Compare commits
No commits in common. "develop" and "correlation_picker" have entirely different histories.
develop
...
correlatio
28
PyLoT.py
28
PyLoT.py
@ -716,14 +716,14 @@ class MainWindow(QMainWindow):
|
|||||||
self.tabs.addTab(wf_tab, 'Waveform Plot')
|
self.tabs.addTab(wf_tab, 'Waveform Plot')
|
||||||
self.tabs.addTab(array_tab, 'Array Map')
|
self.tabs.addTab(array_tab, 'Array Map')
|
||||||
self.tabs.addTab(events_tab, 'Eventlist')
|
self.tabs.addTab(events_tab, 'Eventlist')
|
||||||
#self.tabs.addTab(spectro_tab, 'Spectro')
|
self.tabs.addTab(spectro_tab, 'Spectro')
|
||||||
|
|
||||||
self.wf_layout.addWidget(self.no_data_label)
|
self.wf_layout.addWidget(self.no_data_label)
|
||||||
self.wf_layout.addWidget(self.wf_scroll_area)
|
self.wf_layout.addWidget(self.wf_scroll_area)
|
||||||
self.wf_scroll_area.setWidgetResizable(True)
|
self.wf_scroll_area.setWidgetResizable(True)
|
||||||
self.init_array_tab()
|
self.init_array_tab()
|
||||||
self.init_event_table()
|
self.init_event_table()
|
||||||
#self.init_spectro_tab()
|
self.init_spectro_tab()
|
||||||
self.tabs.setCurrentIndex(0)
|
self.tabs.setCurrentIndex(0)
|
||||||
|
|
||||||
self.eventLabel = QLabel()
|
self.eventLabel = QLabel()
|
||||||
@ -1011,7 +1011,7 @@ class MainWindow(QMainWindow):
|
|||||||
for event in events:
|
for event in events:
|
||||||
for filename in filenames:
|
for filename in filenames:
|
||||||
if os.path.isfile(filename) and event.pylot_id in filename:
|
if os.path.isfile(filename) and event.pylot_id in filename:
|
||||||
self.load_data(filename, draw=False, event=event, ask_user=False, merge_strategy=sld.merge_strategy)
|
self.load_data(filename, draw=False, event=event, ask_user=True, merge_strategy=sld.merge_strategy)
|
||||||
refresh = True
|
refresh = True
|
||||||
if not refresh:
|
if not refresh:
|
||||||
return
|
return
|
||||||
@ -1020,8 +1020,8 @@ class MainWindow(QMainWindow):
|
|||||||
self.fill_eventbox()
|
self.fill_eventbox()
|
||||||
self.setDirty(True)
|
self.setDirty(True)
|
||||||
|
|
||||||
def load_data(self, fname=None, loc=False, draw=True, event=None, ask_user=True, merge_strategy='Overwrite',):
|
def load_data(self, fname=None, loc=False, draw=True, event=None, ask_user=False, merge_strategy='Overwrite'):
|
||||||
if ask_user:
|
if not ask_user:
|
||||||
if not self.okToContinue():
|
if not self.okToContinue():
|
||||||
return
|
return
|
||||||
if fname is None:
|
if fname is None:
|
||||||
@ -1034,7 +1034,7 @@ class MainWindow(QMainWindow):
|
|||||||
if not event:
|
if not event:
|
||||||
event = self.get_current_event()
|
event = self.get_current_event()
|
||||||
|
|
||||||
if event.picks and ask_user:
|
if event.picks:
|
||||||
qmb = QMessageBox(self, icon=QMessageBox.Question,
|
qmb = QMessageBox(self, icon=QMessageBox.Question,
|
||||||
text='Do you want to overwrite the data?',)
|
text='Do you want to overwrite the data?',)
|
||||||
overwrite_button = qmb.addButton('Overwrite', QMessageBox.YesRole)
|
overwrite_button = qmb.addButton('Overwrite', QMessageBox.YesRole)
|
||||||
@ -1976,6 +1976,7 @@ class MainWindow(QMainWindow):
|
|||||||
self.dataPlot.activateObspyDMToptions(self.obspy_dmt)
|
self.dataPlot.activateObspyDMToptions(self.obspy_dmt)
|
||||||
if self.obspy_dmt:
|
if self.obspy_dmt:
|
||||||
self.prepareObspyDMT_data(eventpath)
|
self.prepareObspyDMT_data(eventpath)
|
||||||
|
self.dataPlot.activateCompareOptions(True)
|
||||||
|
|
||||||
def loadWaveformData(self):
|
def loadWaveformData(self):
|
||||||
'''
|
'''
|
||||||
@ -2152,11 +2153,10 @@ class MainWindow(QMainWindow):
|
|||||||
self.wf_scroll_area.setVisible(len(plots) > 0)
|
self.wf_scroll_area.setVisible(len(plots) > 0)
|
||||||
self.no_data_label.setVisible(not len(plots) > 0)
|
self.no_data_label.setVisible(not len(plots) > 0)
|
||||||
for times, data, times_syn, data_syn in plots:
|
for times, data, times_syn, data_syn in plots:
|
||||||
self.dataPlot.plotWidget.getPlotItem().plot(np.array(times), np.array(data),
|
self.dataPlot.plotWidget.getPlotItem().plot(times, data,
|
||||||
pen=self.dataPlot.pen_linecolor,
|
pen=self.dataPlot.pen_linecolor)
|
||||||
skipFiniteCheck=True)
|
|
||||||
if len(data_syn) > 0:
|
if len(data_syn) > 0:
|
||||||
self.dataPlot.plotWidget.getPlotItem().plot(np.array(times_syn), np.array(data_syn),
|
self.dataPlot.plotWidget.getPlotItem().plot(times_syn, data_syn,
|
||||||
pen=self.dataPlot.pen_linecolor_syn)
|
pen=self.dataPlot.pen_linecolor_syn)
|
||||||
self.dataPlot.reinitMoveProxy()
|
self.dataPlot.reinitMoveProxy()
|
||||||
self.highlight_stations()
|
self.highlight_stations()
|
||||||
@ -3096,7 +3096,7 @@ class MainWindow(QMainWindow):
|
|||||||
|
|
||||||
if self.pg:
|
if self.pg:
|
||||||
if spe:
|
if spe:
|
||||||
if not self.plot_method == 'fast' and picks['epp'] and picks['lpp']:
|
if picks['epp'] and picks['lpp']:
|
||||||
pen = make_pen(picktype, phaseID, 'epp', quality)
|
pen = make_pen(picktype, phaseID, 'epp', quality)
|
||||||
self.drawnPicks[picktype][station].append(pw.plot([epp, epp], ylims,
|
self.drawnPicks[picktype][station].append(pw.plot([epp, epp], ylims,
|
||||||
alpha=.25, pen=pen, name='EPP'))
|
alpha=.25, pen=pen, name='EPP'))
|
||||||
@ -3590,7 +3590,7 @@ class MainWindow(QMainWindow):
|
|||||||
def calc_magnitude(self):
|
def calc_magnitude(self):
|
||||||
self.init_metadata()
|
self.init_metadata()
|
||||||
if not self.metadata:
|
if not self.metadata:
|
||||||
return []
|
return None
|
||||||
|
|
||||||
wf_copy = self.get_data().getWFData().copy()
|
wf_copy = self.get_data().getWFData().copy()
|
||||||
|
|
||||||
@ -3599,10 +3599,6 @@ class MainWindow(QMainWindow):
|
|||||||
for station in np.unique(list(self.getPicks('manual').keys()) + list(self.getPicks('auto').keys())):
|
for station in np.unique(list(self.getPicks('manual').keys()) + list(self.getPicks('auto').keys())):
|
||||||
wf_select += wf_copy.select(station=station)
|
wf_select += wf_copy.select(station=station)
|
||||||
|
|
||||||
if not wf_select:
|
|
||||||
logging.warning('Empty Stream in calc_magnitude. Return.')
