huge structural rearrangement to resolve circular import problems
[add] new feature added to QtPyLoT capable of automatically picking an event from overview window
This commit is contained in:
parent
f704d8b258
commit
ea976295d0
29
QtPyLoT.py
29
QtPyLoT.py
@ -34,17 +34,23 @@ from PySide.QtCore import QCoreApplication, QSettings, Signal, QFile, \
|
||||
from PySide.QtGui import QMainWindow, QInputDialog, QIcon, QFileDialog, \
|
||||
QWidget, QHBoxLayout, QStyle, QKeySequence, QLabel, QFrame, QAction, \
|
||||
QDialog, QErrorMessage, QApplication, QPixmap, QMessageBox, QSplashScreen, \
|
||||
QActionGroup, QListWidget
|
||||
QActionGroup, QListWidget, QDockWidget
|
||||
import numpy as np
|
||||
from obspy.core import UTCDateTime
|
||||
|
||||
from pylot.core.read import Data, FilterOptions, AutoPickParameter
|
||||
from pylot.core.util import _getVersionString, FILTERDEFAULTS, fnConstructor, \
|
||||
checkurl, FormatError, FilterOptionsDialog, \
|
||||
NewEventDlg, createEvent, MPLWidget, PropertiesDlg, HelpForm, \
|
||||
DatastructureError, createAction, getLogin, createCreationInfo, PickDlg
|
||||
from pylot.core.util.thread import WorkerThread
|
||||
from pylot.core.read.data import Data
|
||||
from pylot.core.read.inputs import FilterOptions, AutoPickParameter
|
||||
from pylot.core.pick.autopick import autopickevent
|
||||
from pylot.core.util.defaults import FILTERDEFAULTS
|
||||
from pylot.core.util.errors import FormatError, DatastructureError
|
||||
from pylot.core.util.connection import checkurl
|
||||
from pylot.core.util.utils import fnConstructor, createEvent, getLogin,\
|
||||
createCreationInfo
|
||||
from pylot.core.util.widgets import FilterOptionsDialog, NewEventDlg,\
|
||||
MPLWidget, PropertiesDlg, HelpForm, createAction, PickDlg
|
||||
from pylot.core.util.structure import DATASTRUCTURE
|
||||
from pylot.core.util.thread import WorkerThread
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
import icons_rc
|
||||
|
||||
# Version information
|
||||
@ -586,6 +592,13 @@ class MainWindow(QMainWindow):
|
||||
|
||||
def autoPick(self):
|
||||
list = QListWidget()
|
||||
logDockWidget = QDockWidget("AutoPickLog", self)
|
||||
logDockWidget.setObjectName("LogDockWidget")
|
||||
logDockWidget.setAllowedAreas(Qt.LeftDockWidgetArea)
|
||||
logDockWidget.setWidget(list)
|
||||
logDockWidget.show()
|
||||
logDockWidget.setFloating(False)
|
||||
list.addItem('loading default values for local data ...')
|
||||
autopick_parameter = AutoPickParameter('autoPyLoT_local.in')
|
||||
list.addItem(str(autopick_parameter))
|
||||
|
||||
@ -597,6 +610,8 @@ class MainWindow(QMainWindow):
|
||||
self.thread.message.connect(list.addItem)
|
||||
self.thread.start()
|
||||
|
||||
self.drawPicks()
|
||||
|
||||
|
||||
def addPicks(self, station, picks):
|
||||
stat_picks = self.getPicksOnStation(station)
|
||||
|
79
autoPyLoT.py
79
autoPyLoT.py
@ -9,10 +9,10 @@ import glob
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import read
|
||||
from pylot.core.util import _getVersionString
|
||||
from pylot.core.read import Data, AutoPickParameter
|
||||
from pylot.core.pick.run_autopicking import run_autopicking
|
||||
from pylot.core.read.data import Data
|
||||
from pylot.core.read.inputs import AutoPickParameter
|
||||
from pylot.core.util.structure import DATASTRUCTURE
|
||||
from pylot.core.pick.utils import wadaticheck, checkPonsets
|
||||
from pylot.core.pick.autopick import autopickevent
|
||||
|
||||
__version__ = _getVersionString()
|
||||
|
||||
@ -49,12 +49,6 @@ def autoPyLoT(inputfile):
|
||||
|
||||
parameter = AutoPickParameter(inputfile)
