Merge branch 'develop' of ariadne.geophysik.rub.de:/data/git/pylot into develop

Conflicts:
	autoPyLoT.py
This commit is contained in:
Ludger Küperkoch 2015-11-05 08:47:06 +01:00
commit f738160a8b
8 changed files with 208 additions and 83 deletions

View File

@ -32,19 +32,17 @@ def autoPyLoT(inputfile):
.. rubric:: Example .. rubric:: Example
""" """
print '************************************' splash = '''************************************\n
print '*********autoPyLoT starting*********' *********autoPyLoT starting*********\n
print 'The Python picking and Location Tool' The Python picking and Location Tool\n
print ' Version ', _getVersionString(), '2015' Version {version} 2015\n
print ' ' \n
print 'Authors:' Authors:\n
print 'S. Wehling-Benatelli' S. Wehling-Benatelli (Ruhr-Universität Bochum)\n
print ' Ruhr-Universität Bochum' L. Küperkoch (BESTEC GmbH, Landau i. d. Pfalz)\n
print 'L. Küperkoch' K. Olbert (Christian-Albrechts Universität zu Kiel)\n
print ' BESTEC GmbH, Landau (Pfalz)' ***********************************'''.format(version=_getVersionString())
print 'K. Olbert' print(splash)
print ' Christian-Albrechts Universität Kiel'
print '************************************'
# reading parameter file # reading parameter file
@ -99,8 +97,8 @@ def autoPyLoT(inputfile):
if not parameter.hasParam('eventID'): if not parameter.hasParam('eventID'):
for event in [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)]: for event in [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)]:
data.setWFData(glob.glob(os.path.join(datapath, event, '*'))) data.setWFData(glob.glob(os.path.join(datapath, event, '*')))
print 'Working on event %s' % event print('Working on event %s' % event)
print data print(data)
wfdat = data.getWFData() # all available streams wfdat = data.getWFData() # all available streams
########################################################## ##########################################################
@ -174,12 +172,16 @@ def autoPyLoT(inputfile):
# locate the event # locate the event
subprocess.call([nlloccall, locfile]) subprocess.call([nlloccall, locfile])
########################################################## ##########################################################
<<<<<<< HEAD
# write phase files for various location routines # write phase files for various location routines
# HYPO71 # HYPO71
hypo71file = '%s/%s/autoPyLoT_HYPO71.pha' % (datapath, parameter.getParam('eventID')) hypo71file = '%s/%s/autoPyLoT_HYPO71.pha' % (datapath, parameter.getParam('eventID'))
writephases(picks, 'HYPO71', hypo71file) writephases(picks, 'HYPO71', hypo71file)
=======
>>>>>>> 223902f2d4a9fe992730bb1ba925bfa432f26550
print '------------------------------------------' print '------------------------------------------'
print '-------Finished event %s!-------' % parameter.getParam('eventID') print '-------Finished event %s!-------' % parameter.getParam('eventID')

View File

@ -10,14 +10,14 @@ EVENT_DATA/LOCAL #datapath# %data path
e0019.048.13 #eventID# %event ID for single event processing e0019.048.13 #eventID# %event ID for single event processing
/DATA/Insheim/STAT_INFO #invdir# %full path to inventory or dataless-seed file /DATA/Insheim/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure#%choose data structure PILOT #datastructure#%choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything 0 #iplot# %flag for plotting: 0 none, 1 partly, >1 everything
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings #NLLoc settings#
/home/ludger/NLLOC #nllocbin# %path to NLLoc executable /home/ludger/NLLOC #nllocbin# %path to NLLoc executable
/home/ludger/NLLOC/Insheim #nllocroot# %root of NLLoc-processing directory /home/ludger/NLLOC/Insheim #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs) %(in nllocroot/obs)
Insheim_min1d2015.in #locfile# %name of autoPyLoT-output control file for NLLoc Insheim_min1d2015_auto.in #locfile# %name of autoPyLoT-output control file for NLLoc
%(in nllocroot/run) %(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times) %(in nllocroot/times)