|
|
||||||
return []
|
|
||||||
|
|
||||||
corr_wf = restitute_data(wf_select, self.metadata)
|
corr_wf = restitute_data(wf_select, self.metadata)
|
||||||
# calculate moment magnitude
|
# calculate moment magnitude
|
||||||
moment_mag = MomentMagnitude(corr_wf, self.get_data().get_evt_data(), self.inputs.get('vp'),
|
moment_mag = MomentMagnitude(corr_wf, self.get_data().get_evt_data(), self.inputs.get('vp'),
|
||||||
|
31
README.md
31
README.md
@ -54,17 +54,33 @@ In order to run PyLoT you need to install:
|
|||||||
|
|
||||||
#### Some handwork:
|
#### Some handwork:
|
||||||
|
|
||||||
Some extra information on error estimates (just needed for reading old PILOT data) and the Richter magnitude scaling
|
PyLoT needs a properties folder on your system to work. It should be situated in your home directory
|
||||||
|
(on Windows usually C:/Users/*username*):
|
||||||
|
|
||||||
|
mkdir ~/.pylot
|
||||||
|
|
||||||
|
In the next step you have to copy some files to this directory:
|
||||||
|
|
||||||
|
*for local distance seismicity*
|
||||||
|
|
||||||
|
cp path-to-pylot/inputs/pylot_local.in ~/.pylot/pylot.in
|
||||||
|
|
||||||
|
*for regional distance seismicity*
|
||||||
|
|
||||||
|
cp path-to-pylot/inputs/pylot_regional.in ~/.pylot/pylot.in
|
||||||
|
|
||||||
|
*for global distance seismicity*
|
||||||
|
|
||||||
|
cp path-to-pylot/inputs/pylot_global.in ~/.pylot/pylot.in
|
||||||
|
|
||||||
|
and some extra information on error estimates (just needed for reading old PILOT data) and the Richter magnitude scaling
|
||||||
relation
|
relation
|
||||||
|
|
||||||
cp path-to-pylot/inputs/PILOT_TimeErrors.in path-to-pylot/inputs/richter_scaling.data ~/.pylot/
|
cp path-to-pylot/inputs/PILOT_TimeErrors.in path-to-pylot/inputs/richter_scaling.data ~/.pylot/
|
||||||
|
|
||||||
You may need to do some modifications to these files. Especially folder names should be reviewed.
|
You may need to do some modifications to these files. Especially folder names should be reviewed.
|
||||||
|
|
||||||
PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10/11.
|
PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10.
|
||||||
|
|
||||||
## Example Dataset
|
|
||||||
An example dataset with waveform data, metadata and automatic picks in the obspy-dmt dataset format for testing the teleseismic picking can be found at https://zenodo.org/doi/10.5281/zenodo.13759803
|
|
||||||
|
|
||||||
## Release notes
|
## Release notes
|
||||||
|
|
||||||
@ -73,7 +89,6 @@ An example dataset with waveform data, metadata and automatic picks in the obspy
|
|||||||
- event organisation in project files and waveform visualisation
|
- event organisation in project files and waveform visualisation
|
||||||
- consistent manual phase picking through predefined SNR dependant zoom level
|
- consistent manual phase picking through predefined SNR dependant zoom level
|
||||||
- consistent automatic phase picking routines using Higher Order Statistics, AIC and Autoregression
|
- consistent automatic phase picking routines using Higher Order Statistics, AIC and Autoregression
|
||||||
- pick correlation correction for teleseismic waveforms
|
|
||||||
- interactive tuning of auto-pick parameters
|
- interactive tuning of auto-pick parameters
|
||||||
- uniform uncertainty estimation from waveform's properties for automatic and manual picks
|
- uniform uncertainty estimation from waveform's properties for automatic and manual picks
|
||||||
- pdf representation and comparison of picks taking the uncertainty intrinsically into account
|
- pdf representation and comparison of picks taking the uncertainty intrinsically into account
|
||||||
@ -82,7 +97,7 @@ An example dataset with waveform data, metadata and automatic picks in the obspy
|
|||||||
|
|
||||||
#### Known issues:
|
#### Known issues:
|
||||||
|
|
||||||
Current release is still in development progress and has several issues. We are currently lacking manpower, but hope to assess many of the issues in the near future.
|
We hope to solve these with the next release.
|
||||||
|
|
||||||
## Staff
|
## Staff
|
||||||
|
|
||||||
@ -95,4 +110,4 @@ Others: A. Bruestle, T. Meier, W. Friederich
|
|||||||
|
|
||||||
[ObsPy]: http://github.com/obspy/obspy/wiki
|
[ObsPy]: http://github.com/obspy/obspy/wiki
|
||||||
|
|
||||||
September 2024
|
August 2024
|
||||||
|
@ -1,77 +0,0 @@
|
|||||||
# Pick-Correlation Correction
|
|
||||||
|
|
||||||
## Introduction
|
|
||||||
Currently, the pick-correlation correction algorithm is not accessible from they PyLoT GUI. The main file *pick_correlation_correction.py* is located in the directory *pylot\correlation*.
|
|
||||||
The program only works for an obspy dmt database structure.
|
|
||||||
|
|
||||||
The basic workflow of the algorithm is shown in the following diagram. The first step **(1)** is the normal (automatic) picking procedure in PyLoT. Everything from step **(2)** to **(5)** is part of the correlation correction algorithm.