|
||||
|
||||
# get some parameters for quality control from
|
||||
# parameter input file (usually autoPyLoT.in).
|
||||
wdttolerance = parameter.getParam('wdttolerance')
|
||||
mdttolerance = parameter.getParam('mdttolerance')
|
||||
iplot = parameter.getParam('iplot')
|
||||
|
||||
data = Data()
|
||||
|
||||
# getting information on data structure
|
||||
@ -74,43 +68,19 @@ def autoPyLoT(inputfile):
|
||||
datastructure.modifyFields(**dsfields)
|
||||
datastructure.setExpandFields(exf)
|
||||
|
||||
# multiple event processing
|
||||
# multiple event processing
|
||||
# read each event in database
|
||||
datapath = datastructure.expandDataPath()
|
||||
if not parameter.hasParam('eventID'):
|
||||
for event in [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)]:
|
||||
data.setWFData(glob.glob(os.path.join(datapath, event, '*')))
|
||||
print 'Working on event %s' %event
|
||||
print 'Working on event %s' %event
|
||||
print data
|
||||
|
||||
wfdat = data.getWFData() # all available streams
|
||||
##########################################################
|
||||
# !automated picking starts here!
|
||||
procstats = []
|
||||
# initialize dictionary for onsets
|
||||
picks = None
|
||||
station = wfdat[0].stats.station
|
||||
allonsets = {station: picks}
|
||||
for i in range(len(wfdat)):
|
||||
stationID = wfdat[i].stats.station
|
||||
# check if station has already been processed
|
||||
if stationID not in procstats:
|
||||
procstats.append(stationID)
|
||||
# find corresponding streams
|
||||
statdat = wfdat.select(station=stationID)
|
||||
######################################################
|
||||
# get onset times and corresponding picking errors
|
||||
picks = run_autopicking(statdat, parameter)
|
||||
######################################################
|
||||
# add station and corresponding onsets to dictionary
|
||||
station = stationID
|
||||
allonsets[station] = picks
|
||||
|
||||
# quality control
|
||||
# median check and jackknife on P-onset times
|
||||
checkedonsetsjk = checkPonsets(allonsets, mdttolerance, iplot)
|
||||
# check S-P times (Wadati)
|
||||
checkedonsetwd = wadaticheck(checkedonsetsjk, wdttolerance, iplot)
|
||||
# !automated picking starts here!
|
||||
picks = autopickevent(wfdat, parameter)
|
||||
|
||||
print '------------------------------------------'
|
||||
print '-----Finished event %s!-----' % event
|
||||
@ -121,41 +91,16 @@ def autoPyLoT(inputfile):
|
||||
data.setWFData(glob.glob(os.path.join(datapath, parameter.getParam('eventID'), '*')))
|
||||
print 'Working on event ', parameter.getParam('eventID')
|
||||
print data
|
||||
|
||||
|
||||
wfdat = data.getWFData() # all available streams
|
||||
##########################################################
|
||||
# !automated picking starts here!
|
||||
procstats = []
|
||||
# initialize dictionary for onsets
|
||||
picks = None
|
||||
station = wfdat[0].stats.station
|
||||
allonsets = {station: picks}
|
||||
for i in range(len(wfdat)):
|
||||
#for i in range(0,10):
|
||||
stationID = wfdat[i].stats.station
|
||||
#check if station has already been processed
|
||||
if stationID not in procstats:
|
||||
procstats.append(stationID)
|
||||
# find corresponding streams
|
||||
statdat = wfdat.select(station=stationID)
|
||||
######################################################
|
||||
# get onset times and corresponding picking parameters
|
||||
picks = run_autopicking(statdat, parameter)
|
||||
######################################################
|
||||
# add station and corresponding onsets to dictionary
|
||||
station = stationID
|
||||
allonsets[station] = picks
|
||||
|
||||
# quality control
|
||||
# median check and jackknife on P-onset times
|
||||
checkedonsetsjk = checkPonsets(allonsets, mdttolerance, iplot)
|
||||
# check S-P times (Wadati)
|
||||
checkedonsetswd = wadaticheck(checkedonsetsjk, wdttolerance, iplot)
