Merge branch 'develop' of ariadne:/data/git/pylot into develop

This commit is contained in:
Sebastian Wehling-Benatelli 2015-09-05 09:41:52 +02:00
commit e9c4987ca0
6 changed files with 147 additions and 120 deletions

View File

@ -30,8 +30,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
300 #Qp# %quality factor for P waves
100 #Qs# %quality factor for S waves
#common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking
80 #pstop# %end time [s] for calculating CF for P-picking
15 #pstart# %start time [s] for calculating CF for P-picking
60 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
@ -81,14 +81,14 @@ ARH #algoS# %choose algorithm for S-onset
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
50 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
10 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
6 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
2.5 #minsiglength# %minimum required length of signal [s]
3 #noisefactor# %noiselevel*noisefactor=threshold
70 #minpercent# %required percentage of samples higher than threshold
5 #minsiglength# %minimum required length of signal [s]
1.8 #noisefactor# %noiselevel*noisefactor=threshold
50 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#

View File

@ -9,6 +9,7 @@
EVENT_DATA/LOCAL #datapath# %data path
2006.01_Nisyros #database# %name of data base
e1412.008.06 #eventID# %event ID for single event processing
/DATA/Egelados/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
@ -30,8 +31,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
100 #Qs# %quality factor for S waves
#common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking
160 #pstop# %end time [s] for calculating CF for P-picking
3.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
100 #pstop# %end time [s] for calculating CF for P-picking
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
@ -64,11 +65,11 @@ ARH #algoS# %choose algorithm for S-onset
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
6 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
25 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
3.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
0.2 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination
@ -78,18 +79,18 @@ ARH #algoS# %choose algorithm for S-onset
#inital AIC onset#
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
5 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
3 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
8 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
5 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
2.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
6 #minsiglength# %minimum required length of signal [s]
1.5 #noisefactor# %noiselevel*noisefactor=threshold
30 #minsiglength# %minimum required length of signal [s]
2.5 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
1.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
1.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
35 #mdttolerance# %maximum allowed deviation of P picks from median [s]
45 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
2.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
3.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@ -18,6 +18,7 @@ calculated after Diehl & Kissling (2009).
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import numpy as np
import matplotlib.pyplot as plt
from pylot.core.pick.utils import getnoisewin, getsignalwin
@ -245,8 +246,7 @@ class AICPicker(AutoPicking):
if datafit[0] >= datafit[len(datafit) - 1]:
print 'AICPicker: Negative slope, bad onset skipped!'
return
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
self.slope = 1 / tslope * (datafit[len(dataslope) - 1] - datafit[0])
else:
self.SNR = None