View File

@ -88,7 +88,7 @@ ARH #algoS# %choose algorithm for S-onset
2.5 #noisefactor# %noiselevel*noisefactor=threshold 2.5 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %required percentage of samples higher than threshold 60 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets# #check for spuriously picked S-onsets#
1.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude 0.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets# #check statistics of P onsets#
45 #mdttolerance# %maximum allowed deviation of P picks from median [s] 45 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check# #wadati check#

View File

@ -1 +1 @@
ac7d-dirty a31e-dirty

View File

@ -1,7 +1,7 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import numpy as np import numpy as np
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'): def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'abs', inputfileref = 'vgridsref.in'):
''' '''
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
''' '''
@ -19,6 +19,8 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'):
nTheta = int(vglines[1].split()[1]) nTheta = int(vglines[1].split()[1])
nPhi = int(vglines[1].split()[2]) nPhi = int(vglines[1].split()[2])
print('readNumberOf Points: Awaiting %d grid points in %s'
%(nR*nTheta*nPhi, filename))
fin.close() fin.close()
return nR, nTheta, nPhi return nR, nTheta, nPhi
@ -91,13 +93,39 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'):
outfile.writelines('SPACING %f %f %f\n' %(dX, dY, dZ)) outfile.writelines('SPACING %f %f %f\n' %(dX, dY, dZ))
outfile.writelines('POINT_DATA %15d\n' %(nPoints)) outfile.writelines('POINT_DATA %15d\n' %(nPoints))
if absOrRel == 'abs':
outfile.writelines('SCALARS velocity float %d\n' %(1)) outfile.writelines('SCALARS velocity float %d\n' %(1))
elif absOrRel == 'rel':
outfile.writelines('SCALARS velChangePercent float %d\n' %(1))
outfile.writelines('LOOKUP_TABLE default\n') outfile.writelines('LOOKUP_TABLE default\n')
# write velocity # write velocity
if absOrRel == 'abs':
print("Writing velocity values to VTK file...") print("Writing velocity values to VTK file...")
for velocity in vel: for velocity in vel:
outfile.writelines('%10f\n' %velocity) outfile.writelines('%10f\n' %velocity)
elif absOrRel == 'rel':
velref = readVelocity(inputfileref)
if not len(velref) == len(vel):
print('ERROR: Number of gridpoints mismatch for %s and %s'%(inputfile, inputfileref))
return
#velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
velrel = []
for velocities in zip(vel, velref):
v, vref = velocities
if not vref == 0:
velrel.append((v - vref) / vref * 100)
else:
velrel.append(0)
nR_ref, nTheta_ref, nPhi_ref = readNumberOfPoints(inputfileref)
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
print('ERROR: Dimension mismatch of grids %s and %s'%(inputfile, inputfileref))
return
print("Writing velocity values to VTK file...")
for velocity in velrel:
outfile.writelines('%10f\n' %velocity)
print('Pertubations: min: %s, max: %s'%(min(velrel), max(velrel)))
outfile.close() outfile.close()
print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile)) print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))

