Switched off warnings.
This commit is contained in:
parent
4a911a4ac9
commit
f2510ff400
@ -3,18 +3,18 @@
|
||||
Created Dec 2014 to Feb 2015
|
||||
Implementation of the automated picking algorithms published and described in:
|
||||
|
||||
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group,
|
||||
2010: Automated determination of P-phase arrival times at regional and local
|
||||
distances using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
||||
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
||||
Automated determination of P-phase arrival times at regional and local distances
|
||||
using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
||||
|
||||
Kueperkoch, L., Meier, T., Bruestle, A., Lee, J., Friederich, W., & Egelados
|
||||
Working Group, 2012: Automated determination of S-phase arrival times using
|
||||
autoregressive prediction: application ot local and regional distances,
|
||||
Geophys. J. Int., 188, 687-702.
|
||||
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
||||
188, 687-702.
|
||||
|
||||
The picks with the above described algorithms are assumed to be the most likely
|
||||
picks. For each most likely pick the corresponding earliest and latest possible
|
||||
picks are calculated after Diehl & Kissling (2009).
|
||||
The picks with the above described algorithms are assumed to be the most likely picks.
|
||||
For each most likely pick the corresponding earliest and latest possible picks are
|
||||
calculated after Diehl & Kissling (2009).
|
||||
|
||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||
"""
|
||||
@ -22,46 +22,43 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from pylot.core.pick.utils import *
|
||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||
|
||||
import warnings
|
||||
|
||||
class AutoPicking(object):
|
||||
'''
|
||||
Superclass of different, automated picking algorithms applied on a CF
|
||||
determined using AIC, HOS, or AR prediction.
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
using AIC, HOS, or AR prediction.
|
||||
'''
|
||||
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None,
|
||||
Pick1=None):
|
||||
warnings.simplefilter('ignore')
|
||||
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None, Pick1=None):
|
||||
'''
|
||||
:param cf: characteristic function, on which the picking algorithm is
|
||||
applied
|
||||
:type cf: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
||||
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
||||
|
||||
:param TSNR: length of time windows for SNR determination - [s]
|
||||
:type TSNR: tuple (T_noise, T_gap, T_signal)
|
||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
||||
:type: tuple (T_noise, T_gap, T_signal)
|
||||
|
||||
:param PickWindow: length of pick window - [s]
|
||||
:type PickWindow: float
|
||||
:param: PickWindow, length of pick window [s]
|
||||
:type: float
|
||||
|
||||
:param iplot: no. of figure window for plotting interims results
|
||||
:type iplot: integer
|
||||
:param: iplot, no. of figure window for plotting interims results
|
||||
:type: integer
|
||||
|
||||
:param aus: aus ("artificial uplift of samples"), find local minimum at
|
||||
i if aic(i-1)*(1+aus) >= aic(i)
|
||||
:type aus: float
|
||||
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
||||
:type: float
|
||||
|
||||
:param Tsmooth: length of moving window to calculate smoothed CF - [s]
|
||||
:type Tsmooth: float
|
||||
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
||||
:type: float
|
||||
|
||||
:param Pick1: initial (prelimenary) onset time, starting point for
|
||||
PragPicker
|
||||
:type Pick1: float
|
||||
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker and
|
||||
EarlLatePicker
|
||||
:type: float
|
||||
|
||||
'''
|
||||
|
||||
assert isinstance(cf,
|
||||
CharacteristicFunction), "%s is of wrong type" % str(
|
||||
cf)
|
||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
||||
|
||||
self.cf = cf.getCF()
|
||||
self.Tcf = cf.getTimeArray()
|
||||
@ -89,6 +86,7 @@ class AutoPicking(object):
|
||||
Tsmooth=self.getTsmooth(),
|
||||
Pick1=self.getpick1())
|
||||
|
||||
|
||||
def getTSNR(self):
|
||||
return self.TSNR
|
||||
|
||||
@ -153,144 +151,132 @@ class AICPicker(AutoPicking):
|
||||
self.Pick = None
|
||||
self.slope = None
|
||||
self.SNR = None
|
||||
# find NaN's
|
||||
#find NaN's
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
self.cf[nn] = 0
|
||||
# taper AIC-CF to get rid off side maxima
|
||||
self.cf[nn] = 0
|
||||
#taper AIC-CF to get rid off side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
# smooth AIC-CF
|
||||
#smooth AIC-CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
aicsmooth = np.zeros(len(aic))
|
||||
if len(aic) < ismooth:
|
||||
print 'AICPicker: Tsmooth larger than CF!'
