len(data) - 1
|
lpred = len(data) - 2
|
||||||
|
|
||||||
z = np.append(data[0:rind], np.zeros(lpred))
|
z = np.append(data[0:rind], np.zeros(lpred))
|
||||||
for i in range(rind, rind + lpred):
|
for i in range(rind, rind + lpred):
|
||||||
for j in range(1, len(arpara) + 1):
|
for j in range(1, len(arpara) + 1):
|
||||||
ji = j - 1
|
ji = j - 1
|
||||||
z[i] = z[i] + arpara[ji] * z[i - ji]
|
z[i] = z[i] + arpara[ji] * z[i - j]
|
||||||
|
|
||||||
self.xpred = z
|
self.xpred = z
|
||||||
|
|
||||||
@ -432,8 +438,9 @@ class ARHcf(CharacteristicFunction):
|
|||||||
|
|
||||||
cf = np.zeros(len(xenoise))
|
cf = np.zeros(len(xenoise))
|
||||||
loopstep = self.getARdetStep()
|
loopstep = self.getARdetStep()
|
||||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
arcalci = lpred + self.getOrder() - 1 #AR-calculation index
|
||||||
for i in range(ldet + self.getOrder() - 1, tend - 2 * lpred + 1):
|
#arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||||
|
for i in range(lpred + self.getOrder() - 1, tend - 2 * lpred + 1):
|
||||||
if i == arcalci:
|
if i == arcalci:
|
||||||
#determination of AR coefficients
|
#determination of AR coefficients
|
||||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||||
@ -447,6 +454,13 @@ class ARHcf(CharacteristicFunction):
|
|||||||
nn = np.isnan(cf)
|
nn = np.isnan(cf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
cf[nn] = 0
|
cf[nn] = 0
|
||||||
|
#remove zeros and artefacts
|
||||||
|
tap = np.hanning(len(cf))
|
||||||
|
cf = tap * cf
|
||||||
|
io = np.where(cf == 0)
|
||||||
|
ino = np.where(cf > 0)
|
||||||
|
cf[io] = cf[ino[0][0]]
|
||||||
|
|
||||||
self.cf = cf
|
self.cf = cf
|
||||||
self.xcf = xnp
|
self.xcf = xnp
|
||||||
|
|
||||||
@ -581,6 +595,13 @@ class AR3Ccf(CharacteristicFunction):
|
|||||||
nn = np.isnan(cf)
|
nn = np.isnan(cf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
cf[nn] = 0
|
cf[nn] = 0
|
||||||
|
#remove zeros and artefacts
|
||||||
|
tap = np.hanning(len(cf))
|
||||||
|
cf = tap * cf
|
||||||
|
io = np.where(cf == 0)
|
||||||
|
ino = np.where(cf > 0)
|
||||||
|
cf[io] = cf[ino[0][0]]
|
||||||
|
|
||||||
self.cf = cf
|
self.cf = cf
|
||||||
self.xcf = xnp
|
self.xcf = xnp
|
||||||
|
|
||||||
|
@ -145,6 +145,8 @@ class AICPicker(AutoPicking):
|
|||||||
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
|
self.slope = None
|
||||||
|
self.SNR = None
|
||||||
#find NaN's
|
#find NaN's
|
||||||
nn = np.isnan(self.cf)
|
nn = np.isnan(self.cf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
@ -173,7 +175,7 @@ class AICPicker(AutoPicking):
|
|||||||
#find NaN's
|
#find NaN's
|
||||||
nn = np.isnan(diffcf)
|
nn = np.isnan(diffcf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
diffcf[nn] = 0
|
diffcf[nn] = 0
|
||||||
#taper CF to get rid off side maxima
|
#taper CF to get rid off side maxima
|
||||||
tap = np.hanning(len(diffcf))
|
tap = np.hanning(len(diffcf))
|
||||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||||
@ -197,11 +199,15 @@ class AICPicker(AutoPicking):
|
|||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
#get noise window
|
#get noise window
|
||||||
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0], self.TSNR[1])
|
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0], self.TSNR[1])
|
||||||
|
#check, if these are counts or m/s, important for slope estimation!
|
||||||
|
#this is quick and dirty, better solution?