View File

@ -41,9 +41,9 @@ def autopickevent(data, param):
# quality control
# median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, 2)
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot)
# check S-P times (Wadati)
return wadaticheck(jk_checked_onsets, wdttolerance, 2)
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
def autopickstation(wfstream, pickparam):
"""
@ -196,10 +196,36 @@ def autopickstation(wfstream, pickparam):
##############################################################
if aicpick.getpick() is not None:
# check signal length to detect spuriously picked noise peaks
# use all available components to avoid skipping correct picks
# on vertical traces with weak P coda
z_copy[0].data = tr_filt.data
Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz,
minsiglength, \
nfacsl, minpercent, iplot)
zne = z_copy
if len(ndat) == 0 or len(edat) == 0:
print ("One or more horizontal components missing!")
print ("Signal length only checked on vertical component!")
print ("Decreasing minsiglengh from %f to %f" \
% (minsiglength, minsiglength / 2))
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength / 2, \
nfacsl, minpercent, iplot)
else:
# filter and taper horizontal traces
trH1_filt = edat.copy()
trH2_filt = ndat.copy()
trH1_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1], \
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1], \
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
zne += trH1_filt
zne += trH2_filt
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength, \
nfacsl, minpercent, iplot)
if Pflag == 1:
# check for spuriously picked S onset
# both horizontal traces needed
@ -207,20 +233,6 @@ def autopickstation(wfstream, pickparam):
print 'One or more horizontal components missing!'
print 'Skipping control function checkZ4S.'
else:
# filter and taper horizontal traces
trH1_filt = edat.copy()
trH2_filt = ndat.copy()
trH1_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1], \
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1], \
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
zne = z_copy
zne += trH1_filt
zne += trH2_filt
Pflag = checkZ4S(zne, aicpick.getpick(), zfac, \
tsnrz[3], iplot)
if Pflag == 0:
@ -515,18 +527,19 @@ def autopickstation(wfstream, pickparam):
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
cordat = data.restituteWFData(invdir, h_copy)
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
# calculate WA-peak-to-peak amplitude
# using subclass WApp of superclass Magnitude
if Sweight < 4:
wapp = WApp(cordat, mpickS, mpickP + sstop, iplot)
else:
# use larger window for getting peak-to-peak amplitude
# as the S pick is quite unsure
wapp = WApp(cordat, mpickP, mpickP + sstop + \
(0.5 * (mpickP + sstop)), iplot)
if restflag == 1:
if Sweight < 4:
wapp = WApp(cordat, mpickS, mpickP + sstop, iplot)
else:
# use larger window for getting peak-to-peak amplitude
# as the S pick is quite unsure
wapp = WApp(cordat, mpickP, mpickP + sstop + \
(0.5 * (mpickP + sstop)), iplot)
Ao = wapp.getwapp()
Ao = wapp.getwapp()
else:
print 'Bad initial (AIC) S-pick, skipping this onset!'
@ -544,12 +557,13 @@ def autopickstation(wfstream, pickparam):
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
cordat = data.restituteWFData(invdir, h_copy)
# calculate WA-peak-to-peak amplitude
# using subclass WApp of superclass Magnitude
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
+ sstop)), iplot)
Ao = wapp.getwapp()
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
if restflag == 1:
# calculate WA-peak-to-peak amplitude
# using subclass WApp of superclass Magnitude
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
+ sstop)), iplot)
Ao = wapp.getwapp()
else:
print 'autopickstation: No horizontal component data available or ' \