View File

@ -16,13 +16,14 @@ class SeisArray(object):
Note: Source and Receiver files for FMTOMO will be generated by the Survey object (because traveltimes will be added directly). Note: Source and Receiver files for FMTOMO will be generated by the Survey object (because traveltimes will be added directly).
''' '''
def __init__(self, recfile): def __init__(self, recfile):
self.recfile = recfile
self._receiverlines = {} self._receiverlines = {}
self._receiverCoords = {} self._receiverCoords = {}
self._measuredReceivers = {} self._measuredReceivers = {}
self._measuredTopo = {} self._measuredTopo = {}
self._sourceLocs = {} self._sourceLocs = {}
self._geophoneNumbers = {} self._geophoneNumbers = {}
self._receiverlist = open(recfile, 'r').readlines() self._receiverlist = open(self.recfile, 'r').readlines()
self._generateReceiverlines() self._generateReceiverlines()
self._setReceiverCoords() self._setReceiverCoords()
self._setGeophoneNumbers() self._setGeophoneNumbers()
@ -363,9 +364,9 @@ class SeisArray(object):
return surface return surface
def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120, def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120,
thetaSN = (-0.2, 1.2), phiWE = (-0.2, 1.2), Rbt = (-62.0, 6.0), thetaSN = None,
Rbt = (-62.0, 6.0), vbot = 5.5, filename = 'vgrids.in', phiWE = None, outfilename = 'vgrids.in',
method = 'linear' ): method = 'linear', infilename = 'mygrid.in'):
''' '''
Generate a velocity grid for fmtomo regarding topography with a linear gradient starting at the topography with 0.34 [km/s]. Generate a velocity grid for fmtomo regarding topography with a linear gradient starting at the topography with 0.34 [km/s].
@ -389,6 +390,9 @@ class SeisArray(object):
:param: vbot, velocity at the bottom of the model :param: vbot, velocity at the bottom of the model
type: real type: real
:param: method, interpolation method for topography
type: str
''' '''
def getRad(angle): def getRad(angle):
@ -396,16 +400,48 @@ class SeisArray(object):
rad = angle / 180 * PI rad = angle / 180 * PI
return rad return rad
def getZmax(surface): def readMygridNlayers(filename):
z = [] infile = open(filename, 'r')
for point in surface: nlayers = len(infile.readlines()) / 2
z.append(point[2]) infile.close()
return max(z)
return nlayers
def readMygrid(filename):
ztop = []; zbot = []; vtop = []; vbot = []
infile = open(filename, 'r')
nlayers = readMygridNlayers(filename)
for index in range(nlayers):
line1 = infile.readline()
line2 = infile.readline()
ztop.append(float(line1.split()[0]))
vtop.append(float(line1.split()[1]))
zbot.append(float(line2.split()[0]))
vbot.append(float(line2.split()[1]))
if not ztop[0] == 0:
print('ERROR: there must be a velocity set for z = 0 in the file %s'%filename)
print('e.g.:\n0 0.33\n-5 1.0\netc.')
infile.close()
return ztop, zbot, vtop, vbot
R = 6371 R = 6371
vmin = 0.34 vmin = 0.34
cushionfactor = 0.1 # add some extra space to the model
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3) decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
outfile = open(filename, 'w') outfile = open(outfilename, 'w')
# generate dimensions of the grid from array
if thetaSN is None and phiWE is None:
x, y, z = self.getAllMeasuredPointsLists()
phi_min, phi_max = (self._getAngle(min(x)), self._getAngle(max(x)))
theta_min, theta_max = (self._getAngle(min(y)), self._getAngle(max(y)))
cushionPhi = abs(phi_max - phi_min) * cushionfactor
cushionTheta = abs(theta_max - theta_min) * cushionfactor
phiWE = (phi_min - cushionPhi, phi_max + cushionPhi)
thetaSN = (theta_min - cushionTheta, theta_max + cushionTheta)
thetaS, thetaN = thetaSN thetaS, thetaN = thetaSN
phiW, phiE = phiWE phiW, phiE = phiWE
@ -413,9 +449,9 @@ class SeisArray(object):
rtop = Rbt[1] + R rtop = Rbt[1] + R