|
||||||
|
if max(self.Data[0].data < 1e-3):
|
||||||
|
self.Data[0].data = self.Data[0].data * 1000000
|
||||||
#get signal window
|
#get signal window
|
||||||
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
||||||
#calculate SNR from CF
|
#calculate SNR from CF
|
||||||
self.SNR = max(abs(self.cf[isignal] - np.mean(self.cf[isignal]))) / max(abs(self.cf[inoise] \
|
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / max(abs(aic[inoise] \
|
||||||
- np.mean(self.cf[inoise])))
|
- np.mean(aic[inoise])))
|
||||||
#calculate slope from CF after initial pick
|
#calculate slope from CF after initial pick
|
||||||
#get slope window
|
#get slope window
|
||||||
tslope = self.TSNR[3] #slope determination window
|
tslope = self.TSNR[3] #slope determination window
|
||||||
@ -230,8 +236,8 @@ class AICPicker(AutoPicking):
|
|||||||
self.SNR = None
|
self.SNR = None
|
||||||
self.slope = None
|
self.slope = None
|
||||||
|
|
||||||
if self.iplot is not None:
|
if self.iplot > 1:
|
||||||
plt.figure(self.iplot)
|
p = plt.figure(self.iplot)
|
||||||
x = self.Data[0].data
|
x = self.Data[0].data
|
||||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||||
@ -243,7 +249,6 @@ class AICPicker(AutoPicking):
|
|||||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
plt.yticks([])
|
plt.yticks([])
|
||||||
plt.title(self.Data[0].stats.station)
|
plt.title(self.Data[0].stats.station)
|
||||||
plt.show()
|
|
||||||
|
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
plt.figure(self.iplot + 1)
|
plt.figure(self.iplot + 1)
|
||||||
@ -259,11 +264,12 @@ class AICPicker(AutoPicking):
|
|||||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
plt.ylabel('Counts')
|
plt.ylabel('Counts')
|
||||||
ax = plt.gca()
|
ax = plt.gca()
|
||||||
ax.set_ylim([-10, max(self.Data[0].data)])
|
plt.yticks([])
|
||||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 5, self.Tcf[isignal[0][len(isignal) - 1]] + 5])
|
ax.set_xlim([self.Tcf[inoise[0][0]] - 5, self.Tcf[isignal[0][len(isignal) - 1]] + 5])
|
||||||
|
|
||||||
|
plt.show()
|
||||||
raw_input()
|
raw_input()
|
||||||
plt.close(self.iplot)
|
plt.close(p)
|
||||||
|
|
||||||
if self.Pick == None:
|
if self.Pick == None:
|
||||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
print 'AICPicker: Could not find minimum, picking window too short?'
|
||||||
@ -347,8 +353,8 @@ class PragPicker(AutoPicking):
|
|||||||
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
||||||
self.Pick = pick_r
|
self.Pick = pick_r
|
||||||
|
|
||||||
if self.getiplot() is not None:
|
if self.getiplot() > 1:
|
||||||
plt.figure(self.getiplot())
|
p = plt.figure(self.getiplot())
|
||||||
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
||||||
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
||||||
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||||
@ -358,7 +364,7 @@ class PragPicker(AutoPicking):
|
|||||||
plt.title(self.Data[0].stats.station)
|
plt.title(self.Data[0].stats.station)
|
||||||
plt.show()
|
plt.show()
|
||||||
raw_input()
|
raw_input()
|
||||||
plt.close(self.getiplot())
|
plt.close(p)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
|
459
pylot/core/pick/run_autopicking.py
Executable file
459
pylot/core/pick/run_autopicking.py
Executable file
@ -0,0 +1,459 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
"""
|
||||||
|
Function to run automated picking algorithms using AIC,
|
||||||
|
HOS and AR prediction. Uses object CharFuns and Picker and
|
||||||
|
function conglomerate utils.
|
||||||
|
|
||||||
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||||
|
"""
|
||||||
|
|
||||||
|
from obspy.core import read
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from pylot.core.pick.CharFuns import *
|
||||||
|
from pylot.core.pick.Picker import *
|
||||||
|
from pylot.core.pick.CharFuns import *
|
||||||
|
from pylot.core.pick import utils
|
||||||
|
|
||||||
|
|
||||||
|
def run_autopicking(wfstream, pickparam):
|
||||||
|
|
||||||
|
'''
|
||||||
|
param: wfstream
|
||||||
|
:type: `~obspy.core.stream.Stream`
|
||||||
|
|
||||||
|
param: pickparam
|
||||||
|
:type: container of picking parameters from input file,
|
||||||
|
usually autoPyLoT.in
|
||||||
|
'''
