Merge branch 'develop' of ariadne:/data/git/pylot into develop

This commit is contained in:
Sebastian Wehling-Benatelli 2015-09-05 09:41:52 +02:00
commit e9c4987ca0
6 changed files with 147 additions and 120 deletions

View File

@ -30,8 +30,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
300 #Qp# %quality factor for P waves
100 #Qs# %quality factor for S waves
#common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking
80 #pstop# %end time [s] for calculating CF for P-picking
15 #pstart# %start time [s] for calculating CF for P-picking
60 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
@ -81,14 +81,14 @@ ARH #algoS# %choose algorithm for S-onset
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
50 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
10 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
6 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
2.5 #minsiglength# %minimum required length of signal [s]
3 #noisefactor# %noiselevel*noisefactor=threshold
70 #minpercent# %required percentage of samples higher than threshold
5 #minsiglength# %minimum required length of signal [s]
1.8 #noisefactor# %noiselevel*noisefactor=threshold
50 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#

View File

@ -9,6 +9,7 @@
EVENT_DATA/LOCAL #datapath# %data path
2006.01_Nisyros #database# %name of data base
e1412.008.06 #eventID# %event ID for single event processing
/DATA/Egelados/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
@ -30,8 +31,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
100 #Qs# %quality factor for S waves
#common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking
160 #pstop# %end time [s] for calculating CF for P-picking
3.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
100 #pstop# %end time [s] for calculating CF for P-picking
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
@ -64,11 +65,11 @@ ARH #algoS# %choose algorithm for S-onset
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
6 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
25 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
3.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
0.2 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination
@ -78,18 +79,18 @@ ARH #algoS# %choose algorithm for S-onset
#inital AIC onset#
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
5 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
3 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
8 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
5 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
2.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
6 #minsiglength# %minimum required length of signal [s]
1.5 #noisefactor# %noiselevel*noisefactor=threshold
30 #minsiglength# %minimum required length of signal [s]
2.5 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
1.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
1.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
35 #mdttolerance# %maximum allowed deviation of P picks from median [s]
45 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
2.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
3.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@ -18,6 +18,7 @@ calculated after Diehl & Kissling (2009).
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import numpy as np
import matplotlib.pyplot as plt
from pylot.core.pick.utils import getnoisewin, getsignalwin
@ -245,8 +246,7 @@ class AICPicker(AutoPicking):
if datafit[0] >= datafit[len(datafit) - 1]:
print 'AICPicker: Negative slope, bad onset skipped!'
return
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
self.slope = 1 / tslope * (datafit[len(dataslope) - 1] - datafit[0])
else:
self.SNR = None

View File

@ -41,9 +41,9 @@ def autopickevent(data, param):
# quality control
# median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, 2)
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot)
# check S-P times (Wadati)
return wadaticheck(jk_checked_onsets, wdttolerance, 2)
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
def autopickstation(wfstream, pickparam):
"""
@ -196,16 +196,18 @@ def autopickstation(wfstream, pickparam):
##############################################################
if aicpick.getpick() is not None:
# check signal length to detect spuriously picked noise peaks
# use all available components to avoid skipping correct picks
# on vertical traces with weak P coda
z_copy[0].data = tr_filt.data
Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz,
minsiglength, \
nfacsl, minpercent, iplot)
if Pflag == 1:
# check for spuriously picked S onset
# both horizontal traces needed
zne = z_copy
if len(ndat) == 0 or len(edat) == 0:
print 'One or more horizontal components missing!'
print 'Skipping control function checkZ4S.'
print ("One or more horizontal components missing!")
print ("Signal length only checked on vertical component!")
print ("Decreasing minsiglengh from %f to %f" \
% (minsiglength, minsiglength / 2))
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength / 2, \
nfacsl, minpercent, iplot)
else:
# filter and taper horizontal traces
trH1_filt = edat.copy()
@ -218,9 +220,19 @@ def autopickstation(wfstream, pickparam):
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
zne = z_copy
zne += trH1_filt
zne += trH2_filt
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength, \
nfacsl, minpercent, iplot)
if Pflag == 1:
# check for spuriously picked S onset
# both horizontal traces needed
if len(ndat) == 0 or len(edat) == 0:
print 'One or more horizontal components missing!'
print 'Skipping control function checkZ4S.'
else:
Pflag = checkZ4S(zne, aicpick.getpick(), zfac, \
tsnrz[3], iplot)
if Pflag == 0:
@ -515,9 +527,10 @@ def autopickstation(wfstream, pickparam):
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
cordat = data.restituteWFData(invdir, h_copy)
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
# calculate WA-peak-to-peak amplitude
# using subclass WApp of superclass Magnitude
if restflag == 1:
if Sweight < 4:
wapp = WApp(cordat, mpickS, mpickP + sstop, iplot)
else:
@ -544,7 +557,8 @@ def autopickstation(wfstream, pickparam):
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
cordat = data.restituteWFData(invdir, h_copy)
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
if restflag == 1:
# calculate WA-peak-to-peak amplitude
# using subclass WApp of superclass Magnitude
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \

View File

@ -9,7 +9,6 @@
"""
import numpy as np
import scipy as sc
import matplotlib.pyplot as plt
from obspy.core import Stream, UTCDateTime
import warnings
@ -44,7 +43,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
LPick = None
EPick = None
PickError = None
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
print ("earllatepicker: Get earliest and latest possible pick relative to most likely pick ...")
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
@ -60,8 +59,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
ilup, = np.where(x[isignal] > nlevel)
ildown, = np.where(x[isignal] < -nlevel)
if not ilup.size and not ildown.size:
print 'earllatepicker: Signal lower than noise level!'
print 'Skip this trace!'
print ("earllatepicker: Signal lower than noise level!")
print ("Skip this trace!")
return LPick, EPick, PickError
il = min(np.min(ilup) if ilup.size else float('inf'),
np.min(ildown) if ildown.size else float('inf'))
@ -143,7 +142,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
FM = None
if Pick is not None:
print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
print ("fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...")
xraw = Xraw[0].data
xfilt = Xfilt[0].data
@ -182,15 +181,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
li1 = index1[0]
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
print 'fmpicker: Onset on unfiltered trace too emergent for first motion determination!'
print ("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
P1 = None
else:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
if imax1 == 0:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
if imax1 == 0:
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
print ("fmpicker: Zero crossings too close!")
print ("Skip first motion determination!")
return FM
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
@ -224,15 +223,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
li2 = index2[0]
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
print 'fmpicker: Onset on filtered trace too emergent for first motion determination!'
print ("fmpicker: Onset on filtered trace too emergent for first motion determination!")
P2 = None
else:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
if imax2 == 0:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
if imax2 == 0:
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
print ("fmpicker: Zero crossings too close!")
print ("Skip first motion determination!")
return FM
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
@ -256,7 +255,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
elif P1[0] > 0 and P2[0] <= 0:
FM = '+'
print 'fmpicker: Found polarity %s' % FM
print ("fmpicker: Found polarity %s" % FM)
if iplot > 1:
plt.figure(iplot)
@ -331,10 +330,10 @@ def getSNR(X, TSNR, t1):
# get signal window
isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
print ("getSNR: Empty array inoise, check noise window!")
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
print ("getSNR: Empty array isignal, check signal window!")
return
# demean over entire waveform
@ -372,7 +371,7 @@ def getnoisewin(t, t1, tnoise, tgap):
inoise, = np.where((t <= max([t1 - tgap, 0])) \
& (t >= max([t1 - tnoise - tgap, 0])))
if np.size(inoise) < 1:
print 'getnoisewin: Empty array inoise, check noise window!'
print ("getnoisewin: Empty array inoise, check noise window!")
return inoise
@ -396,7 +395,7 @@ def getsignalwin(t, t1, tsignal):
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
& (t >= t1))
if np.size(isignal) < 1:
print 'getsignalwin: Empty array isignal, check signal window!'
print ("getsignalwin: Empty array isignal, check signal window!")
return isignal
@ -483,8 +482,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
# calculate vp/vs ratio before check
vpvsr = p1[0] + 1
print '###############################################'