View File

@ -9,7 +9,6 @@
"""
import numpy as np
import scipy as sc
import matplotlib.pyplot as plt
from obspy.core import Stream, UTCDateTime
import warnings
@ -44,7 +43,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
LPick = None
EPick = None
PickError = None
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
print ("earllatepicker: Get earliest and latest possible pick relative to most likely pick ...")
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
@ -60,8 +59,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
ilup, = np.where(x[isignal] > nlevel)
ildown, = np.where(x[isignal] < -nlevel)
if not ilup.size and not ildown.size:
print 'earllatepicker: Signal lower than noise level!'
print 'Skip this trace!'
print ("earllatepicker: Signal lower than noise level!")
print ("Skip this trace!")
return LPick, EPick, PickError
il = min(np.min(ilup) if ilup.size else float('inf'),
np.min(ildown) if ildown.size else float('inf'))
@ -143,7 +142,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
FM = None
if Pick is not None:
print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
print ("fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...")
xraw = Xraw[0].data
xfilt = Xfilt[0].data
@ -182,15 +181,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
li1 = index1[0]
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
print 'fmpicker: Onset on unfiltered trace too emergent for first motion determination!'
print ("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
P1 = None
else:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
if imax1 == 0:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
if imax1 == 0:
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
print ("fmpicker: Zero crossings too close!")
print ("Skip first motion determination!")
return FM
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
@ -224,15 +223,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
li2 = index2[0]
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
print 'fmpicker: Onset on filtered trace too emergent for first motion determination!'
print ("fmpicker: Onset on filtered trace too emergent for first motion determination!")
P2 = None
else:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
if imax2 == 0:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
if imax2 == 0:
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
print ("fmpicker: Zero crossings too close!")
print ("Skip first motion determination!")
return FM
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
@ -256,7 +255,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
elif P1[0] > 0 and P2[0] <= 0:
FM = '+'
print 'fmpicker: Found polarity %s' % FM
print ("fmpicker: Found polarity %s" % FM)
if iplot > 1:
plt.figure(iplot)
@ -331,10 +330,10 @@ def getSNR(X, TSNR, t1):
# get signal window
isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
print ("getSNR: Empty array inoise, check noise window!")
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
print ("getSNR: Empty array isignal, check signal window!")
return
# demean over entire waveform
@ -372,7 +371,7 @@ def getnoisewin(t, t1, tnoise, tgap):
inoise, = np.where((t <= max([t1 - tgap, 0])) \
& (t >= max([t1 - tnoise - tgap, 0])))
if np.size(inoise) < 1:
print 'getnoisewin: Empty array inoise, check noise window!'
print ("getnoisewin: Empty array inoise, check noise window!")
return inoise
@ -396,7 +395,7 @@ def getsignalwin(t, t1, tsignal):
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
& (t >= t1))
if np.size(isignal) < 1:
print 'getsignalwin: Empty array isignal, check signal window!'
print ("getsignalwin: Empty array isignal, check signal window!")
return isignal
@ -483,8 +482,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
# calculate vp/vs ratio before check
vpvsr = p1[0] + 1
print '###############################################'
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
print ("###############################################")
print ("wadaticheck: Average Vp/Vs ratio before check: %f" % vpvsr)
checkedPpicks = []
checkedSpicks = []
@ -521,18 +520,18 @@ def wadaticheck(pickdic, dttolerance, iplot):
# calculate vp/vs ratio after check
cvpvsr = p2[0] + 1
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
print 'wadatacheck: Skipped %d S pick(s).' % ibad
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
else:
print '###############################################'
print 'wadatacheck: Not enough checked S-P times available!'
print 'Skip Wadati check!'
print ("###############################################")
print ("wadatacheck: Not enough checked S-P times available!")
print ("Skip Wadati check!")
checkedonsets = pickdic
else:
print 'wadaticheck: Not enough S-P times available for reliable regression!'
print 'Skip wadati check!'
print ("wadaticheck: Not enough S-P times available for reliable regression!")
print ("Skip wadati check!")
wfitflag = 1
# plot results
@ -562,9 +561,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
'''
Function to detect spuriously picked noise peaks.
Uses envelope to determine, how many samples [per cent] after
P onset are below certain threshold, calculated from noise
level times noise factor.
Uses RMS trace of all 3 components (if available) to determine,
how many samples [per cent] after P onset are below certain
threshold, calculated from noise level times noise factor.
: param: X, time series (seismogram)
: type: `~obspy.core.stream.Stream`
@ -592,47 +591,54 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print 'Checking signal length ...'
print ("Checking signal length ...")
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
if len(X) > 1:
# all three components available
# make sure, all components have equal lengths
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
x1 = X[0][0:ilen]
x2 = X[1][0:ilen]
