[edit] implementation of probability density function interface ready for testing

This commit is contained in:
Sebastian Wehling-Benatelli 2016-02-09 11:15:04 +01:00
parent 303a5f9cf0
commit e7a5e388f6

View File

@ -116,18 +116,22 @@ class ProbabilityDensityFunction(object):
def __add__(self, other):
assert isinstance(other, ProbabilityDensityFunction), \
'both operands must be of type ProbabilityDensityFunction'
if self.sampling_rate() == other.sampling_rate():
max = np.maximum(self.axis, other.axis)
x = np.arange(-max, max + self.sampling_rate(), self.sampling_rate())
else:
raise ValueError('Sampling rates do not match!')
pdf1 = self.data
x, pdf_self, pdf_other = self.rearrange(other)
pdf = np.convolve(pdf_self, pdf_other, 'same') * self.delta()
return ProbabilityDensityFunction(x, pdf)
def __sub__(self, other):
pass
assert isinstance(other, ProbabilityDensityFunction), \
'both operands must be of type ProbabilityDensityFunction'
x, pdf_self, pdf_other = self.rearrange(other, plus=False)
pdf = np.convolve(pdf_self, pdf_other[::-1], 'same') * self.delta()
return ProbabilityDensityFunction(x, pdf)
def __nonzero__(self):
return True
@ -148,9 +152,56 @@ class ProbabilityDensityFunction(object):
def axis(self, x):
self.axis = np.array(x)
def sampling_rate(self):
def delta(self):
return self.axis[1] - self.axis[0]
def rearrange(self, other, plus=True):
'''
Method rearrange takes another Probability Density Function and returns
a new axis with mid-point 0 and covering positive and negative range
of axis values, either containing the maximum value of both axis or
the sum of the maxima
:param other:
:param plus:
:return:
'''
assert isinstance(other, ProbabilityDensityFunction), \
'both operands must be of type ProbabilityDensityFunction'
sd = self.delta()
od = other.delta()
samin = np.min(self.axis)
oamin = np.min(other.axis)
# test if 0 is a sampling node
nodes_test = (not samin % sd and not oamin % od)
# test if sampling rates match and if 0 is a sampling node
if sd == od and nodes_test:
if plus:
max = np.max(self.axis) + np.max(other.axis)
else:
max = np.max(np.max(self.axis), np.max(other.axis))
x = np.arange(-max, max + sd, sd)
else:
raise ValueError('Sampling rates do not match or nodes shifted!')
pdf_self = np.zeros(x.size)
pdf_other = np.zeros(x.size)
sstart = np.where(x == samin)
s_end = sstart + self.data.size
ostart = np.where(x == oamin)
o_end = ostart + other.data.size
pdf_self[sstart:s_end] = self.data
pdf_other[ostart:o_end] = other.data
return x, pdf_self, pdf_other
class PickPDF(ProbabilityDensityFunction):
def __init__(self, x, lbound, midpoint, rbound, decfact=0.01, type='gauss'):