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
print ("###############################################")
print ("wadaticheck: Average Vp/Vs ratio before check: %f" % vpvsr)
checkedPpicks = []
checkedSpicks = []
@ -521,18 +520,18 @@ def wadaticheck(pickdic, dttolerance, iplot):
# calculate vp/vs ratio after check
cvpvsr = p2[0] + 1
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
print 'wadatacheck: Skipped %d S pick(s).' % ibad
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
else:
print '###############################################'
print 'wadatacheck: Not enough checked S-P times available!'
print 'Skip Wadati check!'
print ("###############################################")
print ("wadatacheck: Not enough checked S-P times available!")
print ("Skip Wadati check!")
checkedonsets = pickdic
else:
print 'wadaticheck: Not enough S-P times available for reliable regression!'
print 'Skip wadati check!'
print ("wadaticheck: Not enough S-P times available for reliable regression!")
print ("Skip wadati check!")
wfitflag = 1
# plot results
@ -562,9 +561,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
'''
Function to detect spuriously picked noise peaks.
Uses envelope to determine, how many samples [per cent] after
P onset are below certain threshold, calculated from noise
level times noise factor.
Uses RMS trace of all 3 components (if available) to determine,
how many samples [per cent] after P onset are below certain
threshold, calculated from noise level times noise factor.
: param: X, time series (seismogram)
: type: `~obspy.core.stream.Stream`
@ -592,47 +591,54 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print 'Checking signal length ...'
print ("Checking signal length ...")
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
if len(X) > 1:
# all three components available
# make sure, all components have equal lengths
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
x1 = X[0][0:ilen]
x2 = X[1][0:ilen]
x3 = X[2][0:ilen]
# get RMS trace
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
else:
x1 = X[0].data
rms = np.sqrt(np.power(2, x1))
t = np.arange(0, ilen / X[0].stats.sampling_rate,
X[0].stats.delta)
# generate envelope function from Hilbert transform
y = np.imag(sc.signal.hilbert(x))
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
# get noise window
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
# get noise window in front of pick plus saftey gap
inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1])
# get signal window
isignal = getsignalwin(t, pick, TSNR[2])
isignal = getsignalwin(t, pick, minsiglength)
# calculate minimum adjusted signal level
minsiglevel = max(e[inoise]) * nfac
minsiglevel = max(rms[inoise]) * nfac
# minimum adjusted number of samples over minimum signal level
minnum = len(isignal) * minpercent/100
# get number of samples above minimum adjusted signal level
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
if numoverthr >= minnum:
print 'checksignallength: Signal reached required length.'
print ("checksignallength: Signal reached required length.")
returnflag = 1
else:
print 'checksignallength: Signal shorter than required minimum signal length!'
print 'Presumably picked noise peak, pick is rejected!'
print '(min. signal length required:', minsiglength, 's)'
print ("checksignallength: Signal shorter than required minimum signal length!")
print ("Presumably picked noise peak, pick is rejected!")
print ("(min. signal length required: %s s)" % minsiglength)
returnflag = 0
if iplot == 2:
plt.figure(iplot)
p1, = plt.plot(t,x, 'k')
p2, = plt.plot(t[inoise], e[inoise], 'c')
p3, = plt.plot(t[isignal],e[isignal], 'r')
p2, = plt.plot(t[inoise], e[inoise])
p3, = plt.plot(t[isignal],e[isignal], 'r')
p1, = plt.plot(t,rms, 'k')
p2, = plt.plot(t[inoise], rms[inoise], 'c')
p3, = plt.plot(t[isignal],rms[isignal], 'r')
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