# need to determine the delta to add two cushion nodes around the min/max values # need to determine the delta to add two cushion nodes around the min/max values
thetaDelta = abs(thetaN - thetaS) / (nTheta - 1) thetaDelta = abs(thetaN - thetaS) / float((nTheta - 1))
phiDelta = abs(phiE - phiW) / (nPhi - 1) phiDelta = abs(phiE - phiW) / float((nPhi - 1))
rDelta = abs(rbot - rtop) / (nR - 1) rDelta = abs(rbot - rtop) / float((nR - 1))
# create a regular grid including +2 cushion nodes in every direction # create a regular grid including +2 cushion nodes in every direction
thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
@ -432,11 +468,14 @@ class SeisArray(object):
outfile.writelines('%10s %10s %10s\n' %(rbot - rDelta, getRad(thetaS - thetaDelta), getRad(phiW - phiDelta))) outfile.writelines('%10s %10s %10s\n' %(rbot - rDelta, getRad(thetaS - thetaDelta), getRad(phiW - phiDelta)))
surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method, filename = None) surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method, filename = None)
zmax = getZmax(surface)
print "\nGenerating velocity grid for FMTOMO. Output filename = %s, interpolation method = %s"%(filename, method) print "\nGenerating velocity grid for FMTOMO. Output filename = %s, interpolation method = %s"%(outfilename, method)
print "nTheta = %s, nPhi = %s, nR = %s, thetaSN = %s, phiWE = %s, Rbt = %s"%(nTheta, nPhi, nR, thetaSN, phiWE, Rbt) print "nTheta = %s, nPhi = %s, nR = %s, thetaSN = %s, phiWE = %s, Rbt = %s"%(nTheta, nPhi, nR, thetaSN, phiWE, Rbt)
count = 0 count = 0
nlayers = readMygridNlayers(infilename)
ztop, zbot, vtop, vbot = readMygrid(infilename)
for radius in rGrid: for radius in rGrid:
for theta in thetaGrid: for theta in thetaGrid:
for phi in phiGrid: for phi in phiGrid:
@ -444,19 +483,29 @@ class SeisArray(object):
yval = self._getDistance(theta) yval = self._getDistance(theta)
for point in surface: for point in surface:
if point[0] == xval and point[1] == yval: if point[0] == xval and point[1] == yval:
z = point[2] topo = point[2]
if radius > (R + z + 1): z = -(R + topo - radius)
vel = 0.0 if z > (topo + 1):
# elif radius > (R + z - 15): ########### TESTING vel = vtop[0]
# vel = (radius - z - R) / (Rbt[0] - rDelta - zmax) * 1.0 + vmin ########################## elif (topo + 1) >= z > topo: # cushioning around topography
vel = vtop[0]
else: else:
vel = (radius - z - R) / (Rbt[0] - rDelta - zmax) * vbot + vmin ########################## for index in range(nlayers):
if (topo + ztop[index]) >= z > (topo + zbot[index]):
vel = (z - ztop[index]) / (zbot[index] - ztop[index]) * (vbot[index] - vtop[index]) + vtop[index]
break
if not (topo + ztop[index]) >= z > (topo + zbot[index]):
print('ERROR in grid inputfile, could not find velocity for a z-value of %s in the inputfile'%(z - topo))
return
count += 1 count += 1
if vel < 0:
print('ERROR, vel <0; z, topo, zbot, vbot, vtop:', z, topo, zbot[index], vbot[index], vtop[index])
outfile.writelines('%10s %10s\n'%(vel, decm)) outfile.writelines('%10s %10s\n'%(vel, decm))
progress = float(count) / float(nTotal) * 100 progress = float(count) / float(nTotal) * 100
self._update_progress(progress) self._update_progress(progress)
print('Wrote %d points to file %s for %d layers'%(count, outfilename, nlayers))
outfile.close() outfile.close()
def exportAll(self, filename = 'interpolated_receivers.out'): def exportAll(self, filename = 'interpolated_receivers.out'):
@ -469,31 +518,36 @@ class SeisArray(object):
print "Exported coordinates for %s traces to file > %s" %(count, filename) print "Exported coordinates for %s traces to file > %s" %(count, filename)
recfile_out.close() recfile_out.close()
def plotArray2D(self, plot_topo = False, highlight_measured = False, annotations = True): def plotArray2D(self, plot_topo = False, highlight_measured = False, annotations = True, pointsize = 10):