|
||||
# !automated picking starts here!
|
||||
picks = autopickevent(wfdat, parameter)
|
||||
|
||||
print '------------------------------------------'
|
||||
print '-------Finished event %s!-------' % parameter.getParam('eventID')
|
||||
print '------------------------------------------'
|
||||
|
||||
|
||||
print '####################################'
|
||||
print '************************************'
|
||||
print '*********autoPyLoT terminates*******'
|
||||
@ -165,7 +110,7 @@ def autoPyLoT(inputfile):
|
||||
if __name__ == "__main__":
|
||||
# parse arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
description='''autoPyLoT automatically picks phase onset times using higher order statistics,
|
||||
description='''autoPyLoT automatically picks phase onset times using higher order statistics,
|
||||
autoregressive prediction and AIC''')
|
||||
|
||||
parser.add_argument('-i', '-I', '--inputfile', type=str,
|
||||
|
@ -16,11 +16,11 @@ The picks with the above described algorithms are assumed to be the most likely
|
||||
For each most likely pick the corresponding earliest and latest possible picks are
|
||||
calculated after Diehl & Kissling (2009).
|
||||
|
||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from pylot.core.pick.utils import *
|
||||
from pylot.core.pick.utils import getnoisewin, getsignalwin
|
||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||
import warnings
|
||||
|
||||
@ -28,7 +28,7 @@ class AutoPicking(object):
|
||||
'''
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
using AIC, HOS, or AR prediction.
|
||||
'''
|
||||
'''
|
||||
|
||||
warnings.simplefilter('ignore')
|
||||
|
||||
@ -84,9 +84,9 @@ class AutoPicking(object):
|
||||
PickWindow=self.getPickWindow(),
|
||||
aus=self.getaus(),
|
||||
Tsmooth=self.getTsmooth(),
|
||||
Pick1=self.getpick1())
|
||||
Pick1=self.getpick1())
|
||||
|
||||
|
||||
|
||||
def getTSNR(self):
|
||||
return self.TSNR
|
||||
|
||||
@ -116,7 +116,7 @@ class AutoPicking(object):
|
||||
|
||||
def getSNR(self):
|
||||
return self.SNR
|
||||
|
||||
|
||||
def getSlope(self):
|
||||
return self.slope
|
||||
|
||||
@ -140,12 +140,12 @@ class AICPicker(AutoPicking):
|
||||
'''
|
||||
Method to derive the onset time of an arriving phase based on CF
|
||||
derived from AIC. In order to get an impression of the quality of this inital pick,
|
||||
a quality assessment is applied based on SNR and slope determination derived from the CF,
|
||||
a quality assessment is applied based on SNR and slope determination derived from the CF,
|
||||
from which the AIC has been calculated.
|
||||
'''
|
||||
|
||||
def calcPick(self):
|
||||
|
||||
|
||||
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
||||
|
||||
self.Pick = None
|
||||
@ -179,15 +179,15 @@ class AICPicker(AutoPicking):
|
||||
#find NaN's
|
||||
nn = np.isnan(diffcf)
|
||||
if len(nn) > 1:
|
||||
diffcf[nn] = 0
|
||||
diffcf[nn] = 0
|
||||
#taper CF to get rid off side maxima
|
||||
tap = np.hanning(len(diffcf))
|
||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||
icfmax = np.argmax(diffcf)
|
||||
|
||||
|
||||
#find minimum in AIC-CF front of maximum
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
@ -198,7 +198,7 @@ class AICPicker(AutoPicking):
|
||||
if diffcf[i -1] >= diffcf[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
|
||||
|
||||
# quality assessment using SNR and slope from CF
|
||||
if self.Pick is not None:
|
||||
# get noise window
|
||||
@ -275,7 +275,7 @@ class AICPicker(AutoPicking):
|
||||
|
||||
if self.Pick == None:
|
||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
||||
|
||||
|
||||
|
||||
class PragPicker(AutoPicking):
|
||||
'''
|
||||
@ -287,7 +287,7 @@ class PragPicker(AutoPicking):
|
||||
if self.getpick1() is not None:
|
||||
print 'PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...'
|
||||
|
||||
self.Pick = None
|
||||
self.Pick = None
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
pickflag = 0
|
||||
@ -333,7 +333,7 @@ class PragPicker(AutoPicking):
|
||||
for i in range(max(np.insert(ipick, 0, 2)), min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_r = self.Tcf[i]
|
||||
self.Pick = pick_r
|
||||
flagpick_l = 1
|
||||
@ -344,7 +344,7 @@ class PragPicker(AutoPicking):
|
||||
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_l = self.Tcf[i]
|
||||
self.Pick = pick_l
|
||||
flagpick_r = 1
|
||||
@ -360,7 +360,7 @@ class PragPicker(AutoPicking):
|
||||
pickflag = 1
|
||||
elif flagpick_l == 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
||||
self.Pick = pick_l
|
||||
pickflag = 1
|
||||
pickflag = 1
|
||||
else:
|
||||
print 'PragPicker: Could not find reliable onset!'