|
||||||
|
|
||||||
|
# declaring pickparam variables (only for convenience)
|
||||||
|
# read your autoPyLoT.in for details!
|
||||||
|
|
||||||
|
#special parameters for P picking
|
||||||
|
algoP = pickparam.getParam('algoP')
|
||||||
|
iplot = pickparam.getParam('iplot')
|
||||||
|
pstart = pickparam.getParam('pstart')
|
||||||
|
pstop = pickparam.getParam('pstop')
|
||||||
|
thosmw = pickparam.getParam('tlta')
|
||||||
|
hosorder = pickparam.getParam('hosorder')
|
||||||
|
tsnrz = pickparam.getParam('tsnrz')
|
||||||
|
hosorder = pickparam.getParam('hosorder')
|
||||||
|
bpz1 = pickparam.getParam('bpz1')
|
||||||
|
bpz2 = pickparam.getParam('bpz2')
|
||||||
|
pickwinP = pickparam.getParam('pickwinP')
|
||||||
|
tsmoothP = pickparam.getParam('tsmoothP')
|
||||||
|
ausP = pickparam.getParam('ausP')
|
||||||
|
nfacP = pickparam.getParam('nfacP')
|
||||||
|
tpred1z = pickparam.getParam('tpred1z')
|
||||||
|
tdet1z = pickparam.getParam('tdet1z')
|
||||||
|
Parorder = pickparam.getParam('Parorder')
|
||||||
|
addnoise = pickparam.getParam('addnoise')
|
||||||
|
Precalcwin = pickparam.getParam('Precalcwin')
|
||||||
|
minAICPslope = pickparam.getParam('minAICPslope')
|
||||||
|
minAICPSNR = pickparam.getParam('minAICPSNR')
|
||||||
|
timeerrorsP = pickparam.getParam('timeerrorsP')
|
||||||
|
#special parameters for S picking
|
||||||
|
algoS = pickparam.getParam('algoS')
|
||||||
|
sstart = pickparam.getParam('sstart')
|
||||||
|
sstop = pickparam.getParam('sstop')
|
||||||
|
bph1 = pickparam.getParam('bph1')
|
||||||
|
bph2 = pickparam.getParam('bph2')
|
||||||
|
tsnrh = pickparam.getParam('tsnrh')
|
||||||
|
pickwinS = pickparam.getParam('pickwinS')
|
||||||
|
tpred1h = pickparam.getParam('tpred1h')
|
||||||
|
tdet1h = pickparam.getParam('tdet1h')
|
||||||
|
tpred2h = pickparam.getParam('tpred2h')
|
||||||
|
tdet2h = pickparam.getParam('tdet2h')
|
||||||
|
Sarorder = pickparam.getParam('Sarorder')
|
||||||
|
aictsmoothS = pickparam.getParam('aictsmoothS')
|
||||||
|
tsmoothS = pickparam.getParam('tsmoothS')
|
||||||
|
ausS = pickparam.getParam('ausS')
|
||||||
|
minAICSslope = pickparam.getParam('minAICSslope')
|
||||||
|
minAICSSNR = pickparam.getParam('minAICSSNR')
|
||||||
|
Srecalcwin = pickparam.getParam('Srecalcwin')
|
||||||
|
nfacS = pickparam.getParam('nfacS')
|
||||||
|
timeerrorsS = pickparam.getParam('timeerrorsS')
|
||||||
|
#parameters for first-motion determination
|
||||||
|
minFMSNR = pickparam.getParam('minFMSNR')
|
||||||
|
fmpickwin = pickparam.getParam('fmpickwin')
|
||||||
|
minfmweight = pickparam.getParam('minfmweight')
|
||||||
|
|
||||||
|
# split components
|
||||||
|
zdat = wfstream.select(component="Z")
|
||||||
|
edat = wfstream.select(component="E")
|
||||||
|
if len(edat) == 0: #check for other components
|
||||||
|
edat = wfstream.select(component="2")
|
||||||
|
ndat = wfstream.select(component="N")
|
||||||
|
if len(ndat) == 0: #check for other components
|
||||||
|
ndat = wfstream.select(component="1")
|
||||||
|
|
||||||
|
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
|
||||||
|
print '##########################################'
|
||||||
|
print 'run_autopicking: Working on P onset of station %s' % zdat[0].stats.station
|
||||||
|
print 'Filtering vertical trace ...'
