[new] introduced verbose flag to suppress to much output during auto picking (slows down especially to GUI triggered auto picking process)

This commit is contained in:
Sebastian Wehling-Benatelli 2015-12-02 19:17:04 +01:00
parent ed7a323c50
commit f3ba22b235

View File

@ -46,7 +46,7 @@ def autopickevent(data, param):
# check S-P times (Wadati)
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
def autopickstation(wfstream, pickparam):
def autopickstation(wfstream, pickparam, verbose=False):
"""
:param: wfstream
:type: `~obspy.core.stream.Stream`
@ -153,11 +153,11 @@ def autopickstation(wfstream, pickparam):
ndat = wfstream.select(component="1")
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
print '##########################################'
print 'autopickstation: Working on P onset of station %s' % zdat[
0].stats.station
print 'Filtering vertical trace ...'
print zdat
msg = '##########################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=zdat[0].stats.station,
data=str(zdat))
if verbose: print(msg)
z_copy = zdat.copy()
# filter and taper data
tr_filt = zdat[0].copy()
@ -171,9 +171,9 @@ def autopickstation(wfstream, pickparam):
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
Ldiff = Lwf - Lc
if Ldiff < 0:
print 'autopickstation: Cutting times are too large for actual ' \
'waveform!'
print 'Using entire waveform instead!'
msg = 'autopickstation: Cutting times are too large for actual ' \
'waveform!\nUsing entire waveform instead!'
if verbose: print(msg)
pstart = 0
pstop = len(zdat[0].data) * zdat[0].stats.delta
cuttimes = [pstart, pstop]
@ -206,10 +206,11 @@ def autopickstation(wfstream, pickparam):
z_copy[0].data = tr_filt.data
zne = z_copy
if len(ndat) == 0 or len(edat) == 0:
print ("One or more horizontal components missing!")
print ("Signal length only checked on vertical component!")
print ("Decreasing minsiglengh from %f to %f"
% (minsiglength, minsiglength / 2))
msg = 'One or more horizontal components missing!\nSignal ' \
'length only checked on vertical component!\n' \
'Decreasing minsiglengh from {0} to ' \
'{1}'.format(minsiglength, minsiglength / 2)
if verbose: print(msg)
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength / 2,
nfacsl, minpercent, iplot)
@ -235,8 +236,9 @@ def autopickstation(wfstream, pickparam):
# check for spuriously picked S onset
# both horizontal traces needed
if len(ndat) == 0 or len(edat) == 0:
print 'One or more horizontal components missing!'
print 'Skipping control function checkZ4S.'
msg = 'One or more horizontal components missing!\n' \
'Skipping control function checkZ4S.'
if verbose: print(msg)
else:
Pflag = checkZ4S(zne, aicpick.getpick(), zfac,
tsnrz[3], iplot)
@ -252,11 +254,12 @@ def autopickstation(wfstream, pickparam):
aicpick.getSNR() >= minAICPSNR and
Pflag == 1):
aicPflag = 1
print 'AIC P-pick passes quality control: Slope: %f counts/s, SNR: %f' % \
(aicpick.getSlope(), aicpick.getSNR())
print 'Go on with refined picking ...'
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering vertical trace ' \
'...'.format(aicpick.getSlope(), aicpick.getSNR())
if verbose: print(msg)
# re-filter waveform with larger bandpass
print 'autopickstation: re-filtering vertical trace ...'
z_copy = zdat.copy()
tr_filt = zdat[0].copy()
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1],
@ -334,9 +337,10 @@ def autopickstation(wfstream, pickparam):
# waveform after P onset!
zc = crossings_nonzero_all(wfzc)
if np.size(zc) == 0 or len(zc) <= 3:
print ("Something is wrong with the waveform, "
"no zero crossings derived!")
print ("Cannot calculate source spectrum!")
msg = "Something is wrong with the waveform, " \
"no zero crossings derived!\nCannot " \
"calculate source spectrum!"
if verbose: print(msg)
else:
index = min([3, len(zc) - 1])
calcwin = (zc[index] - zc[0]) * z_copy[0].stats.delta
@ -345,14 +349,23 @@ def autopickstation(wfstream, pickparam):
w0 = specpara.getw0()
fc = specpara.getfc()
print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, "
"Polarity: %s" % (Pweight, SNRP, SNRPdB, FM))
msg = "autopickstation: P-weight: {0}, " \
"SNR: {1}, SNR[dB]: {2}, Polarity: {3}".format(Pweight,
SNRP,
SNRPdB,
FM)
print(msg)
Sflag = 1
else:
print ("Bad initial (AIC) P-pick, skipping this onset!")
print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope(), 'counts/s'
print '(min. AIC-SNR=', minAICPSNR, ', min. AIC-Slope=', minAICPslope, 'counts/s)'