[minsiglevel, minsiglevel], 'g')
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
'Envelope Signal Window', 'Minimum Signal Level', \
[minsiglevel, minsiglevel], 'g', linewidth=2)
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window', \
'RMS Signal Window', 'Minimum Signal Level', \
'Onset'], loc='best')
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
plt.ylabel('Counts')
@ -675,8 +681,8 @@ def checkPonsets(pickdic, dttolerance, iplot):
stations.append(key)
# apply jackknife bootstrapping on variance of P onsets
print '###############################################'
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
print ("###############################################")
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
# get pseudo variances smaller than average variances
# (times safety factor), these picks passed jackknife test
@ -684,7 +690,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
# these picks did not pass jackknife test
badjk = np.where(PHI_pseudo > 2 * xjack)
badjkstations = np.array(stations)[badjk]
print 'checkPonsets: %d pick(s) did not pass jackknife test!' % len(badjkstations)
print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
# calculate median from these picks
pmedian = np.median(np.array(Ppicks)[ij])
@ -696,9 +702,9 @@ def checkPonsets(pickdic, dttolerance, iplot):
goodstations = np.array(stations)[igood]
badstations = np.array(stations)[ibad]
print 'checkPonsets: %d pick(s) deviate too much from median!' % len(ibad)
print 'checkPonsets: Skipped %d P pick(s) out of %d' % (len(badstations) \
+ len(badjkstations), len(stations))
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
+ len(badjkstations), len(stations)))
goodmarker = 'goodPonsetcheck'
badmarker = 'badPonsetcheck'
@ -765,8 +771,8 @@ def jackknife(X, phi, h):
g = len(X) / h
if type(g) is not int:
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
print 'Choose another size for subgroups!'
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
print ("Choose another size for subgroups!")
return PHI_jack, PHI_pseudo, PHI_sub
else:
# estimator of undisturbed spot check
@ -834,7 +840,7 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print 'Check for spuriously picked S onset instead of P onset ...'
print ("Check for spuriously picked S onset instead of P onset ...")
returnflag = 0
@ -875,9 +881,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
# vertical P-coda level must exceed horizontal P-coda level
# zfac times encodalevel
if zcodalevel < minsiglevel:
print 'checkZ4S: Maybe S onset? Skip this P pick!'
print ("checkZ4S: Maybe S onset? Skip this P pick!")
else:
print 'checkZ4S: P onset passes checkZ4S test!'
print ("checkZ4S: P onset passes checkZ4S test!")
returnflag = 1
if iplot > 1:

View File

@ -228,6 +228,9 @@ class Data(object):
:param streams:
:return:
"""
restflag = 0
if streams is None:
st_raw = self.getWFData()
st = st_raw.copy()
@ -236,7 +239,7 @@ class Data(object):
for tr in st:
# remove underscores
if tr.stats.station[3] == '_':
if len(tr.stats.station) > 3 and tr.stats.station[3] == '_':
tr.stats.station = tr.stats.station[0:3]
dlp = '%s/*.dless' % invdlpath
invp = '%s/*.xml' % invdlpath
@ -273,6 +276,7 @@ class Data(object):
'date': st[
i].stats.starttime,
'units': "VEL"})
restflag = 1
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
@ -303,6 +307,7 @@ class Data(object):
st[i].attach_response(inv)
st[i].remove_response(output='VEL',
pre_filt=prefilt)
restflag = 1
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
@ -334,6 +339,7 @@ class Data(object):
'units': "VEL"}
st[i].simulate(paz_remove=None, pre_filt=prefilt,
seedresp=seedresp)
restflag = 1
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
@ -346,7 +352,7 @@ class Data(object):
print("Go on processing data without source parameter "
"determination!")
return st
return st, restflag
def getEvtData(self):
"""