|
||||
self.Pick = None
|
||||
@ -372,7 +372,7 @@ class PragPicker(AutoPicking):
|
||||
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
||||
if pickflag > 0:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
plt.title(self.Data[0].stats.station)
|
||||
@ -380,7 +380,7 @@ class PragPicker(AutoPicking):
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
|
||||
else:
|
||||
else:
|
||||
print 'PragPicker: No initial onset time given! Check input!'
|
||||
self.Pick = None
|
||||
return
|
||||
|
@ -11,9 +11,37 @@ function conglomerate utils.
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pylot.core.pick.Picker import *
|
||||
from pylot.core.pick.CharFuns import *
|
||||
from pylot.core.pick.Picker import AICPicker, PragPicker
|
||||
from pylot.core.pick.CharFuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
|
||||
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker,\
|
||||
getSNR, fmpicker, checkPonsets, wadaticheck
|
||||
|
||||
def autopickevent(data, param):
|
||||
stations = []
|
||||
all_onsets = {}
|
||||
|
||||
# get some parameters for quality control from
|
||||
# parameter input file (usually autoPyLoT.in).
|
||||
wdttolerance = param.getParam('wdttolerance')
|
||||
mdttolerance = param.getParam('mdttolerance')
|
||||
iplot = param.getParam('iplot')
|
||||
|
||||
for n in range(len(data)):
|
||||
station = data[n].stats.station
|
||||
if station not in stations:
|
||||
stations.append(station)
|
||||
else:
|
||||
continue
|
||||
|
||||
for station in stations:
|
||||
topick = data.select(station=station)
|
||||
all_onsets[station] = run_autopicking(topick, param)
|
||||
|
||||
# quality control
|
||||
# median check and jackknife on P-onset times
|
||||
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot)
|
||||
# check S-P times (Wadati)
|
||||
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
|
||||
|
||||
def run_autopicking(wfstream, pickparam):
|
||||
"""
|
@ -12,24 +12,9 @@ import numpy as np
|
||||
import scipy as sc
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
from pylot.core.pick.run_autopicking import run_autopicking
|
||||
import warnings
|
||||
import pdb
|
||||
|
||||
def autopickevent(data, param):
|
||||
stations = []
|
||||
|
||||
for n in len(data):
|
||||
station = data[n].stats.station
|
||||
if station not in stations:
|
||||
stations.append(station)
|
||||
else:
|
||||
continue
|
||||
|
||||
for station in stations:
|
||||
topick = data.select(station=station)
|
||||
|
||||
stat_picks = run_autopicking(topick, param)
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
'''
|
||||
@ -538,7 +523,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
# calculate vp/vs ratio after check
|
||||
cvpvsr = p2[0] + 1
|
||||
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
||||
print 'wadatacheck: Skipped %d S pick(s).' % ibad
|
||||
print 'wadatacheck: Skipped %d S pick(s).' % ibad
|
||||
else:
|
||||
print '###############################################'
|
||||
print 'wadatacheck: Not enough checked S-P times available!'
