from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np import obspy from matplotlib import cm #import QtPyLoT from pylot.core.util.dataprocessing import read_metadata from scipy.interpolate import griddata #pf=QtPyLoT.main() def onpick(event): ind = event.ind print(ind) def get_metadata(path): metadata=read_metadata(path) parser=metadata[1] return parser def get_station_names(parser): station_names=[] for station in parser.stations: station_names.append(station[0].station_call_letters) return station_names def get_lat_lon(parser): lat=[] lon=[] for station in parser.stations: lat.append(station[0].latitude) lon.append(station[0].longitude) return lat, lon def get_picks(pf, station_names): picks=[] for station in station_names: try: picks.append(pf.autopicks[station]['P']['mpp']) except: picks.append(np.nan) return picks def get_picks_rel(picks): picks_rel=[] minp = min(picks) for pick in picks: if type(pick) is obspy.core.utcdatetime.UTCDateTime: pick -= minp picks_rel.append(pick) return picks_rel def remove_nan_picks(picks): picks_no_nan=[] for pick in picks: if not np.isnan(pick): picks_no_nan.append(pick) return picks_no_nan def remove_nan_lat_lon(picks, lat, lon): lat_no_nan=[] lon_no_nan=[] for index, pick in enumerate(picks): if not np.isnan(pick): lat_no_nan.append(lat[index]) lon_no_nan.append(lon[index]) return lat_no_nan, lon_no_nan def get_lon_lat_dim(lon, lat): londim = max(lon) - min(lon) latdim = max(lat) - min(lat) return londim, latdim def get_x_y_dim(x, y): xdim = max(x) - min(x) ydim = max(y) - min(y) return xdim, ydim def init_map(projection, resolution='l'): m = Basemap(projection=projection, resolution = resolution) m.drawmapboundary(fill_color='darkblue') m.drawcountries() m.drawstates() m.fillcontinents(color='grey', lake_color='aqua') m.drawcoastlines() return m def get_lat_lon_axis(lat, lon): steplat = (max(lat)-min(lat))/250 steplon = (max(lon)-min(lon))/250 lataxis = np.arange(min(lat), max(lat), steplat) lonaxis = np.arange(min(lon), max(lon), steplon) return lataxis, lonaxis def get_lat_lon_grid(lataxis, lonaxis): longrid, latgrid = np.meshgrid(lonaxis, lataxis) return latgrid, longrid def draw_contour_filled(picks, longrid, latgrid, picksgrid, levels='50'): levels = np.linspace(min(picks), max(picks), 50) contourf = m.contourf(longrid, latgrid, picksgrid, levels, latlon=True, zorder=9) return contourf def annotate_ax(ax, x, y, station_names): for index, name in enumerate(station_names): ax.annotate(' %s' % name, xy=(x[index], y[index]), fontsize='x-small', zorder=12) def connect_pick(ax, onpick): ax.figure.canvas.mpl_connect('pick_event', onpick) def add_cbar(ax, scatter, label): cbar = ax.figure.colorbar(scatter) cbar.set_label(label) return cbar parser = get_metadata('/data/Geothermie/Insheim/STAT_INFO/MAGS2_net.dless') station_names = get_station_names(parser) lat, lon = get_lat_lon(parser) picks = get_picks(pf, station_names) picks_rel = get_picks_rel(picks) picks_no_nan = remove_nan_picks(picks_rel) lat_no_nan, lon_no_nan = remove_nan_lat_lon(picks_rel, lat, lon) londim, latdim = get_lon_lat_dim(lon, lat) x, y = m(lon, lat) xdim, ydim = get_x_y_dim(x, y) m = init_map('mill', 'l') lataxis, lonaxis = get_lat_lon_axis(lat, lon) latgrid, longrid = get_lat_lon_grid(lataxis, lonaxis) picksgrid_no_nan = griddata((lat_no_nan, lon_no_nan), picks_no_nan, (latgrid, longrid), method='linear') contourf = draw_contour_filled(picks_no_nan, longrid, latgrid, picksgrid_no_nan) sc = m.scatter(lon, lat, s=50, facecolor='none', latlon=True, zorder=10, picker=True, edgecolor='m', label='Not Picked') sc_picked = m.scatter(lon_no_nan, lat_no_nan, s=50, c=picks_no_nan, latlon=True, zorder=11, label='Picked') ax = plt.gca() # IMPROVE!!!! annotate_ax(ax, x, y, station_names) ax.legend() connect_pick(ax, onpick) cbar = add_cbar(ax, sc_picked, label='Time relative to first onset [s]') # ax.set_xlim(min(x)-0.5*xdim, max(x)+0.5*xdim) # ax.set_ylim(min(y)-0.5*ydim, max(y)+0.5*ydim) plt.show()