[edit] implementation of probability density function interface ready for testing
This commit is contained in:
parent
303a5f9cf0
commit
e7a5e388f6
@ -116,18 +116,22 @@ class ProbabilityDensityFunction(object):
|
|||||||
def __add__(self, other):
|
def __add__(self, other):
|
||||||
assert isinstance(other, ProbabilityDensityFunction), \
|
assert isinstance(other, ProbabilityDensityFunction), \
|
||||||
'both operands must be of type ProbabilityDensityFunction'
|
'both operands must be of type ProbabilityDensityFunction'
|
||||||
if self.sampling_rate() == other.sampling_rate():
|
|
||||||
max = np.maximum(self.axis, other.axis)
|
|
||||||
x = np.arange(-max, max + self.sampling_rate(), self.sampling_rate())
|
|
||||||
else:
|
|
||||||
raise ValueError('Sampling rates do not match!')
|
|
||||||
|
|
||||||
pdf1 = self.data
|
x, pdf_self, pdf_other = self.rearrange(other)
|
||||||
|
|
||||||
|
pdf = np.convolve(pdf_self, pdf_other, 'same') * self.delta()
|
||||||
|
|
||||||
return ProbabilityDensityFunction(x, pdf)
|
return ProbabilityDensityFunction(x, pdf)
|
||||||
|
|
||||||
def __sub__(self, other):
|
def __sub__(self, other):
|
||||||
pass
|
assert isinstance(other, ProbabilityDensityFunction), \
|
||||||
|
'both operands must be of type ProbabilityDensityFunction'
|
||||||
|
|
||||||
|
x, pdf_self, pdf_other = self.rearrange(other, plus=False)
|
||||||
|
|
||||||
|
pdf = np.convolve(pdf_self, pdf_other[::-1], 'same') * self.delta()
|
||||||
|
|
||||||
|
return ProbabilityDensityFunction(x, pdf)
|
||||||
|
|
||||||
def __nonzero__(self):
|
def __nonzero__(self):
|
||||||
return True
|
return True
|
||||||
@ -148,9 +152,56 @@ class ProbabilityDensityFunction(object):
|
|||||||
def axis(self, x):
|
def axis(self, x):
|
||||||
self.axis = np.array(x)
|
self.axis = np.array(x)
|
||||||
|
|
||||||
def sampling_rate(self):
|
def delta(self):
|
||||||
return self.axis[1] - self.axis[0]
|
return self.axis[1] - self.axis[0]
|
||||||
|
|
||||||
|
def rearrange(self, other, plus=True):
|
||||||
|
'''
|
||||||
|
Method rearrange takes another Probability Density Function and returns
|
||||||
|
a new axis with mid-point 0 and covering positive and negative range
|
||||||
|
of axis values, either containing the maximum value of both axis or
|
||||||
|
the sum of the maxima
|
||||||
|
:param other:
|
||||||
|
:param plus:
|
||||||
|
:return:
|
||||||
|
'''
|
||||||
|
|
||||||
|
assert isinstance(other, ProbabilityDensityFunction), \
|
||||||
|
'both operands must be of type ProbabilityDensityFunction'
|
||||||
|
|
||||||
|
sd = self.delta()
|
||||||
|
od = other.delta()
|
||||||
|
|
||||||
|
samin = np.min(self.axis)
|
||||||
|
oamin = np.min(other.axis)
|
||||||
|
|
||||||
|
# test if 0 is a sampling node
|
||||||
|
nodes_test = (not samin % sd and not oamin % od)
|
||||||
|
|
||||||
|
# test if sampling rates match and if 0 is a sampling node
|
||||||
|
if sd == od and nodes_test:
|
||||||
|
if plus:
|
||||||
|
max = np.max(self.axis) + np.max(other.axis)
|
||||||
|
else:
|
||||||
|
max = np.max(np.max(self.axis), np.max(other.axis))
|
||||||
|
x = np.arange(-max, max + sd, sd)
|
||||||
|
else:
|
||||||
|
raise ValueError('Sampling rates do not match or nodes shifted!')
|
||||||
|
|
||||||
|
pdf_self = np.zeros(x.size)
|
||||||
|
pdf_other = np.zeros(x.size)
|
||||||
|
|
||||||
|
sstart = np.where(x == samin)
|
||||||
|
s_end = sstart + self.data.size
|
||||||
|
ostart = np.where(x == oamin)
|
||||||
|
o_end = ostart + other.data.size
|
||||||
|
|
||||||
|
pdf_self[sstart:s_end] = self.data
|
||||||
|
pdf_other[ostart:o_end] = other.data
|
||||||
|
|
||||||
|
return x, pdf_self, pdf_other
|
||||||
|
|
||||||
|
|
||||||
class PickPDF(ProbabilityDensityFunction):
|
class PickPDF(ProbabilityDensityFunction):
|
||||||
|
|
||||||
def __init__(self, x, lbound, midpoint, rbound, decfact=0.01, type='gauss'):
|
def __init__(self, x, lbound, midpoint, rbound, decfact=0.01, type='gauss'):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user