|
||||||
|
print zdat
|
||||||
|
z_copy = zdat.copy()
|
||||||
|
#filter and taper data
|
||||||
|
tr_filt = zdat[0].copy()
|
||||||
|
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1], zerophase=False)
|
||||||
|
tr_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
z_copy[0].data = tr_filt.data
|
||||||
|
##############################################################
|
||||||
|
#check length of waveform and compare with cut times
|
||||||
|
Lc = pstop - pstart
|
||||||
|
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
|
||||||
|
Ldiff = Lwf - Lc
|
||||||
|
if Ldiff < 0:
|
||||||
|
print 'run_autopicking: Cutting times are too large for actual waveform!'
|
||||||
|
print 'Use entire waveform instead!'
|
||||||
|
pstart = 0
|
||||||
|
pstop = len(zdat[0].data) * zdat[0].stats.delta
|
||||||
|
cuttimes = [pstart, pstop]
|
||||||
|
if algoP == 'HOS':
|
||||||
|
#calculate HOS-CF using subclass HOScf of class CharacteristicFunction
|
||||||
|
cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) #instance of HOScf
|
||||||
|
elif algoP == 'ARZ':
|
||||||
|
#calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction
|
||||||
|
cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z, addnoise) #instance of ARZcf
|
||||||
|
##############################################################
|
||||||
|
#calculate AIC-HOS-CF using subclass AICcf of class CharacteristicFunction
|
||||||
|
#class needs stream object => build it
|
||||||
|
tr_aic = tr_filt.copy()
|
||||||
|
tr_aic.data =cf1.getCF()
|
||||||
|
z_copy[0].data = tr_aic.data
|
||||||
|
aiccf = AICcf(z_copy, cuttimes) #instance of AICcf
|
||||||
|
##############################################################
|
||||||
|
#get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking
|
||||||
|
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
|
||||||
|
##############################################################
|
||||||
|
#go on with processing if AIC onset passes quality control
|
||||||
|
if aicpick.getSlope() >= minAICPslope and aicpick.getSNR() >= minAICPSNR:
|
||||||
|
aicPflag = 1
|
||||||
|
print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \
|
||||||
|
(aicpick.getSlope(), aicpick.getSNR())
|
||||||
|
print 'Go on with refined picking ...'
|
||||||
|
#re-filter waveform with larger bandpass
|
||||||
|
print 'run_autopicking: re-filtering vertical trace ...'
|
||||||
|
z_copy = zdat.copy()
|
||||||
|
tr_filt = zdat[0].copy()
|
||||||
|
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1], zerophase=False)
|
||||||
|
tr_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
z_copy[0].data = tr_filt.data
|
||||||
|
#############################################################
|
||||||
|
#re-calculate CF from re-filtered trace in vicinity of initial onset
|
||||||
|
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])), \
|
||||||
|
round(min([len(zdat[0].data) * zdat[0].stats.delta, \
|
||||||
|
aicpick.getpick() + Precalcwin]))]
|
||||||
|
if algoP == 'HOS':
|
||||||
|
#calculate HOS-CF using subclass HOScf of class CharacteristicFunction
|
||||||
|
cf2 = HOScf(z_copy, cuttimes2, thosmw, hosorder) #instance of HOScf
|
||||||
|
elif algoP == 'ARZ':
|
||||||
|
#calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction
|
||||||
|
cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z, addnoise) #instance of ARZcf
|
||||||
|
##############################################################
|
||||||
|
#get refined onset time from CF2 using class Picker
|
||||||
|
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP, aicpick.getpick())
|
||||||
|
#############################################################
|
||||||
|
#quality assessment
|
||||||
|
#get earliest and latest possible pick and symmetrized uncertainty
|
||||||
|
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, refPpick.getpick(), iplot)
|
||||||
|
|
||||||
|
#get SNR
|
||||||
|
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, refPpick.getpick())
|
||||||
|
|
||||||
|
#weight P-onset using symmetric error
|
||||||
|
if Perror <= timeerrorsP[0]:
|
||||||
|
Pweight = 0
|
||||||
|
elif Perror > timeerrorsP[0] and Perror <= timeerrorsP[1]:
|
||||||
|
Pweight = 1
|
||||||
|
elif Perror > timeerrorsP[1] and Perror <= timeerrorsP[2]:
|
||||||
|
Pweight = 2
|
||||||
|
elif Perror > timeerrorsP[2] and Perror <= timeerrorsP[3]:
|
||||||
|
Pweight = 3
|
||||||
|
elif Perror > timeerrorsP[3]:
|
||||||
|
Pweight = 4
|
||||||
|
|
||||||
|
##############################################################
|
||||||
|
#get first motion of P onset
|
||||||
|
#certain quality required
|
||||||
|
if Pweight <= minfmweight and SNRP >= minFMSNR:
|
||||||
|
FM = fmpicker(zdat, z_copy, fmpickwin, refPpick.getpick(), iplot)
|
||||||
|
else:
|
||||||
|
FM = 'N'
|
||||||
|
|
||||||
|
print 'run_autopicking: P-weight: %d, SNR: %f, SNR[dB]: %f, Polarity: %s' % (Pweight, SNRP, SNRPdB, FM)
|
||||||
|
|
||||||
|
else:
|
||||||
|
print 'Bad initial (AIC) P-pick, skip this onset!'