|
|
||||||
|
|
||||||
*Note: The first step is not required in case theoretical onsets are used instead of external picks when the parameter use_taupy_onsets is set to True. However, an existing event quakeML (.xml) file generated by PyLoT might be required for each event in case not external picks are used.*
|
|
||||||
|
|
||||||
![images/workflow_stacking.png](images/workflow_stacking.png)
|
|
||||||
|
|
||||||
A detailed description of the algorithm can be found in the corresponding publication:
|
|
||||||
|
|
||||||
*Paffrath, M., Friederich, W., and the AlpArray and AlpArray-SWATH D Working Groups: Teleseismic P waves at the AlpArray seismic network: wave fronts, absolute travel times and travel-time residuals, Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, 2021.*
|
|
||||||
|
|
||||||
## How to use
|
|
||||||
To use the program you have to call the main program providing two mandatory arguments: a path to the obspy dmt database folder *dmt_database_path* and the path to the PyLoT infile *pylot.in* for picking of the beam trace:
|
|
||||||
|
|
||||||
```python pick_correlation_correction.py dmt_database_path pylot.in```
|
|
||||||
|
|
||||||
By default, the parameter file *parameters.yaml* is used. You can use the command line option *--params* to specify a different parameter file and other optional arguments such as *-pd* for plotting detailed information or *-n 4* to use 4 cores for parallel processing:
|
|
||||||
|
|
||||||
```python pick_correlation_correction.py dmt_database_path pylot.in --params parameters_adriaarray.yaml -pd -n 4```
|
|
||||||
|
|
||||||
## Cross-Correlation Parameters
|
|
||||||
|
|
||||||
The program uses the parameters in the file *parameters.yaml* by default. You can use the command line option *--params* to specify a different parameter file. An example of the parameter file is provided in the *correlation\parameters.yaml* file.
|
|
||||||
|
|
||||||
In the top level of the parameter file the logging level *logging* can be set, as well as a list of pick phases *pick_phases* (e.g. ['P', 'S']).
|
|
||||||
|
|
||||||
For each pick phase the different parameters can be set in the first sub-level of the parameter file, e.g.:
|
|
||||||
|
|
||||||
```yaml
|
|
||||||
logging: info
|
|
||||||
pick_phases: ['P', 'S']
|
|
||||||
|
|
||||||
P:
|
|
||||||
min_corr_stacking: 0.8
|
|
||||||
min_corr_export: 0.6
|
|
||||||
[...]
|
|
||||||
|
|
||||||
S:
|
|
||||||
min_corr_stacking: 0.7
|
|
||||||
[...]
|
|
||||||
```
|
|
||||||
|
|
||||||
The following parameters are available:
|
|
||||||
|
|
||||||
|
|
||||||
| Parameter Name | Description | Parameter Type |
|
|
||||||
|--------------------------------|----------------------------------------------------------------------------------------------------|----------------|
|
|
||||||
| min_corr_stacking | Minimum correlation coefficient for building beam trace | float |
|
|
||||||
| min_corr_export | Minimum correlation coefficient for pick export | float |
|
|
||||||
| min_stack | Minimum number of stations for building beam trace | int |
|
|
||||||
| t_before | Correlation window before reference pick | float |
|
|
||||||
| t_after | Correlation window after reference pick | float |
|
|
||||||
| cc_maxlag | Maximum shift for initial correlation | float |
|
|
||||||
| cc_maxlag2 | Maximum shift for second (final) correlation (also for calculating pick uncertainty) | float |
|
|
||||||
| initial_pick_outlier_threshold | Threshold for excluding large outliers of initial (AIC) picks | float |
|
|
||||||
| export_threshold | Automatically exclude all onsets which deviate more than this threshold from corrected taup onsets | float |
|
|
||||||
| min_picks_export | Minimum number of correlated picks for export | int |
|
|
||||||
| min_picks_autopylot | Minimum number of reference auto picks to continue with event | int |
|
|
||||||
| check_RMS | Do RMS check to search for restitution errors (very experimental) | bool |
|
|
||||||
| use_taupy_onsets | Use taupy onsets as reference picks instead of external picks | bool |
|
|
||||||
| station_list | Use the following stations as reference for stacking | list[str] |
|
|
||||||
| use_stacked_trace | Use existing stacked trace if found (spare re-computation) | bool |
|
|
||||||
| data_dir | obspyDMT data subdirectory (e.g. 'raw', 'processed') | str |
|
|
||||||
| pickfile_extension | Use quakeML files (PyLoT output) with the following extension | str |
|
|
||||||
| dt_stacking | Time difference for stacking window (in seconds) | list[float] |
|
|
||||||
| filter_options | Filter for first correlation (rough) | dict |
|
|
||||||
| filter_options_final | Filter for second correlation (fine) | dict |
|
|
||||||
| filter_type | Filter type (e.g. bandpass) | str |
|
|
||||||
| sampfreq | Sampling frequency (in Hz) | float |
|
|
||||||
|
|
||||||
## Example Dataset
|
|
||||||
An example dataset with waveform data, metadata and automatic picks in the obspy-dmt dataset format for testing can be found at https://zenodo.org/doi/10.5281/zenodo.13759803
|
|
Binary file not shown.
Before Width: | Height: | Size: 64 KiB |
199
docs/tuning.md
199
docs/tuning.md
@ -6,123 +6,122 @@ A description of the parameters used for determining automatic picks.
|
|||||||
|
|
||||||
Parameters applied to the traces before picking algorithm starts.
|
Parameters applied to the traces before picking algorithm starts.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| *P Start*, *P | |
|
| *P Start*, *P
|
||||||
| Stop* | Define time interval relative to trace start time for CF calculation on vertical trace. Value is relative to theoretical onset time if 'Use TauPy' option is enabled in main settings of 'Tune Autopicker' dialogue. |
|
Stop* | Define time interval relative to trace start time for CF calculation on vertical trace. Value is relative to theoretical onset time if 'Use TauPy' option is enabled in main settings of 'Tune Autopicker' dialogue. |
|
||||||
| *S Start*, *S | |
|
| *S Start*, *S
|
||||||
| Stop* | Define time interval relative to trace start time for CF calculation on horizontal traces. Value is relative to theoretical onset time if 'Use TauPy' option is enabled in main settings of 'Tune Autopicker' dialogue. |
|
Stop* | Define time interval relative to trace start time for CF calculation on horizontal traces. Value is relative to theoretical onset time if 'Use TauPy' option is enabled in main settings of 'Tune Autopicker' dialogue. |
|
||||||
| *Bandpass | |
|
| *Bandpass
|
||||||
| Z1* | Filter settings for Butterworth bandpass applied to vertical trace for calculation of initial P pick. |
|
Z1* | Filter settings for Butterworth bandpass applied to vertical trace for calculation of initial P pick. |
|
||||||
| *Bandpass | |
|
| *Bandpass
|
||||||
| Z2* | Filter settings for Butterworth bandpass applied to vertical trace for calculation of precise P pick. |
|
Z2* | Filter settings for Butterworth bandpass applied to vertical trace for calculation of precise P pick. |
|
||||||
| *Bandpass | |
|
| *Bandpass
|
||||||
| H1* | Filter settings for Butterworth bandpass applied to horizontal traces for calculation of initial S pick. |
|
H1* | Filter settings for Butterworth bandpass applied to horizontal traces for calculation of initial S pick. |
|
||||||
| *Bandpass | |
|
| *Bandpass
|
||||||
| H2* | Filter settings for Butterworth bandpass applied to horizontal traces for calculation of precise S pick. |
|
H2* | Filter settings for Butterworth bandpass applied to horizontal traces for calculation of precise S pick. |
|
||||||
|
|
||||||
## Inital P pick
|
## Inital P pick
|
||||||
|
|
||||||
Parameters used for determination of initial P pick.