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)'.format(aicpick.getSNR(),
aicpick.getSlope(),
minAICPSNR,
minAICPslope)
if verbose: print(msg)
Sflag = 0
else:
@ -361,17 +374,17 @@ def autopickstation(wfstream, pickparam):
if edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4:
print ("Go on picking S onset ...")
print ("##################################################")
print ("Working on S onset of station %s" % edat[0].stats.station)
print ("Filtering horizontal traces ...")
msg = "Go on picking S onset ...\n" \
"##################################################\n" \
"Working on S onset of station {0}\nFiltering horizontal " \
"traces ...".format(edat[0].stats.station)
if verbose: print(msg)
# determine time window for calculating CF after P onset
cuttimesh = [round(max([mpickP + sstart, 0])),
round(min([mpickP + sstop, Lwf]))]
if algoS == 'ARH':
print edat, ndat
if verbose: print(edat, ndat)
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
@ -388,7 +401,7 @@ def autopickstation(wfstream, pickparam):
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
elif algoS == 'AR3':
print zdat, edat, ndat
if verbose: print(zdat, edat, ndat)
# re-create stream object including all components
hdat = zdat.copy()
hdat += edat
@ -441,15 +454,15 @@ def autopickstation(wfstream, pickparam):
aicarhpick.getSNR() >= minAICSSNR and
aicarhpick.getpick() is not None):
aicSflag = 1
print 'AIC S-pick passes quality control: Slope: %f counts/s, SNR: %f' \
% (aicarhpick.getSlope(), aicarhpick.getSNR())
print 'Go on with refined picking ...'
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering horizontal traces ' \
'...'.format(aicarhpick.getSlope(), aicarhpick.getSNR())
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin),
round(aicarhpick.getpick() + Srecalcwin)]
# re-filter waveform with larger bandpass
print 'autopickstation: re-filtering horizontal traces...'
h_copy = hdat.copy()
# filter and taper data
if algoS == 'ARH':
@ -554,11 +567,12 @@ def autopickstation(wfstream, pickparam):
elif Serror > timeerrorsS[3]:
Sweight = 4
print 'autopickstation: S-weight: %d, SNR: %f, SNR[dB]: %f' % (
Sweight, SNRS, SNRSdB)
print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n'
'################################################'
''.format(Sweight, SNRS, SNRSdB))
##################################################################
# get Wood-Anderson peak-to-peak amplitude
print "################################################"
# initialize Data object
data = Data()
# re-create stream object including both horizontal components
@ -580,15 +594,19 @@ def autopickstation(wfstream, pickparam):
Ao = wapp.getwapp()
else:
print 'Bad initial (AIC) S-pick, skipping this onset!'
print 'AIC-SNR=', aicarhpick.getSNR(), \
'AIC-Slope=', aicarhpick.getSlope(), 'counts/s'
print '(min. AIC-SNR=', minAICSSNR, ', min. AIC-Slope=', \
minAICSslope, 'counts/s)'
msg = 'Bad initial (AIC) S-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)\n' \
'################################################' \
''.format(aicarhpick.getSNR(),
aicarhpick.getSlope(),
minAICSSNR,
minAICSslope)
if verbose: print(msg)
############################################################
# get Wood-Anderson peak-to-peak amplitude
print "################################################"
# initialize Data object
data = Data()
# re-create stream object including both horizontal components
@ -604,8 +622,8 @@ def autopickstation(wfstream, pickparam):
Ao = wapp.getwapp()
else:
print 'autopickstation: No horizontal component data available or ' \
'bad P onset, skipping S picking!'
print('autopickstation: No horizontal component data available or ' \
'bad P onset, skipping S picking!')
##############################################################
if iplot > 0:
@ -822,9 +840,10 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
:param pickparameter: picking parameters from autoPyLoT-input file
'''
print("#######################################################")
print("autoPyLoT: Found %d bad onsets at station(s) %s, starting re-picking them ...") \
% (len(badpicks), badpicks)
msg = '#######################################################\n' \
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
'starting re-picking them ...'.format(len(badpicks), badpicks)
print(msg)
newpicks = {}
for i in range(0, len(badpicks)):