|
||||||
|
print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope()
|
||||||
|
Pweight = 4
|
||||||
|
Sweight = 4
|
||||||
|
FM = 'N'
|
||||||
|
SNRP = None
|
||||||
|
SNRPdB = None
|
||||||
|
SNRS = None
|
||||||
|
SNRSdB = None
|
||||||
|
aicSflag = 0
|
||||||
|
aicPflag = 0
|
||||||
|
else:
|
||||||
|
print 'run_autopicking: No vertical component data available, skipping station!'
|
||||||
|
return
|
||||||
|
|
||||||
|
if edat is not None and ndat is not None and len(edat) > 0 and len(ndat) > 0 and Pweight < 4:
|
||||||
|
print 'Go on picking S onset ...'
|
||||||
|
print '##################################################'
|
||||||
|
print 'Working on S onset of station %s' % edat[0].stats.station
|
||||||
|
print 'Filtering horizontal traces ...'
|
||||||
|
|
||||||
|
#determine time window for calculating CF after P onset
|
||||||
|
#cuttimesh = [round(refPpick.getpick() + sstart), round(refPpick.getpick() + sstop)]
|
||||||
|
cuttimesh = [round(max([refPpick.getpick() + sstart, 0])), \
|
||||||
|
round(min([refPpick.getpick() + sstop, Lwf]))]
|
||||||
|
|
||||||
|
if algoS == 'ARH':
|
||||||
|
print edat, ndat
|
||||||
|
#re-create stream object including both horizontal components
|
||||||
|
hdat = edat.copy()
|
||||||
|
hdat += ndat
|
||||||
|
h_copy = hdat.copy()
|
||||||
|
#filter and taper data
|
||||||
|
trH1_filt = hdat[0].copy()
|
||||||
|
trH2_filt = hdat[1].copy()
|
||||||
|
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
||||||
|
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
||||||
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
h_copy[0].data = trH1_filt.data
|
||||||
|
h_copy[1].data = trH2_filt.data
|
||||||
|
elif algoS == 'AR3':
|
||||||
|
print zdat, edat, ndat
|
||||||
|
#re-create stream object including both horizontal components
|
||||||
|
hdat = zdat.copy()
|
||||||
|
hdat += edat
|
||||||
|
hdat += ndat
|
||||||
|
h_copy = hdat.copy()
|
||||||
|
#filter and taper data
|
||||||
|
trH1_filt = hdat[0].copy()
|
||||||
|
trH2_filt = hdat[1].copy()
|
||||||
|
trH3_filt = hdat[2].copy()
|
||||||
|
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
||||||
|
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
||||||
|
trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
||||||
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
h_copy[0].data = trH1_filt.data
|
||||||
|
h_copy[1].data = trH2_filt.data
|
||||||
|
h_copy[2].data = trH3_filt.data
|
||||||
|
##############################################################
|
||||||
|
if algoS == 'ARH':
|
||||||
|
#calculate ARH-CF using subclass ARHcf of class CharcteristicFunction
|
||||||
|
arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) #instance of ARHcf
|
||||||
|
elif algoS == 'AR3':
|
||||||
|
#calculate ARH-CF using subclass AR3cf of class CharcteristicFunction
|
||||||
|
arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) #instance of ARHcf
|
||||||
|
##############################################################
|
||||||
|
#calculate AIC-ARH-CF using subclass AICcf of class CharacteristicFunction
|
||||||
|
#class needs stream object => build it
|
||||||
|
tr_arhaic = trH1_filt.copy()
|
||||||
|
tr_arhaic.data = arhcf1.getCF()
|
||||||
|
h_copy[0].data = tr_arhaic.data
|
||||||
|
#calculate ARH-AIC-CF
|
||||||
|
haiccf = AICcf(h_copy, cuttimesh) #instance of AICcf
|
||||||
|
##############################################################
|
||||||
|
#get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking
|
||||||
|
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None, aictsmoothS)
|
||||||
|
###############################################################
|
||||||
|
#go on with processing if AIC onset passes quality control
|
||||||
|
if aicarhpick.getSlope() >= minAICSslope and aicarhpick.getSNR() >= minAICSSNR:
|
||||||
|
aicSflag = 1
|
||||||
|
print 'AIC S-pick passes quality control: Slope: %f, SNR: %f' \
|
||||||
|
% (aicarhpick.getSlope(), aicarhpick.getSNR())
|
||||||
|
print 'Go on with refined picking ...'