|
Parameters used for determination of initial P pick.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|
|--------------|------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| * | |
|
| *
|
||||||
| tLTA* | Size of gliding LTA window in seconds used for calculation of HOS-CF. |
|
tLTA* | Size of gliding LTA window in seconds used for calculation of HOS-CF. |
|
||||||
| *pickwin | |
|
| *pickwin
|
||||||
| P* | Size of time window in seconds in which the minimum of the AIC-CF in front of the maximum of the HOS-CF is determined. |
|
P* | Size of time window in seconds in which the minimum of the AIC-CF in front of the maximum of the HOS-CF is determined. |
|
||||||
| * | |
|
| *
|
||||||
| AICtsmooth* | Average of samples in this time window will be used for smoothing of the AIC-CF. |
|
AICtsmooth* | Average of samples in this time window will be used for smoothing of the AIC-CF. |
|
||||||
| * | |
|
| *
|
||||||
| checkwinP* | Time in front of the global maximum of the HOS-CF in which to search for a second local extrema. |
|
checkwinP* | Time in front of the global maximum of the HOS-CF in which to search for a second local extrema. |
|
||||||
| *minfactorP* | Used with * |
|
| *minfactorP* | Used with *
|
||||||
| checkwinP*. If a second local maximum is found, it has to be at least as big as the first maximum * *minfactorP*. | |
|
checkwinP*. If a second local maximum is found, it has to be at least as big as the first maximum * *minfactorP*. |
|
||||||
| * | |
|
| *
|
||||||
| tsignal* | Time window in seconds after the initial P pick used for determining signal amplitude. |
|
tsignal* | Time window in seconds after the initial P pick used for determining signal amplitude. |
|
||||||
| * | |
|
| *
|
||||||
| tnoise* | Time window in seconds in front of initial P pick used for determining noise amplitude. |
|
tnoise* | Time window in seconds in front of initial P pick used for determining noise amplitude. |
|
||||||
| *tsafetey* | Time in seconds between *tsignal* and * |
|
| *tsafetey* | Time in seconds between *tsignal* and *
|
||||||
| tnoise*. | |
|
tnoise*. |
|
||||||
| * | |
|
| *
|
||||||
| tslope* | Time window in seconds after initial P pick in which the slope of the onset is calculated. |
|
tslope* | Time window in seconds after initial P pick in which the slope of the onset is calculated. |
|
||||||
|
|
||||||
## Inital S pick
|
## Inital S pick
|
||||||
|
|
||||||
Parameters used for determination of initial S pick
|
Parameters used for determination of initial S pick
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|
|---------------|------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| * | |
|
| *
|
||||||
| tdet1h* | Length of time window in seconds in which AR params of the waveform are determined. |
|
tdet1h* | Length of time window in seconds in which AR params of the waveform are determined. |
|
||||||
| * | |
|
| *
|
||||||
| tpred1h* | Length of time window in seconds in which the waveform is predicted using the AR model. |
|
tpred1h* | Length of time window in seconds in which the waveform is predicted using the AR model. |
|
||||||
| * | |
|
| *
|
||||||
| AICtsmoothS* | Average of samples in this time window is used for smoothing the AIC-CF. |
|
AICtsmoothS* | Average of samples in this time window is used for smoothing the AIC-CF. |
|
||||||
| * | |
|
| *
|
||||||
| pickwinS* | Time window in which the minimum in the AIC-CF in front of the maximum in the ARH-CF is determined. |
|
pickwinS* | Time window in which the minimum in the AIC-CF in front of the maximum in the ARH-CF is determined. |
|
||||||
| * | |
|
| *
|
||||||
| checkwinS* | Time in front of the global maximum of the ARH-CF in which to search for a second local extrema. |
|
checkwinS* | Time in front of the global maximum of the ARH-CF in which to search for a second local extrema. |
|
||||||
| *minfactorP* | Used with * |
|
| *minfactorP* | Used with *
|
||||||
| checkwinS*. If a second local maximum is found, it has to be at least as big as the first maximum * *minfactorS*. | |
|
checkwinS*. If a second local maximum is found, it has to be at least as big as the first maximum * *minfactorS*. |
|
||||||
| * | |
|
| *
|
||||||
| tsignal* | Time window in seconds after the initial P pick used for determining signal amplitude. |
|
tsignal* | Time window in seconds after the initial P pick used for determining signal amplitude. |
|
||||||
| * | |
|
| *
|
||||||
| tnoise* | Time window in seconds in front of initial P pick used for determining noise amplitude. |
|
tnoise* | Time window in seconds in front of initial P pick used for determining noise amplitude. |
|
||||||
| *tsafetey* | Time in seconds between *tsignal* and * |
|
| *tsafetey* | Time in seconds between *tsignal* and *
|
||||||
| tnoise*. | |
|
tnoise*. |
|
||||||
| * | |
|
| *
|
||||||
| tslope* | Time window in seconds after initial P pick in which the slope of the onset is calculated. |
|
tslope* | Time window in seconds after initial P pick in which the slope of the onset is calculated. |
|
||||||
|
|
||||||
## Precise P pick
|
## Precise P pick
|
||||||
|
|
||||||
Parameters used for determination of precise P pick.