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
plt.interactive(True) plt.interactive(True)
plt.figure() fig = plt.figure()
ax = plt.axes()
xmt, ymt, zmt = self.getMeasuredTopoLists() xmt, ymt, zmt = self.getMeasuredTopoLists()
xsc, ysc, zsc = self.getSourceLocsLists() xsc, ysc, zsc = self.getSourceLocsLists()
xmr, ymr, zmr = self.getMeasuredReceiverLists() xmr, ymr, zmr = self.getMeasuredReceiverLists()
xrc, yrc, zrc = self.getReceiverLists() xrc, yrc, zrc = self.getReceiverLists()
plt.plot(xrc, yrc, 'k.', markersize = 10, label = 'all receivers') if len(xrc) > 0:
plt.plot(xsc, ysc, 'b*', markersize = 10, label = 'shot locations') ax.plot(xrc, yrc, 'k.', markersize = pointsize, label = 'all receivers')
if len(xsc) > 0:
ax.plot(xsc, ysc, 'b*', markersize = pointsize, label = 'shot locations')
if plot_topo == True: if plot_topo == True:
plt.plot(xmt, ymt, 'b', markersize = 10, label = 'measured topo points') ax.plot(xmt, ymt, 'b.', markersize = pointsize, label = 'measured topo points')
if highlight_measured == True: if highlight_measured == True:
plt.plot(xmr, ymr, 'ro', label = 'measured receivers') ax.plot(xmr, ymr, 'r.', markersize = pointsize, label = 'measured receivers')
plt.xlabel('X [m]') plt.title('2D plot of seismic array %s'%self.recfile)
plt.ylabel('Y [m]') ax.set_xlabel('X [m]')
ax.set_ylabel('Y [m]')
ax.set_aspect('equal')
plt.legend() plt.legend()
if annotations == True: if annotations == True:
for traceID in self.getReceiverCoordinates().keys(): for traceID in self.getReceiverCoordinates().keys():
plt.annotate((' ' + str(traceID)), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small', color = 'k') ax.annotate((' ' + str(traceID)), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small', color = 'k')
for shotnumber in self.getSourceLocations().keys(): for shotnumber in self.getSourceLocations().keys():
plt.annotate((' ' + str(shotnumber)), xy = (self._getXshot(shotnumber), self._getYshot(shotnumber)), fontsize = 'x-small', color = 'b') ax.annotate((' ' + str(shotnumber)), xy = (self._getXshot(shotnumber), self._getYshot(shotnumber)), fontsize = 'x-small', color = 'b')
@ -508,18 +562,25 @@ class SeisArray(object):
xmt, ymt, zmt = self.getMeasuredTopoLists() xmt, ymt, zmt = self.getMeasuredTopoLists()
xmr, ymr, zmr = self.getMeasuredReceiverLists() xmr, ymr, zmr = self.getMeasuredReceiverLists()
xin, yin, zin = self.getReceiverLists() xrc, yrc, zrc = self.getReceiverLists()
xsc, ysc, zsc = self.getSourceLocsLists()
ax.plot(xmt, ymt, zmt, 'b*', markersize = 10, label = 'measured topo points') plt.title('3D plot of seismic array %s'%self.recfile)
ax.plot(xin, yin, zin, 'k.', markersize = 10, label = 'interpolated receivers') if len(xmt) > 0:
ax.plot(xmt, ymt, zmt, 'b.', markersize = 10, label = 'measured topo points')
if len(xrc) > 0:
ax.plot(xrc, yrc, zrc, 'k.', markersize = 10, label = 'all receivers')
if len(xmr) > 0:
ax.plot(xmr, ymr, zmr, 'ro', label = 'measured receivers') ax.plot(xmr, ymr, zmr, 'ro', label = 'measured receivers')
if len(xsc) > 0:
ax.plot(xsc, ysc, zsc, 'b*', label = 'shot locations')
ax.set_xlabel('X'); ax.set_ylabel('Y'); ax.set_zlabel('elevation') ax.set_xlabel('X'); ax.set_ylabel('Y'); ax.set_zlabel('elevation')
ax.legend() ax.legend()
return ax return ax
def plotSurface3D(self, ax = None, step = 0.5, method = 'linear'): def plotSurface3D(self, ax = None, step = 0.5, method = 'linear', exag = False):
from matplotlib import cm from matplotlib import cm
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D
@ -545,6 +606,7 @@ class SeisArray(object):
ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z)) ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z))
if exag == False:
ax.set_zlim(-(max(x) - min(x)/2),(max(x) - min(x)/2)) ax.set_zlim(-(max(x) - min(x)/2),(max(x) - min(x)/2))
ax.set_aspect('equal') ax.set_aspect('equal')