|
||||||
|
#re-calculate CF from re-filtered trace in vicinity of initial onset
|
||||||
|
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin), \
|
||||||
|
round(aicarhpick.getpick() + Srecalcwin)]
|
||||||
|
#re-filter waveform with larger bandpass
|
||||||
|
print 'run_autopicking: re-filtering horizontal traces...'
|
||||||
|
h_copy = hdat.copy()
|
||||||
|
#filter and taper data
|
||||||
|
if algoS == 'ARH':
|
||||||
|
trH1_filt = hdat[0].copy()
|
||||||
|
trH2_filt = hdat[1].copy()
|
||||||
|
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
||||||
|
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
||||||
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
h_copy[0].data = trH1_filt.data
|
||||||
|
h_copy[1].data = trH2_filt.data
|
||||||
|
#############################################################
|
||||||
|
arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) #instance of ARHcf
|
||||||
|
elif algoS == 'AR3':
|
||||||
|
trH1_filt = hdat[0].copy()
|
||||||
|
trH2_filt = hdat[1].copy()
|
||||||
|
trH3_filt = hdat[2].copy()
|
||||||
|
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
||||||
|
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
||||||
|
trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
||||||
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
h_copy[0].data = trH1_filt.data
|
||||||
|
h_copy[1].data = trH2_filt.data
|
||||||
|
h_copy[2].data = trH3_filt.data
|
||||||
|
#############################################################
|
||||||
|
arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) #instance of ARHcf
|
||||||
|
|
||||||
|
#get refined onset time from CF2 using class Picker
|
||||||
|
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS, tsmoothS, aicarhpick.getpick())
|
||||||
|
#############################################################
|
||||||
|
#quality assessment
|
||||||
|
#get earliest and latest possible pick and symmetrized uncertainty
|
||||||
|
h_copy[0].data = trH1_filt.data
|
||||||
|
[lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot)
|
||||||
|
h_copy[0].data = trH2_filt.data
|
||||||
|
[lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot)
|
||||||
|
if algoS == 'ARH':
|
||||||
|
#get earliest pick of both earliest possible picks
|
||||||
|
epick = [epickS1, epickS2]
|
||||||
|
lpick = [lpickS1, lpickS2]
|
||||||
|
pickerr = [Serror1, Serror2]
|
||||||
|
ipick =np.argmin([epickS1, epickS2])
|
||||||
|
elif algoS == 'AR3':
|
||||||
|
[lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot)
|
||||||
|
#get earliest pick of all three picks
|
||||||
|
epick = [epickS1, epickS2, epickS3]
|
||||||
|
lpick = [lpickS1, lpickS2, lpickS3]
|
||||||
|
pickerr = [Serror1, Serror2, Serror3]
|
||||||
|
ipick =np.argmin([epickS1, epickS2, epickS3])
|
||||||
|
epickS = epick[ipick]
|
||||||
|
lpickS = lpick[ipick]
|
||||||
|
Serror = pickerr[ipick]
|
||||||
|
|
||||||
|
#get SNR
|
||||||
|
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, refSpick.getpick())
|
||||||
|
|
||||||
|
#weight S-onset using symmetric error
|
||||||
|
if Serror <= timeerrorsS[0]:
|
||||||
|
Sweight = 0
|
||||||
|
elif Serror > timeerrorsS[0] and Serror <= timeerrorsS[1]:
|
||||||
|
Sweight = 1
|
||||||
|
elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]:
|
||||||
|
Sweight = 2
|
||||||
|
elif Serror > timeerrorsS[2] and Serror <= timeerrorsS[3]:
|
||||||
|
Sweight = 3
|
||||||
|
elif Serror > timeerrorsS[3]:
|
||||||
|
Sweight = 4
|
||||||
|
|
||||||
|
print 'run_autopicking: S-weight: %d, SNR: %f, SNR[dB]: %f' % (Sweight, SNRS, SNRSdB)
|
||||||
|
|
||||||
|
else:
|
||||||
|
print 'Bad initial (AIC) S-pick, skip this onset!'