|
Parameters used for determination of precise P pick.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| *Precalcwin* | Time window in seconds for recalculation of the HOS-CF. The new CF will be two times the size of * |
|
| *Precalcwin* | Time window in seconds for recalculation of the HOS-CF. The new CF will be two times the size of *
|
||||||
| Precalcwin*, since it will be calculated from the initial pick to +/- *Precalcwin*. | |
|
Precalcwin*, since it will be calculated from the initial pick to +/- *Precalcwin*. |
|
||||||
| * | |
|
| *
|
||||||
| tsmoothP* | Average of samples in this time window will be used for smoothing the second HOS-CF. |
|
tsmoothP* | Average of samples in this time window will be used for smoothing the second HOS-CF. |
|
||||||
| * | |
|
| *
|
||||||
| ausP* | Controls artificial uplift of samples during precise picking. A common local minimum of the smoothed and unsmoothed HOS-CF is found when the previous sample is larger or equal to the current sample times (1+* |
|
ausP* | Controls artificial uplift of samples during precise picking. A common local minimum of the smoothed and unsmoothed HOS-CF is found when the previous sample is larger or equal to the current sample times (1+*
|
||||||
| ausP*). | |
|
ausP*). |
|
||||||
|
|
||||||
## Precise S pick
|
## Precise S pick
|
||||||
|
|
||||||
Parameters used for determination of precise S pick.
|
Parameters used for determination of precise S pick.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| * | |
|
| *
|
||||||
| tdet2h* | Time window for determination of AR coefficients. |
|
tdet2h* | Time window for determination of AR coefficients. |
|
||||||
| * | |
|
| *
|
||||||
| tpred2h* | Time window in which the waveform is predicted using the determined AR parameters. |
|
tpred2h* | Time window in which the waveform is predicted using the determined AR parameters. |
|
||||||
| *Srecalcwin* | Time window for recalculation of ARH-CF. New CF will be calculated from initial pick +/- * |
|
| *Srecalcwin* | Time window for recalculation of ARH-CF. New CF will be calculated from initial pick +/- *
|
||||||
| Srecalcwin*. | |
|
Srecalcwin*. |
|
||||||
| * | |
|
| *
|
||||||
| tsmoothS* | Average of samples in this time window will be used for smoothing the second ARH-CF. |
|
tsmoothS* | Average of samples in this time window will be used for smoothing the second ARH-CF. |
|
||||||
| * | |
|
| *
|
||||||
| ausS* | Controls artificial uplift of samples during precise picking. A common local minimum of the smoothed and unsmoothed ARH-CF is found when the previous sample is larger or equal to the current sample times (1+* |
|
ausS* | Controls artificial uplift of samples during precise picking. A common local minimum of the smoothed and unsmoothed ARH-CF is found when the previous sample is larger or equal to the current sample times (1+*
|
||||||
| ausS*). | |
|
ausS*). |
|
||||||
| * | |
|
| *
|
||||||
| pickwinS* | Time window around initial pick in which to look for a precise pick. |
|
pickwinS* | Time window around initial pick in which to look for a precise pick. |
|
||||||
|
|
||||||
## Pick quality control
|
## Pick quality control
|
||||||
|
|
||||||
Parameters used for checking quality and integrity of automatic picks.
|
Parameters used for checking quality and integrity of automatic picks.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|--------------------------------------------|-----------------------------------------------------------------------|
|
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| * | |
|
| *
|
||||||
| minAICPslope* | Initial P picks with a slope lower than this value will be discared. |
|
minAICPslope* | Initial P picks with a slope lower than this value will be discared. |
|
||||||
| * | |
|
| *
|
||||||
| minAICPSNR* | Initial P picks with a SNR below this value will be discarded. |
|
minAICPSNR* | Initial P picks with a SNR below this value will be discarded. |
|
||||||
| * | |
|
| *
|
||||||
| minAICSslope* | Initial S picks with a slope lower than this value will be discarded. |
|
minAICSslope* | Initial S picks with a slope lower than this value will be discarded. |
|
||||||
| * | |
|
| *
|
||||||
| minAICSSNR* | Initial S picks with a SNR below this value will be discarded. |
|
minAICSSNR* | Initial S picks with a SNR below this value will be discarded. |
|
||||||
| *minsiglength*, *noisefacor*. *minpercent* | Parameters for checking signal length. In the time window of size * |
|
| *minsiglength*, *noisefacor*. *minpercent* | Parameters for checking signal length. In the time window of size *
|
||||||
|
|
||||||
minsiglength* after the initial P pick *
|
minsiglength* after the initial P pick *
|
||||||
minpercent* of samples have to be larger than the RMS value. |
|
minpercent* of samples have to be larger than the RMS value. |
|
||||||
| *
|
| *
|
||||||
@ -140,12 +139,12 @@ wdttolerance* | Maximum allowed deviation of S onset
|
|||||||
|
|
||||||
Parameters for discrete quality classes.
|
Parameters for discrete quality classes.
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| * | |
|
| *
|
||||||
| timeerrorsP* | Width of the time windows in seconds between earliest and latest possible pick which represent the quality classes 0, 1, 2, 3 for P onsets. |
|
timeerrorsP* | Width of the time windows in seconds between earliest and latest possible pick which represent the quality classes 0, 1, 2, 3 for P onsets. |
|
||||||
| * | |
|
| *
|
||||||
| timeerrorsS* | Width of the time windows in seconds between earliest and latest possible pick which represent the quality classes 0, 1, 2, 3 for S onsets. |
|
timeerrorsS* | Width of the time windows in seconds between earliest and latest possible pick which represent the quality classes 0, 1, 2, 3 for S onsets. |
|
||||||
| *nfacP*, *nfacS* | For determination of latest possible onset time. The time when the signal reaches an amplitude of * |
|
| *nfacP*, *nfacS* | For determination of latest possible onset time. The time when the signal reaches an amplitude of *
|
||||||
| nfac* * mean value of the RMS amplitude in the time window *tnoise* corresponds to the latest possible onset time. | |
|
nfac* * mean value of the RMS amplitude in the time window *tnoise* corresponds to the latest possible onset time. |
|
||||||
|
|
||||||
|
@ -36,17 +36,8 @@ class Data(object):
|
|||||||
loaded event. Container object holding, e.g. phase arrivals, etc.
|
loaded event. Container object holding, e.g. phase arrivals, etc.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, parent=None, evtdata=None, picking_parameter=None):
|
def __init__(self, parent=None, evtdata=None):
|
||||||
self._parent = parent
|
self._parent = parent
|
||||||
|
|
||||||
if not picking_parameter:
|
|
||||||
if hasattr(parent, '_inputs'):
|
|
||||||
picking_parameter = parent._inputs
|
|
||||||
else:
|
|
||||||
logging.warning('No picking parameters found! Using default input parameters!!!')