View File

@ -588,6 +588,23 @@ class SeismicShot(object):
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_lowerb, ':k') # plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_lowerb, ':k')
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_upperb, ':k') # plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_upperb, ':k')
def plotTrace(self, traceID, plotSNR = True, lw = 1):
fig = plt.figure()
ax = fig.add_subplot(111)
ax = self._drawStream(traceID, ax = ax)
tgap = self.getTgap()
tsignal = self.getTsignal()
pick = self.getPick(traceID)
tnoise = pick - tgap
snr, snrdb, noiselevel = self.getSNR(traceID)
ax.plot([0, tnoise], [noiselevel, noiselevel], 'm', linewidth = lw, label = 'noise level')
ax.plot([tnoise, pick], [noiselevel, noiselevel], 'g:', linewidth = lw, label = 'gap')
ax.plot([tnoise + tgap, pick + tsignal], [noiselevel * snr, noiselevel * snr], 'b', linewidth = lw, label = 'signal level')
ax.legend()
ax.text(0.05, 0.95, 'SNR: %s' %snr, transform = ax.transAxes)
def plot_traces(self, traceID, folm = 0.6): ########## 2D, muss noch mehr verbessert werden ########## def plot_traces(self, traceID, folm = 0.6): ########## 2D, muss noch mehr verbessert werden ##########
from matplotlib.widgets import Button from matplotlib.widgets import Button
@ -621,7 +638,7 @@ class SeismicShot(object):
self._drawStream(traceID) self._drawStream(traceID)
self._drawCFs(traceID, folm) self._drawCFs(traceID, folm)
def _drawStream(self, traceID, refresh = False): def _drawStream(self, traceID, refresh = False, ax = None):
from pylot.core.util.utils import getGlobalTimes from pylot.core.util.utils import getGlobalTimes
from pylot.core.util.utils import prepTimeAxis from pylot.core.util.utils import prepTimeAxis
@ -630,6 +647,7 @@ class SeismicShot(object):
timeaxis = prepTimeAxis(stime, stream[0]) timeaxis = prepTimeAxis(stime, stream[0])
timeaxis -= stime timeaxis -= stime
if ax is None:
ax = self.traces4plot[traceID]['ax1'] ax = self.traces4plot[traceID]['ax1']
if refresh == True: if refresh == True:
@ -647,6 +665,7 @@ class SeismicShot(object):
max(stream[0].data)], max(stream[0].data)],
'r', label = 'most likely') 'r', label = 'most likely')
ax.legend() ax.legend()
return ax
def _drawCFs(self, traceID, folm, refresh = False): def _drawCFs(self, traceID, folm, refresh = False):
hoscf = self.getHOScf(traceID) hoscf = self.getHOScf(traceID)
@ -745,11 +764,12 @@ class SeismicShot(object):
:type: 'logical' :type: 'logical'
''' '''
from scipy.interpolate import griddata from scipy.interpolate import griddata
from matplotlib import cm
cmap = cm.jet
x = []; xcut = [] x = []; xcut = []
y = []; ycut = [] y = []; ycut = []
z = []; zcut = [] z = []; zcut = []
tmin, tmax = self.getCut()
for traceID in self.pick.keys(): for traceID in self.pick.keys():
if self.getFlag(traceID) != 0: if self.getFlag(traceID) != 0:
@ -761,6 +781,9 @@ class SeismicShot(object):
ycut.append(self.getRecLoc(traceID)[1]) ycut.append(self.getRecLoc(traceID)[1])
zcut.append(self.getPickIncludeRemoved(traceID)) zcut.append(self.getPickIncludeRemoved(traceID))
tmin = 0.8 * min(z) # 20% cushion for colorbar
tmax = 1.2 * max(z)
xaxis = np.arange(min(x), max(x), step) xaxis = np.arange(min(x), max(x), step)
yaxis = np.arange(min(y), max(y), step) yaxis = np.arange(min(y), max(y), step)
xgrid, ygrid = np.meshgrid(xaxis, yaxis) xgrid, ygrid = np.meshgrid(xaxis, yaxis)
@ -770,19 +793,28 @@ class SeismicShot(object):
fig = plt.figure() fig = plt.figure()
ax = plt.axes() ax = plt.axes()
ax.matshow(zgrid, extent = [min(x), max(x), min(y), max(y)], origin = 'lower') count = 0
ax.imshow(zgrid, extent = [min(x), max(x), min(y), max(y)], vmin = tmin, vmax = tmax, cmap = cmap, origin = 'lower', alpha = 0.85)
plt.text(0.45, 0.9, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes) plt.text(0.45, 0.9, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes)
sc = ax.scatter(x, y, c = z, s = 30, label = 'picked shots', vmin = tmin, vmax = tmax, linewidths = 1.5) sc = ax.scatter(x, y, c = z, s = 30, label = 'picked shots', vmin = tmin, vmax = tmax, cmap = cmap, linewidths = 1.5)
sccut = ax.scatter(xcut, ycut, c = zcut, s = 30, edgecolor = 'm', label = 'cut out shots', vmin = tmin, vmax = tmax, linewidths = 1.5) for xyz in zip(xcut, ycut, zcut):
x, y, z = xyz
label = None
if z > tmax:
count += 1
z = 'w'
if count == 1:
label = 'cut out shots'
ax.scatter(x, y, c = z, s = 30, edgecolor = 'm', label = label, vmin = tmin, vmax = tmax, cmap = cmap, linewidths = 1.5)
if colorbar == True: if colorbar == True:
plt.colorbar(sc) cbar = plt.colorbar(sc)
cbar.set_label('Time [s]')
ax.legend()
ax.set_xlabel('X') ax.set_xlabel('X')
ax.set_ylabel('Y') ax.set_ylabel('Y')
ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1],'*k', markersize = 15) # plot source location ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1],'*k', markersize = 15) # plot source location
if plotRec == True:
ax.scatter(x, y, c = z, s = 30)
if annotations == True: if annotations == True:
for traceID in self.getTraceIDlist(): for traceID in self.getTraceIDlist():
if self.getFlag(traceID) is not 0: if self.getFlag(traceID) is not 0:

View File

@ -335,7 +335,8 @@ def autopickstation(wfstream, pickparam):
"no zero crossings derived!") "no zero crossings derived!")
print ("Cannot calculate source spectrum!") print ("Cannot calculate source spectrum!")
else: else:
calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta index = min([3, len(zc) - 1])
calcwin = (zc[index] - zc[0]) * z_copy[0].stats.delta
# calculate source spectrum and get w0 and fc # calculate source spectrum and get w0 and fc
specpara = DCfc(z_copy, mpickP, calcwin, iplot) specpara = DCfc(z_copy, mpickP, calcwin, iplot)
w0 = specpara.getw0() w0 = specpara.getw0()