|
||||
|
@ -1,4 +1 @@
|
||||
from pylot.core.read.inputs import AutoPickParameter, FilterOptions
|
||||
from pylot.core.read.io import readPILOTEvent
|
||||
from pylot.core.read.data import GenericDataStructure, SeiscompDataStructure, \
|
||||
PilotDataStructure, Data
|
||||
|
||||
|
@ -7,9 +7,9 @@ from obspy.core import (read, Stream, UTCDateTime)
|
||||
from obspy import readEvents, read_inventory
|
||||
from obspy.core.event import (Event, Catalog)
|
||||
|
||||
from pylot.core.read import readPILOTEvent
|
||||
from pylot.core.util import fnConstructor, FormatError, \
|
||||
getGlobalTimes
|
||||
from pylot.core.read.io import readPILOTEvent
|
||||
from pylot.core.util.utils import fnConstructor, getGlobalTimes
|
||||
from pylot.core.util.errors import FormatError
|
||||
|
||||
|
||||
class Data(object):
|
||||
|
@ -7,9 +7,8 @@ import scipy.io as sio
|
||||
import obspy.core.event as ope
|
||||
from obspy.core import UTCDateTime
|
||||
|
||||
from pylot.core.util import getOwner, createPick, createArrival, createEvent, \
|
||||
createOrigin, createMagnitude
|
||||
|
||||
from pylot.core.util.utils import getOwner, createPick, createArrival,\
|
||||
createEvent, createOrigin, createMagnitude
|
||||
|
||||
def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
"""
|
||||
|
@ -1,10 +1 @@
|
||||
from pylot.core.util.connection import checkurl
|
||||
from pylot.core.util.defaults import FILTERDEFAULTS
|
||||
from pylot.core.util.errors import OptionsError, FormatError, DatastructureError
|
||||
from pylot.core.util.utils import fnConstructor, createArrival, createEvent,\
|
||||
createPick, createAmplitude, createOrigin, createMagnitude, getOwner, \
|
||||
getHash, getLogin, createCreationInfo, createResourceID, prepTimeAxis, \
|
||||
getGlobalTimes, scaleWFData, demeanWFData
|
||||
from pylot.core.util.widgets import PickDlg, HelpForm, FilterOptionsDialog,\
|
||||
PropertiesDlg, NewEventDlg, MPLWidget, createAction
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
@ -6,7 +6,7 @@ Created on Wed Jan 26 17:47:25 2015
|
||||
@author: sebastianw
|
||||
"""
|
||||
|
||||
from pylot.core.read import SeiscompDataStructure, PilotDataStructure
|
||||
from pylot.core.read.data import SeiscompDataStructure, PilotDataStructure
|
||||
|
||||
DATASTRUCTURE = {'PILOT': PilotDataStructure, 'SeisComP': SeiscompDataStructure,
|
||||
None: None}
|
||||
|
@ -17,7 +17,8 @@ class WorkerThread(QThread):
|
||||
picks = self.func(self.data, self.param)
|
||||
|
||||
try:
|
||||
self.parent().addPicks(picks)
|
||||
for station in picks:
|
||||
self.parent().addPicks(station, picks[station])
|
||||
except AttributeError:
|
||||
print picks
|
||||
|
||||
|
@ -10,7 +10,6 @@ import hashlib
|
||||
import numpy as np
|
||||
from obspy.core import UTCDateTime
|
||||
import obspy.core.event as ope
|
||||
from pylot.core.pick.utils import getnoisewin
|
||||
|
||||
def runProgram(cmd, parameter=None):
|
||||
"""
|
||||
@ -119,28 +118,20 @@ def scaleWFData(data, factor=None, components='all'):
|
||||
|
||||
return data
|
||||
|
||||
def demeanWFData(data, t0, win, gap):
|
||||
def demeanTrace(trace, window):
|
||||
"""
|
||||
returns the DATA where each trace is demean by the average value within
|
||||
a desired time window WIN before T0 and a GAP
|
||||
:param data: waveform stream object
|
||||
:type data: `~obspy.core.stream.Stream`
|
||||
:param t0: time before which the noise
|
||||
:type t0: float
|
||||
:param win: time window for average calculation
|
||||
:type win: tuple
|
||||
:param gap: gap window to avoid polluting the average
|
||||
:type gap: float
|
||||
:return: data
|
||||
:rtype: `~obspy.core.stream.Stream`
|
||||
WINDOW
|
||||
:param trace: waveform trace object
|
||||
:type trace: `~obspy.core.stream.Trace`