|
|
||||||
picking_parameter = PylotParameter()
|
|
||||||
self.picking_parameter = picking_parameter
|
|
||||||
|
|
||||||
if self.getParent():
|
if self.getParent():
|
||||||
self.comp = parent.getComponent()
|
self.comp = parent.getComponent()
|
||||||
else:
|
else:
|
||||||
@ -412,19 +403,23 @@ class Data(object):
|
|||||||
not implemented: {1}'''.format(evtformat, e))
|
not implemented: {1}'''.format(evtformat, e))
|
||||||
if fnext == '.cnv':
|
if fnext == '.cnv':
|
||||||
try:
|
try:
|
||||||
velest.export(picks_copy, fnout + fnext, self.picking_parameter, eventinfo=self.get_evt_data())
|
velest.export(picks_copy, fnout + fnext, eventinfo=self.get_evt_data())
|
||||||
except KeyError as e:
|
except KeyError as e:
|
||||||
raise KeyError('''{0} export format
|
raise KeyError('''{0} export format
|
||||||
not implemented: {1}'''.format(evtformat, e))
|
not implemented: {1}'''.format(evtformat, e))
|
||||||
if fnext == '_focmec.in':
|
if fnext == '_focmec.in':
|
||||||
try:
|
try:
|
||||||
focmec.export(picks_copy, fnout + fnext, self.picking_parameter, eventinfo=self.get_evt_data())
|
parameter = PylotParameter()
|
||||||
|
logging.warning('Using default input parameter')
|
||||||
|
focmec.export(picks_copy, fnout + fnext, parameter, eventinfo=self.get_evt_data())
|
||||||
except KeyError as e:
|
except KeyError as e:
|
||||||
raise KeyError('''{0} export format
|
raise KeyError('''{0} export format
|
||||||
not implemented: {1}'''.format(evtformat, e))
|
not implemented: {1}'''.format(evtformat, e))
|
||||||
if fnext == '.pha':
|
if fnext == '.pha':
|
||||||
try:
|
try:
|
||||||
hypodd.export(picks_copy, fnout + fnext, self.picking_parameter, eventinfo=self.get_evt_data())
|
parameter = PylotParameter()
|
||||||
|
logging.warning('Using default input parameter')
|
||||||
|
hypodd.export(picks_copy, fnout + fnext, parameter, eventinfo=self.get_evt_data())
|
||||||
except KeyError as e:
|
except KeyError as e:
|
||||||
raise KeyError('''{0} export format
|
raise KeyError('''{0} export format
|
||||||
not implemented: {1}'''.format(evtformat, e))
|
not implemented: {1}'''.format(evtformat, e))
|
||||||
|
@ -53,16 +53,10 @@ class PylotParameter(object):
|
|||||||
self.__parameter = {}
|
self.__parameter = {}
|
||||||
self._verbosity = verbosity
|
self._verbosity = verbosity
|
||||||
self._parFileCont = {}
|
self._parFileCont = {}
|
||||||
|
|
||||||
# io from parsed arguments alternatively
|
# io from parsed arguments alternatively
|
||||||
for key, val in kwargs.items():
|
for key, val in kwargs.items():
|
||||||
self._parFileCont[key] = val
|
self._parFileCont[key] = val
|
||||||
self.from_file()
|
self.from_file()
|
||||||
|
|
||||||
# if no filename or kwargs given, use default values
|
|
||||||
if not fnin and not kwargs:
|
|
||||||
self.reset_defaults()
|
|
||||||
|
|
||||||
if fnout:
|
if fnout:
|
||||||
self.export2File(fnout)
|
self.export2File(fnout)
|
||||||
|
|
||||||
|
@ -278,6 +278,7 @@ def picksdict_from_picks(evt, parameter=None):
|
|||||||
weight = phase.get('weight')
|
weight = phase.get('weight')
|
||||||
if not weight:
|
if not weight:
|
||||||
if not parameter:
|
if not parameter:
|
||||||
|
logging.warning('Using ')
|
||||||
logging.warning('Using default input parameter')
|
logging.warning('Using default input parameter')
|
||||||
parameter = PylotParameter()
|
parameter = PylotParameter()
|
||||||
pick.phase_hint = identifyPhase(pick.phase_hint)
|
pick.phase_hint = identifyPhase(pick.phase_hint)
|
||||||
@ -512,7 +513,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
|
|||||||
# write header
|
# write header
|
||||||
fid.write('# EQEVENT: %s Label: EQ%s Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n' %
|
fid.write('# EQEVENT: %s Label: EQ%s Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n' %
|
||||||
(parameter.get('datapath'), parameter.get('eventID')))
|
(parameter.get('datapath'), parameter.get('eventID')))
|
||||||
arrivals = chooseArrivals(arrivals)
|
arrivals = chooseArrivals(arrivals) # MP MP what is chooseArrivals? It is not defined anywhere
|
||||||
for key in arrivals:
|
for key in arrivals:
|
||||||
# P onsets
|
# P onsets
|
||||||
if 'P' in arrivals[key]:
|
if 'P' in arrivals[key]:
|
||||||
@ -665,7 +666,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
|
|||||||
fid = open("%s" % filename, 'w')
|
fid = open("%s" % filename, 'w')
|
||||||
# write header
|
# write header
|
||||||
fid.write('%s, event %s \n' % (parameter.get('datapath'), parameter.get('eventID')))
|
fid.write('%s, event %s \n' % (parameter.get('datapath'), parameter.get('eventID')))
|
||||||
arrivals = chooseArrivals(arrivals)
|
arrivals = chooseArrivals(arrivals) # MP MP what is chooseArrivals? It is not defined anywhere
|
||||||
for key in arrivals:
|
for key in arrivals:
|
||||||
# P onsets
|
# P onsets
|
||||||
if 'P' in arrivals[key] and arrivals[key]['P']['mpp'] is not None:
|
if 'P' in arrivals[key] and arrivals[key]['P']['mpp'] is not None:
|
||||||
@ -756,11 +757,11 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
|
|||||||