|
||||
return
|
||||
print 'AICPicker: Tsmooth larger than CF!'
|
||||
return
|
||||
else:
|
||||
for i in range(1, len(aic)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth
|
||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[
|
||||
ii1]) / ismooth
|
||||
else:
|
||||
aicsmooth[i] = np.mean(aic[1: i])
|
||||
# remove offset
|
||||
for i in range(1, len(aic)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth
|
||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
||||
else:
|
||||
aicsmooth[i] = np.mean(aic[1 : i])
|
||||
#remove offset
|
||||
offset = abs(min(aic) - min(aicsmooth))
|
||||
aicsmooth = aicsmooth - offset
|
||||
# get maximum of 1st derivative of AIC-CF (more stable!) as starting
|
||||
# point
|
||||
#get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
||||
diffcf = np.diff(aicsmooth)
|
||||
# find NaN's
|
||||
#find NaN's
|
||||
nn = np.isnan(diffcf)
|
||||
if len(nn) > 1:
|
||||
diffcf[nn] = 0
|
||||
# taper CF to get rid off side maxima
|
||||
diffcf[nn] = 0
|
||||
#taper CF to get rid off side maxima
|
||||
tap = np.hanning(len(diffcf))
|
||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||
icfmax = np.argmax(diffcf)
|
||||
|
||||
# find minimum in AIC-CF front of maximum
|
||||
#find minimum in AIC-CF front of maximum
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
# if no minimum could be found:
|
||||
# search in 1st derivative of AIC-CF
|
||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
#if no minimum could be found:
|
||||
#search in 1st derivative of AIC-CF
|
||||
if self.Pick is None:
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if diffcf[i - 1] >= diffcf[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
for i in range(icfmax -1, max([icfmax -lpickwindow, 2]), -1):
|
||||
if diffcf[i -1] >= diffcf[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
|
||||
# quality assessment using SNR and slope from CF
|
||||
if self.Pick is not None:
|
||||
# get noise window
|
||||
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0],
|
||||
self.TSNR[1])
|
||||
# check, if these are counts or m/s, important for slope estimation!
|
||||
# this is quick and dirty, better solution?
|
||||
if max(self.Data[0].data < 1e-3):
|
||||
self.Data[0].data *= 1000000
|
||||
# get signal window
|
||||
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
||||
# calculate SNR from CF
|
||||
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / \
|
||||
max(abs(aic[inoise] - np.mean(aic[inoise])))
|
||||
# calculate slope from CF after initial pick
|
||||
# get slope window
|
||||
tslope = self.TSNR[3] # slope determination window
|
||||
islope = np.where(
|
||||
(self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)]))
|
||||
and (self.Tcf >= self.Pick))
|
||||
# find maximum within slope determination window
|
||||
# 'cause slope should be calculated up to first local minimum only!
|
||||
imax = np.argmax(self.Data[0].data[islope])
|
||||
if imax == 0:
|
||||
print 'AICPicker: Maximum for slope determination right at ' \
|
||||
'the beginning of the window!'
|
||||
print 'Choose longer slope determination window!'
|
||||
return
|
||||
islope = islope[0][0:imax]
|
||||
dataslope = self.Data[0].data[islope]
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope = np.arange(0, len(dataslope), 1)
|
||||
P = np.polyfit(xslope, dataslope, 1)
|
||||
datafit = np.polyval(P, xslope)
|
||||
if datafit[0] >= datafit[len(datafit) - 1]:
|
||||
print 'AICPicker: Negative slope, bad onset skipped!'