|
||||
:param inoise: range of indices of DATA within the WINDOW
|
||||
:type window: tuple
|
||||
:return: trace
|
||||
:rtype: `~obspy.core.stream.Trace`
|
||||
"""
|
||||
starttime = getGlobalTimes(data)[0]
|
||||
for tr in data:
|
||||
stime = tr.stats.starttime - starttime
|
||||
t = prepTimeAxis(stime, tr)
|
||||
inoise = getnoisewin(t, t0, win, gap)
|
||||
tr.data -= tr.data[inoise].mean()
|
||||
return data
|
||||
trace.data -= trace.data[window].mean()
|
||||
return trace
|
||||
|
||||
|
||||
def getGlobalTimes(stream):
|
||||
min_start = UTCDateTime()
|
||||
|
@ -19,12 +19,12 @@ from PySide.QtGui import QAction, QApplication, QComboBox, QDateTimeEdit, \
|
||||
from PySide.QtCore import QSettings, Qt, QUrl, Signal, Slot
|
||||
from PySide.QtWebKit import QWebView
|
||||
from obspy import Stream, UTCDateTime
|
||||
from pylot.core.read import FilterOptions
|
||||
from pylot.core.read.inputs import FilterOptions
|
||||
from pylot.core.pick.utils import getSNR, earllatepicker, getnoisewin,\
|
||||
getResolutionWindow
|
||||
from pylot.core.util.defaults import OUTPUTFORMATS, FILTERDEFAULTS
|
||||
from pylot.core.util import prepTimeAxis, getGlobalTimes, scaleWFData, \
|
||||
demeanWFData
|
||||
from pylot.core.util.utils import prepTimeAxis, getGlobalTimes, scaleWFData, \
|
||||
demeanTrace
|
||||
|
||||
|
||||
def createAction(parent, text, slot=None, shortcut=None, icon=None,
|
||||
@ -191,6 +191,8 @@ class PickDlg(QDialog):
|
||||
else:
|
||||
self.data = data
|
||||
|
||||
self.stime, self.etime = getGlobalTimes(self.getWFData())
|
||||
|
||||
# initialize plotting widget
|
||||
self.multicompfig = MPLWidget(self)
|
||||
|
||||
@ -336,6 +338,12 @@ class PickDlg(QDialog):
|
||||
self.cidrelease = self.connectReleaseEvent(self.panRelease)
|
||||
self.cidscroll = self.connectScrollEvent(self.scrollZoom)
|
||||
|
||||
def getStartTime(self):
|
||||
return self.stime
|
||||
|
||||
def getEndTime(self):
|
||||
return self.etime
|
||||
|
||||
def getComponents(self):
|
||||
return self.components
|
||||
|
||||
@ -446,13 +454,16 @@ class PickDlg(QDialog):
|
||||
|
||||
x_res = getResolutionWindow(snr)
|
||||
|
||||
data = demeanWFData(data=self.getWFData().copy(), t0=ini_pick,
|
||||
win=noise_win, gap=gap_win)
|
||||
# remove mean noise level from waveforms
|
||||
for trace in wfdata:
|
||||
t = prepTimeAxis(self.getStartTime(), trace)
|
||||
inoise = getnoisewin(t, ini_pick, noise_win, gap_win)
|
||||
trace = demeanTrace(trace=trace, window=inoise)
|
||||
|
||||
self.setXLims([ini_pick - x_res, ini_pick + x_res])
|
||||
self.setYLims(np.array([-noiselevel * 2.5, noiselevel * 2.5]) +
|
||||
trace_number)
|
||||
self.getPlotWidget().plotWFData(wfdata=data,
|
||||
self.getPlotWidget().plotWFData(wfdata=wfdata,
|
||||
title=self.getStation() +
|
||||
' picking mode',
|
||||
zoomx=self.getXLims(),
|
||||
@ -482,7 +493,10 @@ class PickDlg(QDialog):
|
||||
filteroptions = self.getFilterOptions(phase).parseFilterOptions()
|
||||
data.filter(**filteroptions)
|
||||
|
||||
data = demeanWFData(data=data, t0=ini_pick, win=noise_win, gap=gap_win)
|
||||
for trace in data:
|
||||
t = prepTimeAxis(self.getStartTime(), trace)
|
||||
inoise = getnoisewin(t, ini_pick, noise_win, gap_win)
|
||||
trace = demeanTrace(trace, inoise)
|
||||
|
||||
horiz_comp = ('n', 'e')
|
||||
|
||||
@ -576,9 +590,9 @@ class PickDlg(QDialog):
|
||||
else:
|
||||
return
|
||||
|
||||
mpp = picks['mpp']
|
||||
epp = picks['epp']
|
||||
lpp = picks['lpp']
|
||||
mpp = picks['mpp'] - self.getStartTime()
|
||||
epp = picks['epp'] - self.getStartTime()
|
||||
lpp = picks['lpp'] - self.getStartTime()
|
||||
spe = picks['spe']
|
||||
|
||||
ax.fill_between([epp, lpp], ylims[0], ylims[1],
|
||||
|
Loading…
Reference in New Issue
Block a user