cns, eventsource['longitude'], cew, eventsource['depth'], eventinfo.magnitudes[0]['mag'], ifx))
|
cns, eventsource['longitude'], cew, eventsource['depth'], eventinfo.magnitudes[0]['mag'], ifx))
|
||||||
n = 0
|
n = 0
|
||||||
# check whether arrivals are dictionaries (autoPyLoT) or pick object (PyLoT)
|
# check whether arrivals are dictionaries (autoPyLoT) or pick object (PyLoT)
|
||||||
if isinstance(arrivals, dict) is False:
|
if isinstance(arrivals, dict) == False:
|
||||||
# convert pick object (PyLoT) into dictionary
|
# convert pick object (PyLoT) into dictionary
|
||||||
evt = ope.Event(resource_id=eventinfo['resource_id'])
|
evt = ope.Event(resource_id=eventinfo['resource_id'])
|
||||||
evt.picks = arrivals
|
evt.picks = arrivals
|
||||||
arrivals = picksdict_from_picks(evt, parameter=parameter)
|
arrivals = picksdict_from_picks(evt)
|
||||||
# check for automatic and manual picks
|
# check for automatic and manual picks
|
||||||
# prefer manual picks
|
# prefer manual picks
|
||||||
usedarrivals = chooseArrivals(arrivals)
|
usedarrivals = chooseArrivals(arrivals)
|
||||||
@ -821,7 +822,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
|
|||||||
# convert pick object (PyLoT) into dictionary
|
# convert pick object (PyLoT) into dictionary
|
||||||
evt = ope.Event(resource_id=eventinfo['resource_id'])
|
evt = ope.Event(resource_id=eventinfo['resource_id'])
|
||||||
evt.picks = arrivals
|
evt.picks = arrivals
|
||||||
arrivals = picksdict_from_picks(evt, parameter=parameter)
|
arrivals = picksdict_from_picks(evt)
|
||||||
# check for automatic and manual picks
|
# check for automatic and manual picks
|
||||||
# prefer manual picks
|
# prefer manual picks
|
||||||
usedarrivals = chooseArrivals(arrivals)
|
usedarrivals = chooseArrivals(arrivals)
|
||||||
@ -872,7 +873,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
|
|||||||
# convert pick object (PyLoT) into dictionary
|
# convert pick object (PyLoT) into dictionary
|
||||||
evt = ope.Event(resource_id=eventinfo['resource_id'])
|
evt = ope.Event(resource_id=eventinfo['resource_id'])
|
||||||
evt.picks = arrivals
|
evt.picks = arrivals
|
||||||
arrivals = picksdict_from_picks(evt, parameter=parameter)
|
arrivals = picksdict_from_picks(evt)
|
||||||
# check for automatic and manual picks
|
# check for automatic and manual picks
|
||||||
# prefer manual picks
|
# prefer manual picks
|
||||||
usedarrivals = chooseArrivals(arrivals)
|
usedarrivals = chooseArrivals(arrivals)
|
||||||
|
@ -134,8 +134,8 @@ class Array_map(QtWidgets.QWidget):
|
|||||||
self.cmaps_box = QtWidgets.QComboBox()
|
self.cmaps_box = QtWidgets.QComboBox()
|
||||||
self.cmaps_box.setMaxVisibleItems(20)
|
self.cmaps_box.setMaxVisibleItems(20)
|
||||||
[self.cmaps_box.addItem(map_name) for map_name in sorted(plt.colormaps())]
|
[self.cmaps_box.addItem(map_name) for map_name in sorted(plt.colormaps())]
|
||||||
# try to set to plasma as default
|
# try to set to viridis as default
|
||||||
self.cmaps_box.setCurrentIndex(self.cmaps_box.findText('plasma'))
|
self.cmaps_box.setCurrentIndex(self.cmaps_box.findText('viridis'))
|
||||||
|
|
||||||
self.top_row.addWidget(QtWidgets.QLabel('Select a phase: '))
|
self.top_row.addWidget(QtWidgets.QLabel('Select a phase: '))
|
||||||
self.top_row.addWidget(self.comboBox_phase)
|
self.top_row.addWidget(self.comboBox_phase)
|
||||||
|
@ -59,8 +59,6 @@ class Metadata(object):
|
|||||||
:type path_to_inventory: str
|
:type path_to_inventory: str
|
||||||
:return: None
|
:return: None
|
||||||
"""
|
"""
|
||||||
path_to_inventory = path_to_inventory.replace('\\', '/')
|
|
||||||
path_to_inventory = os.path.abspath(path_to_inventory)
|
|
||||||
assert (os.path.isdir(path_to_inventory)), '{} is no directory'.format(path_to_inventory)
|
assert (os.path.isdir(path_to_inventory)), '{} is no directory'.format(path_to_inventory)
|
||||||
if path_to_inventory not in self.inventories:
|
if path_to_inventory not in self.inventories:
|
||||||
self.inventories.append(path_to_inventory)
|
self.inventories.append(path_to_inventory)
|
||||||
@ -268,6 +266,9 @@ class Metadata(object):
|
|||||||
if not fnames:
|
if not fnames:
|
||||||
# search for station name in filename
|
# search for station name in filename
|
||||||
fnames = glob.glob(os.path.join(path_to_inventory, '*' + station + '*'))
|
fnames = glob.glob(os.path.join(path_to_inventory, '*' + station + '*'))
|
||||||
|
if not fnames:
|
||||||
|
# search for network name in filename
|
||||||
|
fnames = glob.glob(os.path.join(path_to_inventory, '*' + network + '*'))
|
||||||
if not fnames:
|
if not fnames:
|
||||||
if self.verbosity:
|
if self.verbosity:
|
||||||
print('Could not find filenames matching station name, network name or seed id')
|
print('Could not find filenames matching station name, network name or seed id')
|
||||||
@ -279,7 +280,7 @@ class Metadata(object):
|
|||||||
continue
|
continue
|
||||||
invtype, robj = self._read_metadata_file(os.path.join(path_to_inventory, fname))
|
invtype, robj = self._read_metadata_file(os.path.join(path_to_inventory, fname))
|
||||||
try:
|
try:
|
||||||
robj.get_coordinates(station_seed_id)