x3 = X[2][0:ilen]
# get RMS trace
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
else:
x1 = X[0].data
rms = np.sqrt(np.power(2, x1))
t = np.arange(0, ilen / X[0].stats.sampling_rate,
X[0].stats.delta)
# generate envelope function from Hilbert transform
y = np.imag(sc.signal.hilbert(x))
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
# get noise window
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
# get noise window in front of pick plus saftey gap
inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1])
# get signal window
isignal = getsignalwin(t, pick, TSNR[2])
isignal = getsignalwin(t, pick, minsiglength)
# calculate minimum adjusted signal level
minsiglevel = max(e[inoise]) * nfac
minsiglevel = max(rms[inoise]) * nfac
# minimum adjusted number of samples over minimum signal level
minnum = len(isignal) * minpercent/100
# get number of samples above minimum adjusted signal level
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
if numoverthr >= minnum:
print 'checksignallength: Signal reached required length.'
print ("checksignallength: Signal reached required length.")
returnflag = 1
else:
print 'checksignallength: Signal shorter than required minimum signal length!'
print 'Presumably picked noise peak, pick is rejected!'
print '(min. signal length required:', minsiglength, 's)'
print ("checksignallength: Signal shorter than required minimum signal length!")
print ("Presumably picked noise peak, pick is rejected!")
print ("(min. signal length required: %s s)" % minsiglength)
returnflag = 0
if iplot == 2:
plt.figure(iplot)
p1, = plt.plot(t,x, 'k')
p2, = plt.plot(t[inoise], e[inoise], 'c')
p3, = plt.plot(t[isignal],e[isignal], 'r')
p2, = plt.plot(t[inoise], e[inoise])
p3, = plt.plot(t[isignal],e[isignal], 'r')
p1, = plt.plot(t,rms, 'k')
p2, = plt.plot(t[inoise], rms[inoise], 'c')
p3, = plt.plot(t[isignal],rms[isignal], 'r')
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
[minsiglevel, minsiglevel], 'g')
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
'Envelope Signal Window', 'Minimum Signal Level', \
[minsiglevel, minsiglevel], 'g', linewidth=2)
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window', \
'RMS Signal Window', 'Minimum Signal Level', \
'Onset'], loc='best')
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
plt.ylabel('Counts')
@ -675,8 +681,8 @@ def checkPonsets(pickdic, dttolerance, iplot):
stations.append(key)
# apply jackknife bootstrapping on variance of P onsets
print '###############################################'
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
print ("###############################################")
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
# get pseudo variances smaller than average variances
# (times safety factor), these picks passed jackknife test
@ -684,7 +690,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
# these picks did not pass jackknife test
badjk = np.where(PHI_pseudo > 2 * xjack)
badjkstations = np.array(stations)[badjk]
print 'checkPonsets: %d pick(s) did not pass jackknife test!' % len(badjkstations)
print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
# calculate median from these picks
pmedian = np.median(np.array(Ppicks)[ij])
@ -696,9 +702,9 @@ def checkPonsets(pickdic, dttolerance, iplot):
goodstations = np.array(stations)[igood]
badstations = np.array(stations)[ibad]
print 'checkPonsets: %d pick(s) deviate too much from median!' % len(ibad)
print 'checkPonsets: Skipped %d P pick(s) out of %d' % (len(badstations) \
+ len(badjkstations), len(stations))
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
+ len(badjkstations), len(stations)))
goodmarker = 'goodPonsetcheck'
badmarker = 'badPonsetcheck'
@ -765,8 +771,8 @@ def jackknife(X, phi, h):
g = len(X) / h
if type(g) is not int:
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
print 'Choose another size for subgroups!'
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
print ("Choose another size for subgroups!")
return PHI_jack, PHI_pseudo, PHI_sub
else:
# estimator of undisturbed spot check
@ -834,7 +840,7 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print 'Check for spuriously picked S onset instead of P onset ...'
print ("Check for spuriously picked S onset instead of P onset ...")
returnflag = 0
@ -875,9 +881,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
# vertical P-coda level must exceed horizontal P-coda level
# zfac times encodalevel
if zcodalevel < minsiglevel:
print 'checkZ4S: Maybe S onset? Skip this P pick!'
print ("checkZ4S: Maybe S onset? Skip this P pick!")
else:
print 'checkZ4S: P onset passes checkZ4S test!'
print ("checkZ4S: P onset passes checkZ4S test!")
returnflag = 1
if iplot > 1:

View File

@ -228,6 +228,9 @@ class Data(object):
:param streams:
:return:
"""
restflag = 0
if streams is None:
st_raw = self.getWFData()
st = st_raw.copy()
@ -236,7 +239,7 @@ class Data(object):
for tr in st:
# remove underscores
if tr.stats.station[3] == '_':
if len(tr.stats.station) > 3 and tr.stats.station[3] == '_':
tr.stats.station = tr.stats.station[0:3]
dlp = '%s/*.dless' % invdlpath
invp = '%s/*.xml' % invdlpath
@ -273,6 +276,7 @@ class Data(object):
'date': st[
i].stats.starttime,
'units': "VEL"})
restflag = 1
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
@ -303,6 +307,7 @@ class Data(object):
st[i].attach_response(inv)
st[i].remove_response(output='VEL',
pre_filt=prefilt)
restflag = 1
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
@ -334,6 +339,7 @@ class Data(object):
'units': "VEL"}
st[i].simulate(paz_remove=None, pre_filt=prefilt,
seedresp=seedresp)
restflag = 1
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
@ -346,7 +352,7 @@ class Data(object):
print("Go on processing data without source parameter "
"determination!")
return st
return st, restflag
def getEvtData(self):
"""