diff --git a/pylot/core/pick/utils.py b/pylot/core/pick/utils.py index 1bcb7469..aad583a2 100644 --- a/pylot/core/pick/utils.py +++ b/pylot/core/pick/utils.py @@ -155,7 +155,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None): xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick]) xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick]) - # get next zero crossing after most likely pick + # get zero crossings after most likely pick # initial onset is assumed to be the first zero crossing # first from unfiltered trace zc1 = [] @@ -199,7 +199,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None): datafit1 = np.polyval(P1, xslope1) # now using filterd trace - # next zero crossing after most likely pick + # next zero crossings after most likely pick zc2 = [] zc2.append(Pick) index2 = [] @@ -578,11 +578,11 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot): if iplot == 2: plt.figure(iplot) p1, = plt.plot(t,x, 'k') - p2, = plt.plot(t[inoise], e[inoise]) + p2, = plt.plot(t[inoise], e[inoise], 'c') p3, = plt.plot(t[isignal],e[isignal], 'r') p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \ [minsiglevel, minsiglevel], 'g') - p5, = plt.plot([pick, pick], [min(x), max(x)], 'c') + p5, = plt.plot([pick, pick], [min(x), max(x)], linewidth=2) plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \ 'Envelope Signal Window', 'Minimum Signal Level', \ 'Onset'], loc='best')