|
||||||
|
print 'AIC-SNR=', aicarhpick.getSNR(), 'AIC-Slope=', aicarhpick.getSlope()
|
||||||
|
Sweight = 4
|
||||||
|
SNRS = None
|
||||||
|
SNRSdB = None
|
||||||
|
aicSflag = 0
|
||||||
|
|
||||||
|
else:
|
||||||
|
print 'run_autopicking: No horizontal component data available or bad P onset, skipping S picking!'
|
||||||
|
return
|
||||||
|
|
||||||
|
##############################################################
|
||||||
|
if iplot > 0:
|
||||||
|
#plot vertical trace
|
||||||
|
plt.figure()
|
||||||
|
plt.subplot(3,1,1)
|
||||||
|
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate, tr_filt.stats.delta)
|
||||||
|
#check equal length of arrays, sometimes they are different!?
|
||||||
|
wfldiff = len(tr_filt.data) - len(tdata)
|
||||||
|
if wfldiff < 0:
|
||||||
|
tdata = tdata[0:len(tdata) - abs(wfldiff)]
|
||||||
|
p1, = plt.plot(tdata, tr_filt.data/max(tr_filt.data), 'k')
|
||||||
|
if Pweight < 4:
|
||||||
|
p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()), 'b')
|
||||||
|
if aicPflag == 1:
|
||||||
|
p3, = plt.plot(cf2.getTimeArray(), cf2.getCF() / max(cf2.getCF()), 'm')
|
||||||
|
p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r')
|
||||||
|
plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [1, 1], 'r')
|
||||||
|
plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [-1, -1], 'r')
|
||||||
|
p5, = plt.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2)
|
||||||
|
plt.plot([refPpick.getpick()-0.5, refPpick.getpick()+0.5], [1.3, 1.3], 'r', linewidth=2)
|
||||||
|
plt.plot([refPpick.getpick()-0.5, refPpick.getpick()+0.5], [-1.3, -1.3], 'r', linewidth=2)
|
||||||
|
plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--')
|
||||||
|
plt.plot([epickP, epickP], [-1.1, 1.1], 'r--')
|
||||||
|
plt.legend([p1, p2, p3, p4, p5], ['Data', 'CF1', 'CF2', 'Initial P Onset', 'Final P Pick'])
|
||||||
|
plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f Polarity: %s' % (tr_filt.stats.station, \
|
||||||
|
tr_filt.stats.channel, Pweight, SNRP, SNRPdB, FM))
|
||||||
|
else:
|
||||||
|
plt.legend([p1, p2], ['Data', 'CF1'])
|
||||||
|
plt.title('%s, P Weight=%d, SNR=None, SNRdB=None' % (tr_filt.stats.channel, Pweight))
|
||||||
|
plt.yticks([])
|
||||||
|
plt.ylim([-1.5, 1.5])
|
||||||
|
plt.ylabel('Normalized Counts')
|
||||||
|
plt.suptitle(tr_filt.stats.starttime)
|
||||||
|
|
||||||
|
#plot horizontal traces
|
||||||
|
plt.subplot(3,1,2)
|
||||||
|
th1data = np.arange(0, trH1_filt.stats.npts / trH1_filt.stats.sampling_rate, trH1_filt.stats.delta)
|
||||||
|
#check equal length of arrays, sometimes they are different!?