|
||||
return
|
||||
# get noise window
|
||||
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0], self.TSNR[1])
|
||||
# check, if these are counts or m/s, important for slope estimation!
|
||||
# this is quick and dirty, better solution?
|
||||
if max(self.Data[0].data < 1e-3):
|
||||
self.Data[0].data = self.Data[0].data * 1000000
|
||||
# get signal window
|
||||
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
||||
# calculate SNR from CF
|
||||
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / max(abs(aic[inoise] \
|
||||
- np.mean(aic[inoise])))
|
||||
# calculate slope from CF after initial pick
|
||||
# get slope window
|
||||
tslope = self.TSNR[3] #slope determination window
|
||||
islope = np.where((self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)])) \
|
||||
& (self.Tcf >= self.Pick))
|
||||
# find maximum within slope determination window
|
||||
# 'cause slope should be calculated up to first local minimum only!
|
||||
imax = np.argmax(self.Data[0].data[islope])
|
||||
if imax == 0:
|
||||
print 'AICPicker: Maximum for slope determination right at the beginning of the window!'
|
||||
print 'Choose longer slope determination window!'
|
||||
return
|
||||
islope = islope[0][0 :imax]
|
||||
dataslope = self.Data[0].data[islope]
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope = np.arange(0, len(dataslope), 1)
|
||||
P = np.polyfit(xslope, dataslope, 1)
|
||||
datafit = np.polyval(P, xslope)
|
||||
if datafit[0] >= datafit[len(datafit) - 1]:
|
||||
print 'AICPicker: Negative slope, bad onset skipped!'
|
||||
return
|
||||
|
||||
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
|
||||
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
|
||||
|
||||
else:
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
|
||||
if self.iplot > 1:
|
||||
p = plt.figure(self.iplot)
|
||||
x = self.Data[0].data
|
||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||
if self.Pick is not None:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b',
|
||||
linewidth=2)
|
||||
plt.legend([p1, p2, p3],
|
||||
['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||
else:
|
||||
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
plt.title(self.Data[0].stats.station)
|
||||
p = plt.figure(self.iplot)
|
||||
x = self.Data[0].data
|
||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||
if self.Pick is not None:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1 , 0.5], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||
else:
|
||||
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
plt.title(self.Data[0].stats.station)
|
||||
|
||||
if self.Pick is not None:
|
||||
plt.figure(self.iplot + 1)
|
||||
p11, = plt.plot(self.Tcf, x, 'k')
|
||||
p12, = plt.plot(self.Tcf[inoise], self.Data[0].data[inoise])
|
||||
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal],
|
||||
'r')
|
||||
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||
plt.legend([p11, p12, p13, p14, p15],
|
||||
['Data', 'Noise Window', 'Signal Window',
|
||||
'Slope Window', 'Slope'],
|
||||
loc='best')
|
||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (
|
||||
self.Data[0].stats.station,
|
||||
self.SNR, self.slope))
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
ax = plt.gca()
|
||||
plt.yticks([])
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 5,
|
||||
self.Tcf[isignal[0][len(isignal) - 1]] + 5])
|
||||
if self.Pick is not None:
|
||||
plt.figure(self.iplot + 1)
|
||||
p11, = plt.plot(self.Tcf, x, 'k')
|
||||
p12, = plt.plot(self.Tcf[inoise], self.Data[0].data[inoise])
|
||||
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r')
|
||||
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'], \
|
||||
loc='best')
|
||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station, \
|
||||
self.SNR, self.slope))
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
ax = plt.gca()
|
||||
plt.yticks([])
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 5, self.Tcf[isignal[0][len(isignal) - 1]] + 5])
|
||||
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
|
||||
if self.Pick is None:
|
||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
||||
if self.Pick == None:
|
||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
||||
|
||||
|
||||
class PragPicker(AutoPicking):
|
||||
@ -301,95 +287,90 @@ class PragPicker(AutoPicking):
|
||||
def calcPick(self):
|
||||
|
||||
if self.getpick1() is not None:
|
||||
print 'PragPicker: Get most likely pick from HOS- or AR-CF using ' \
|
||||
'pragmatic picking algorithm ...'
|
||||
print 'PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...'
|
||||
|
||||
self.Pick = None
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
# smooth CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
cfsmooth = np.zeros(len(self.cf))
|
||||
if len(self.cf) < ismooth:
|
||||
print 'PragPicker: Tsmooth larger than CF!'
|
||||
return
|
||||
else:
|
||||
for i in range(1, len(self.cf)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[
|
||||
ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1: i])
|
||||
self.Pick = None
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
#smooth CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
cfsmooth = np.zeros(len(self.cf))
|
||||
if len(self.cf) < ismooth:
|
||||
print 'PragPicker: Tsmooth larger than CF!'