|
# robj.get_coordinates(station_seed_id) # TODO: Commented out, failed with Parser, is this needed?
|
||||||
self.inventory_files[fname] = {'invtype': invtype,
|
self.inventory_files[fname] = {'invtype': invtype,
|
||||||
'data': robj}
|
'data': robj}
|
||||||
if station_seed_id in self.seed_ids.keys():
|
if station_seed_id in self.seed_ids.keys():
|
||||||
@ -287,7 +288,6 @@ class Metadata(object):
|
|||||||
self.seed_ids[station_seed_id] = fname
|
self.seed_ids[station_seed_id] = fname
|
||||||
return True
|
return True
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.warning(e)
|
|
||||||
continue
|
continue
|
||||||
print('Could not find metadata for station_seed_id {} in path {}'.format(station_seed_id, path_to_inventory))
|
print('Could not find metadata for station_seed_id {} in path {}'.format(station_seed_id, path_to_inventory))
|
||||||
|
|
||||||
@ -652,8 +652,6 @@ def restitute_data(data, metadata, unit='VEL', force=False, ncores=0):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# data = remove_underscores(data)
|
# data = remove_underscores(data)
|
||||||
if not data:
|
|
||||||
return
|
|
||||||
|
|
||||||
# loop over traces
|
# loop over traces
|
||||||
input_tuples = []
|
input_tuples = []
|
||||||
@ -661,14 +659,9 @@ def restitute_data(data, metadata, unit='VEL', force=False, ncores=0):
|
|||||||
input_tuples.append((tr, metadata, unit, force))
|
input_tuples.append((tr, metadata, unit, force))
|
||||||
data.remove(tr)
|
data.remove(tr)
|
||||||
|
|
||||||
if ncores == 0:
|
pool = gen_Pool(ncores)
|
||||||
result = []
|
result = pool.imap_unordered(restitute_trace, input_tuples)
|
||||||
for input_tuple in input_tuples:
|
pool.close()
|
||||||
result.append(restitute_trace(input_tuple))
|
|
||||||
else:
|
|
||||||
pool = gen_Pool(ncores)
|
|
||||||
result = pool.imap_unordered(restitute_trace, input_tuples)
|
|
||||||
pool.close()
|
|
||||||
|
|
||||||
for tr, remove_trace in result:
|
for tr, remove_trace in result:
|
||||||
if not remove_trace:
|
if not remove_trace:
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import os
|
import os
|
||||||
from functools import lru_cache
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import pyqtgraph as pg
|
import pyqtgraph as pg
|
||||||
@ -26,14 +25,14 @@ def pick_linestyle_pg(picktype, key):
|
|||||||
:return: Qt line style parameters
|
:return: Qt line style parameters
|
||||||
:rtype:
|
:rtype:
|
||||||
"""
|
"""
|
||||||
linestyles_manu = {'mpp': (QtCore.Qt.SolidLine, 2),
|
linestyles_manu = {'mpp': (QtCore.Qt.SolidLine, 2.),
|
||||||
'epp': (QtCore.Qt.DashLine, 1),
|
'epp': (QtCore.Qt.DashLine, 1.),
|
||||||
'lpp': (QtCore.Qt.DashLine, 1),
|
'lpp': (QtCore.Qt.DashLine, 1.),
|
||||||
'spe': (QtCore.Qt.DashLine, 1)}
|
'spe': (QtCore.Qt.DashLine, 1.)}
|
||||||
linestyles_auto = {'mpp': (QtCore.Qt.DotLine, 2),
|
linestyles_auto = {'mpp': (QtCore.Qt.DotLine, 2.),
|
||||||
'epp': (QtCore.Qt.DashDotLine, 1),
|
'epp': (QtCore.Qt.DashDotLine, 1.),
|
||||||
'lpp': (QtCore.Qt.DashDotLine, 1),
|
'lpp': (QtCore.Qt.DashDotLine, 1.),
|
||||||
'spe': (QtCore.Qt.DashDotLine, 1)}
|
'spe': (QtCore.Qt.DashDotLine, 1.)}
|
||||||
linestyles = {'manual': linestyles_manu,
|
linestyles = {'manual': linestyles_manu,
|
||||||
'auto': linestyles_auto}
|
'auto': linestyles_auto}
|
||||||
return linestyles[picktype][key]
|
return linestyles[picktype][key]
|
||||||
@ -81,7 +80,6 @@ def which(program, parameter):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=128)
|
|
||||||
def make_pen(picktype, phase, key, quality):
|
def make_pen(picktype, phase, key, quality):
|
||||||
"""
|
"""
|
||||||
Make PyQtGraph.QPen
|
Make PyQtGraph.QPen
|
||||||
|
@ -51,6 +51,7 @@ def readDefaultFilterInformation():
|
|||||||
:rtype: dict
|
:rtype: dict
|
||||||
"""
|
"""
|
||||||
pparam = PylotParameter()
|
pparam = PylotParameter()
|
||||||
|
pparam.reset_defaults()
|
||||||
return readFilterInformation(pparam)
|
return readFilterInformation(pparam)
|
||||||
|
|
||||||
|
|
||||||
|
@ -9,7 +9,7 @@
|
|||||||
# initial_pick_outlier_threshold: (hopefully) threshold for excluding large outliers of initial (AIC) picks
|
# initial_pick_outlier_threshold: (hopefully) threshold for excluding large outliers of initial (AIC) picks
|
||||||
# export_threshold: automatically exclude all onsets which deviate more than this threshold from corrected taup onsets
|
# export_threshold: automatically exclude all onsets which deviate more than this threshold from corrected taup onsets
|
||||||
# min_picks_export: minimum number of correlated picks for export
|
# min_picks_export: minimum number of correlated picks for export
|
||||||
# min_picks_autopylot: minimum number of reference auto picks to continue with event
|
# min_picks_autopylot: minimum number of reference autopicks picks to continue with event
|
||||||
# check_RMS: do RMS check to search for restitution errors (very experimental)
|
# check_RMS: do RMS check to search for restitution errors (very experimental)
|
||||||
# use_taupy_onsets: use taupy onsets as reference picks instead of external picks
|
# use_taupy_onsets: use taupy onsets as reference picks instead of external picks
|
||||||
# station_list: use the following stations as reference for stacking
|
# station_list: use the following stations as reference for stacking
|
||||||
@ -17,11 +17,6 @@
|
|||||||
# data_dir: obspyDMT data subdirectory (e.g. 'raw', 'processed')
|
# data_dir: obspyDMT data subdirectory (e.g. 'raw', 'processed')
|
||||||
# pickfile_extension: use quakeML files (PyLoT output) with the following extension, e.g. '_autopylot' for pickfiles
|
# pickfile_extension: use quakeML files (PyLoT output) with the following extension, e.g. '_autopylot' for pickfiles
|
||||||
# such as 'PyLoT_20170501_141822_autopylot.xml'
|
# such as 'PyLoT_20170501_141822_autopylot.xml'
|
||||||
# dt_stacking: time shift for stacking (e.g. [0, 250] for 0 and 250 seconds shift)
|
|
||||||
# filter_options: filter for first correlation (rough)
|
|
||||||
# filter_options_final: filter for second correlation (fine)
|
|
||||||
# filter_type: e.g. 'bandpass'
|
|
||||||
# sampfreq: sampling frequency of the data
|
|
||||||
|
|
||||||
logging: info
|
logging: info
|
||||||
pick_phases: ['P', 'S']
|
pick_phases: ['P', 'S']
|
||||||
|
@ -447,12 +447,8 @@ def correlation_main(database_path_dmt: str, pylot_infile_path: str, params: dic
|
|||||||
if event_blacklist and get_event_id(eventdir) in event_blacklist:
|
if event_blacklist and get_event_id(eventdir) in event_blacklist:
|
||||||
logging.info('Event on blacklist. Continue')
|
logging.info('Event on blacklist. Continue')
|
||||||
|
|
||||||
try:
|
correlate_event(eventdir, pylot_parameter, params=params, channel_config=channel_config,
|
||||||
correlate_event(eventdir, pylot_parameter, params=params, channel_config=channel_config,
|
update=update)
|
||||||
update=update)
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f'Could not correlate event {eventindex}: {e}')
|
|
||||||
continue
|
|
||||||
|
|
||||||
logging.info('Finished script after {} at {}'.format(datetime.now() - tstart, datetime.now()))
|
logging.info('Finished script after {} at {}'.format(datetime.now() - tstart, datetime.now()))
|
||||||
|
|
||||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user