Uses now UTCDateTime.timestamp as this is more efficient and shorter.
This commit is contained in:
parent
6b14c452e2
commit
fd6e4cb02a
@ -13,6 +13,7 @@ import matplotlib.pyplot as plt
|
|||||||
from obspy.core import Stream, UTCDateTime
|
from obspy.core import Stream, UTCDateTime
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||||
'''
|
'''
|
||||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||||
@ -65,8 +66,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
|
|
||||||
#get earliest possible pick
|
#get earliest possible pick
|
||||||
|
|
||||||
#determine all zero crossings in signal window (demeaned)
|
#determine all zero crossings in signal window
|
||||||
zc = crossings_nonzero_all(x[isignal] - x[isignal].mean())
|
zc = crossings_nonzero_all(x[isignal])
|
||||||
#calculate mean half period T0 of signal as the average of the
|
#calculate mean half period T0 of signal as the average of the
|
||||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
|
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
|
||||||
#T0/4 is assumed as time difference between most likely and earliest possible pick!
|
#T0/4 is assumed as time difference between most likely and earliest possible pick!
|
||||||
@ -385,13 +386,13 @@ def getsignalwin(t, t1, tsignal):
|
|||||||
def wadaticheck(pickdic, dttolerance, iplot):
|
def wadaticheck(pickdic, dttolerance, iplot):
|
||||||
'''
|
'''
|
||||||
Function to calculate Wadati-diagram from given P and S onsets in order
|
Function to calculate Wadati-diagram from given P and S onsets in order
|
||||||
to detect S pick outliers. If a certain S-P time deviates from regression
|
to detect S pick outliers. If a certain S-P time deviates by dttolerance
|
||||||
of S-P time the S pick is marked and down graded.
|
from regression of S-P time the S pick is marked and down graded.
|
||||||
|
|
||||||
: param: pickdic, dictionary containing picks and quality parameters
|
: param: pickdic, dictionary containing picks and quality parameters
|
||||||
: type: dictionary
|
: type: dictionary
|
||||||
|
|
||||||
: param: dttolerance, maximum adjusted deviation of S-P time from
|
: param: dttolerance, maximum adjusted deviation of S-P time from
|
||||||
S-P time regression
|
S-P time regression
|
||||||
: type: float
|
: type: float
|
||||||
|
|
||||||
@ -405,7 +406,6 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
Ppicks = []
|
Ppicks = []
|
||||||
Spicks = []
|
Spicks = []
|
||||||
SPtimes = []
|
SPtimes = []
|
||||||
vpvs = []
|
|
||||||
for key in pickdic:
|
for key in pickdic:
|
||||||
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
||||||
# calculate S-P time
|
# calculate S-P time
|
||||||
@ -413,65 +413,60 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
# add S-P time to dictionary
|
# add S-P time to dictionary
|
||||||
pickdic[key]['SPt'] = spt
|
pickdic[key]['SPt'] = spt
|
||||||
# add P onsets and corresponding S-P times to list
|
# add P onsets and corresponding S-P times to list
|
||||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
|
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
|
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||||
Ppicks.append(UTCPpick)
|
Ppicks.append(UTCPpick.timestamp)
|
||||||
Spicks.append(UTCSpick)
|
Spicks.append(UTCSpick.timestamp)
|
||||||
SPtimes.append(spt)
|
SPtimes.append(spt)
|
||||||
vpvs.append(UTCPpick/UTCSpick)
|
|
||||||
|
|
||||||
|
|
||||||
if len(SPtimes) >= 3:
|
if len(SPtimes) >= 3:
|
||||||
# calculate slope
|
# calculate slope
|
||||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||||
wdfit = np.polyval(p1, Ppicks)
|
wdfit = np.polyval(p1, Ppicks)
|
||||||
wfitflag = 0
|
wfitflag = 0
|
||||||
|
|
||||||
# calculate average vp/vs ratio before check
|
# calculate vp/vs ratio before check
|
||||||
vpvsr = p1[0] + 1
|
vpvsr = p1[0] + 1
|
||||||
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
||||||
|
|
||||||
checkedPpicks = []
|
checkedPpicks = []
|
||||||
checkedSpicks = []
|
checkedSpicks = []
|
||||||
checkedSPtimes = []
|
checkedSPtimes = []
|
||||||
checkedvpvs = []
|
|
||||||
# calculate deviations from Wadati regression
|
# calculate deviations from Wadati regression
|
||||||
for key in pickdic:
|
for key in pickdic:
|
||||||
if pickdic[key].has_key('SPt'):
|
if pickdic[key].has_key('SPt'):
|
||||||
ii = 0
|
ii = 0
|
||||||
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
||||||
ii += 1
|
ii += 1
|
||||||
# check, if deviation is larger than adjusted
|
# check, if deviation is larger than adjusted
|
||||||
if wddiff >= dttolerance:
|
if wddiff >= dttolerance:
|
||||||
# mark onset and downgrade S-weight to 9
|
# mark onset and downgrade S-weight to 9
|
||||||
# (not used anymore)
|
# (not used anymore)
|
||||||
marker = 'badWadatiCheck'
|
marker = 'badWadatiCheck'
|
||||||
pickdic[key]['S']['weight'] = 9
|
pickdic[key]['S']['weight'] = 9
|
||||||
else:
|
else:
|
||||||
marker = 'goodWadatiCheck'
|
marker = 'goodWadatiCheck'
|
||||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) - \
|
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||||
UTCDateTime(1970,1,1,0,0,0)
|
checkedPpicks.append(checkedPpick.timestamp)
|
||||||
checkedPpicks.append(checkedPpick)
|
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||||
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp']) - \
|
checkedSpicks.append(checkedSpick.timestamp)
|
||||||
UTCDateTime(1970,1,1,0,0,0)
|
|
||||||
checkedSpicks.append(checkedSpick)
|
|
||||||
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||||
checkedSPtimes.append(checkedSPtime)
|
checkedSPtimes.append(checkedSPtime)
|
||||||
checkedvpvs.append(checkedPpick/checkedSpick)
|
|
||||||
|
|
||||||
pickdic[key]['S']['marked'] = marker
|
pickdic[key]['S']['marked'] = marker
|
||||||
|
|
||||||
|
|
||||||
# calculate new slope
|
# calculate new slope
|
||||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||||
|
|
||||||
# calculate average vp/vs ratio after check
|
# calculate vp/vs ratio after check
|
||||||
cvpvsr = p2[0] + 1
|
cvpvsr = p2[0] + 1
|
||||||
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
||||||
|
|
||||||
checkedonsets = pickdic
|
checkedonsets = pickdic
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||||
print 'Skip wadati check!'
|
print 'Skip wadati check!'
|
||||||
@ -487,7 +482,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||||
plt.ylabel('S-P Times [s]')
|
plt.ylabel('S-P Times [s]')
|
||||||
plt.xlabel('P Times [s]')
|
plt.xlabel('P Times [s]')
|
||||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
|
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f, Vp/Vs(checked)=%5.2f' \
|
||||||
% (len(SPtimes), vpvsr, cvpvsr))
|
% (len(SPtimes), vpvsr, cvpvsr))
|
||||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
|
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
|
||||||
'Wadati 2'], loc='best')
|
'Wadati 2'], loc='best')
|
||||||
|
Loading…
Reference in New Issue
Block a user