|
||||||
|
wfldiff = len(trH1_filt.data) - len(th1data)
|
||||||
|
if wfldiff < 0:
|
||||||
|
th1data = th1data[0:len(th1data) - abs(wfldiff)]
|
||||||
|
p21, = plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k')
|
||||||
|
if Pweight < 4:
|
||||||
|
p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF()/max(arhcf1.getCF()), 'b')
|
||||||
|
if aicSflag == 1:
|
||||||
|
p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF()/max(arhcf2.getCF()), 'm')
|
||||||
|
p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g')
|
||||||
|
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
|
||||||
|
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
|
||||||
|
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick'])
|
||||||
|
plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (trH1_filt.stats.channel, \
|
||||||
|
Sweight, SNRS, SNRSdB))
|
||||||
|
else:
|
||||||
|
plt.legend([p21, p22], ['Data', 'CF1'])
|
||||||
|
plt.title('%s, S Weight=%d, SNR=None, SNRdB=None' % (trH1_filt.stats.channel, Sweight))
|
||||||
|
plt.yticks([])
|
||||||
|
plt.ylim([-1.5, 1.5])
|
||||||
|
plt.ylabel('Normalized Counts')
|
||||||
|
plt.suptitle(trH1_filt.stats.starttime)
|
||||||
|
|
||||||
|
plt.subplot(3,1,3)
|
||||||
|
th2data = np.arange(0, trH2_filt.stats.npts / trH2_filt.stats.sampling_rate, trH2_filt.stats.delta)
|
||||||
|
#check equal length of arrays, sometimes they are different!?
|
||||||
|
wfldiff = len(trH2_filt.data) - len(th2data)
|
||||||
|
if wfldiff < 0:
|
||||||
|
th2data = th2data[0:len(th2data) - abs(wfldiff)]
|
||||||
|
plt.plot(th2data, trH2_filt.data/max(trH2_filt.data), 'k')
|
||||||
|
if Pweight < 4:
|
||||||
|
p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF()/max(arhcf1.getCF()), 'b')
|
||||||
|
if aicSflag == 1:
|
||||||
|
p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF()/max(arhcf2.getCF()), 'm')
|
||||||
|
p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g')
|
||||||
|
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
|
||||||
|
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
|
||||||
|
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick'])
|
||||||
|
else:
|
||||||
|
plt.legend([p21, p22], ['Data', 'CF1'])
|
||||||
|
plt.yticks([])
|
||||||
|
plt.ylim([-1.5, 1.5])
|
||||||
|
plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime)
|
||||||
|
plt.ylabel('Normalized Counts')
|
||||||
|
plt.title(trH2_filt.stats.channel)
|
||||||
|
plt.show()
|
||||||
|
raw_input()
|
||||||
|
plt.close()
|
@ -11,7 +11,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from obspy.core import Stream
|
from obspy.core import Stream
|
||||||
import pdb
|
|
||||||
|
|
||||||
|
|
||||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||||
@ -81,8 +80,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
diffti_te = Pick1 - EPick
|
diffti_te = Pick1 - EPick
|
||||||
PickError = (diffti_te + 2 * diffti_tl) / 3
|
PickError = (diffti_te + 2 * diffti_tl) / 3
|
||||||
|
|
||||||
if iplot is not None:
|
if iplot > 1:
|
||||||
plt.figure(iplot)
|
p = plt.figure(iplot)
|
||||||
p1, = plt.plot(t, x, 'k')
|
p1, = plt.plot(t, x, 'k')
|
||||||
p2, = plt.plot(t[inoise], x[inoise])
|
p2, = plt.plot(t[inoise], x[inoise])
|
||||||
p3, = plt.plot(t[isignal], x[isignal], 'r')
|
p3, = plt.plot(t[isignal], x[isignal], 'r')
|
||||||
@ -109,7 +108,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
X[0].stats.station)
|
X[0].stats.station)
|
||||||
plt.show()
|
plt.show()
|
||||||
raw_input()
|
raw_input()
|
||||||
plt.close(iplot)
|
plt.close(p)
|
||||||
|
|
||||||
return EPick, LPick, PickError
|
return EPick, LPick, PickError
|
||||||
|
|
||||||
@ -240,7 +239,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
elif P1[0] > 0 and P2[0] <= 0:
|
elif P1[0] > 0 and P2[0] <= 0:
|
||||||
FM = '+'
|
FM = '+'
|
||||||
|
|
||||||
if iplot is not None:
|
if iplot > 1:
|
||||||
plt.figure(iplot)
|
plt.figure(iplot)
|
||||||
plt.subplot(2, 1, 1)
|
plt.subplot(2, 1, 1)
|
||||||
plt.plot(t, xraw, 'k')
|
plt.plot(t, xraw, 'k')
|
||||||
|
Loading…
Reference in New Issue
Block a user