|
||||
return
|
||||
else:
|
||||
for i in range(1, len(self.cf)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth;
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
||||
|
||||
# select picking window
|
||||
# which is centered around tpick1
|
||||
ipick = np.where((self.Tcf >=
|
||||
(self.getpick1() - self.PickWindow / 2)) and
|
||||
(self.Tcf <=
|
||||
(self.getpick1() + self.PickWindow / 2)))
|
||||
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
||||
Tcfpick = self.Tcf[ipick]
|
||||
cfsmoothipick = cfsmooth[ipick] - np.mean(self.cf[ipick])
|
||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||
cfpick1 = 2 * self.cf[ipick1]
|
||||
#select picking window
|
||||
#which is centered around tpick1
|
||||
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
||||
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
||||
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
||||
Tcfpick = self.Tcf[ipick]
|
||||
cfsmoothipick = cfsmooth[ipick]- np.mean(self.cf[ipick])
|
||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||
cfpick1 = 2 * self.cf[ipick1]
|
||||
|
||||
# check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
# prominent trend: decrease aus
|
||||
# flat: use given aus
|
||||
cfdiff = np.diff(cfipick)
|
||||
i0diff = np.where(cfdiff > 0)
|
||||
cfdiff = cfdiff[i0diff]
|
||||
minaus = min(cfdiff * (1 + self.aus))
|
||||
aus1 = max([minaus, self.aus])
|
||||
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
#prominent trend: decrease aus
|
||||
#flat: use given aus
|
||||
cfdiff = np.diff(cfipick);
|
||||
i0diff = np.where(cfdiff > 0)
|
||||
cfdiff = cfdiff[i0diff]
|
||||
minaus = min(cfdiff * (1 + self.aus));
|
||||
aus1 = max([minaus, self.aus]);
|
||||
|
||||
# at first we look to the right until the end of the pick window is reached
|
||||
flagpick_r = 0
|
||||
flagpick_l = 0
|
||||
flagpick = 0
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(max(np.insert(ipick, 0, 2)),
|
||||
min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_r = self.Tcf[i]
|
||||
self.Pick = pick_r
|
||||
flagpick_l = 1
|
||||
cfpick_r = self.cf[i]
|
||||
break
|
||||
#at first we look to the right until the end of the pick window is reached
|
||||
flagpick_r = 0
|
||||
flagpick_l = 0
|
||||
flagpick = 0
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(max(np.insert(ipick, 0, 2)), min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_r = self.Tcf[i]
|
||||
self.Pick = pick_r
|
||||
flagpick_l = 1
|
||||
cfpick_r = self.cf[i]
|
||||
break
|
||||
|
||||
# now we look to the left
|
||||
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_l = self.Tcf[i]
|
||||
self.Pick = pick_l
|
||||
flagpick_r = 1
|
||||
cfpick_l = self.cf[i]
|
||||
break
|
||||
#now we look to the left
|
||||
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_l = self.Tcf[i]
|
||||
self.Pick = pick_l
|
||||
flagpick_r = 1
|
||||
cfpick_l = self.cf[i]
|
||||
break
|
||||
|
||||
# now decide which pick: left or right?
|
||||
if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= cfpick_r:
|
||||
self.Pick = pick_l
|
||||
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
||||
self.Pick = pick_r
|
||||
#now decide which pick: left or right?
|
||||
if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= cfpick_r:
|
||||
self.Pick = pick_l
|
||||
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
||||
self.Pick = pick_r
|
||||
|
||||
if self.getiplot() > 1:
|
||||
p = plt.figure(self.getiplot())
|
||||
p1, = plt.plot(Tcfpick, cfipick, 'k')
|
||||
p2, = plt.plot(Tcfpick, cfsmoothipick, 'r')
|
||||
p3, = plt.plot([self.Pick, self.Pick],
|
||||
[min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
plt.title(self.Data[0].stats.station)
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
if self.getiplot() > 1:
|
||||
p = plt.figure(self.getiplot())
|
||||
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
||||
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
||||
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
plt.title(self.Data[0].stats.station)
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
|
||||
else:
|
||||
self.Pick = None
|
||||
print 'PragPicker: No initial onset time given! Check input!'
|
||||
self.Pick = None
|
||||
print 'PragPicker: No initial onset time given! Check input!'
|
||||
return
|
||||
|
Loading…
Reference in New Issue
Block a user