#!/usr/bin/env python # -*- coding: utf-8 -*- """ Function to run automated picking algorithms using AIC, HOS and AR prediction. Uses object CharFuns and Picker and function conglomerate utils. :author: MAGS2 EP3 working group / Ludger Kueperkoch """ import matplotlib.pyplot as plt import numpy as np from pylot.core.pick.Picker import AICPicker, PragPicker from pylot.core.pick.CharFuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker,\ getSNR, fmpicker, checkPonsets, wadaticheck def autopickevent(data, param): stations = [] all_onsets = {} # get some parameters for quality control from # parameter input file (usually autoPyLoT.in). wdttolerance = param.getParam('wdttolerance') mdttolerance = param.getParam('mdttolerance') iplot = param.getParam('iplot') for n in range(len(data)): station = data[n].stats.station if station not in stations: stations.append(station) else: continue for station in stations: topick = data.select(station=station) all_onsets[station] = autopickstation(topick, param) # quality control # median check and jackknife on P-onset times jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, 2) # check S-P times (Wadati) return wadaticheck(jk_checked_onsets, wdttolerance, 2) def autopickstation(wfstream, pickparam): """ :param: wfstream :type: `~obspy.core.stream.Stream` :param: pickparam :type: container of picking parameters from input file, usually autoPyLoT.in """ # declaring pickparam variables (only for convenience) # read your autoPyLoT.in for details! # special parameters for P picking algoP = pickparam.getParam('algoP') iplot = pickparam.getParam('iplot') pstart = pickparam.getParam('pstart') pstop = pickparam.getParam('pstop') thosmw = pickparam.getParam('tlta') tsnrz = pickparam.getParam('tsnrz') hosorder = pickparam.getParam('hosorder') bpz1 = pickparam.getParam('bpz1') bpz2 = pickparam.getParam('bpz2') pickwinP = pickparam.getParam('pickwinP') tsmoothP = pickparam.getParam('tsmoothP') ausP = pickparam.getParam('ausP') nfacP = pickparam.getParam('nfacP') tpred1z = pickparam.getParam('tpred1z') tdet1z = pickparam.getParam('tdet1z') Parorder = pickparam.getParam('Parorder') addnoise = pickparam.getParam('addnoise') Precalcwin = pickparam.getParam('Precalcwin') minAICPslope = pickparam.getParam('minAICPslope') minAICPSNR = pickparam.getParam('minAICPSNR') timeerrorsP = pickparam.getParam('timeerrorsP') # special parameters for S picking algoS = pickparam.getParam('algoS') sstart = pickparam.getParam('sstart') sstop = pickparam.getParam('sstop') bph1 = pickparam.getParam('bph1') bph2 = pickparam.getParam('bph2') tsnrh = pickparam.getParam('tsnrh') pickwinS = pickparam.getParam('pickwinS') tpred1h = pickparam.getParam('tpred1h') tdet1h = pickparam.getParam('tdet1h') tpred2h = pickparam.getParam('tpred2h') tdet2h = pickparam.getParam('tdet2h') Sarorder = pickparam.getParam('Sarorder') aictsmoothS = pickparam.getParam('aictsmoothS') tsmoothS = pickparam.getParam('tsmoothS') ausS = pickparam.getParam('ausS') minAICSslope = pickparam.getParam('minAICSslope') minAICSSNR = pickparam.getParam('minAICSSNR') Srecalcwin = pickparam.getParam('Srecalcwin') nfacS = pickparam.getParam('nfacS') timeerrorsS = pickparam.getParam('timeerrorsS') # parameters for first-motion determination minFMSNR = pickparam.getParam('minFMSNR') fmpickwin = pickparam.getParam('fmpickwin') minfmweight = pickparam.getParam('minfmweight') # parameters for checking signal length minsiglength = pickparam.getParam('minsiglength') minpercent = pickparam.getParam('minpercent') nfacsl = pickparam.getParam('noisefactor') # parameter to check for spuriously picked S onset zfac = pickparam.getParam('zfac') # initialize output Pweight = 4 # weight for P onset Sweight = 4 # weight for S onset FM = 'N' # first motion (polarity) SNRP = None # signal-to-noise ratio of P onset SNRPdB = None # signal-to-noise ratio of P onset [dB] SNRS = None # signal-to-noise ratio of S onset SNRSdB = None # signal-to-noise ratio of S onset [dB] mpickP = None # most likely P onset lpickP = None # latest possible P onset epickP = None # earliest possible P onset mpickS = None # most likely S onset lpickS = None # latest possible S onset epickS = None # earliest possible S onset Perror = None # symmetrized picking error P onset Serror = None # symmetrized picking error S onset aicSflag = 0 aicPflag = 0 Pflag = 0 Sflag = 0 Pmarker = [] # split components zdat = wfstream.select(component="Z") edat = wfstream.select(component="E") if len(edat) == 0: # check for other components edat = wfstream.select(component="2") ndat = wfstream.select(component="N") if len(ndat) == 0: # check for other components ndat = wfstream.select(component="1") if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None: print '##########################################' print 'autopickstation: Working on P onset of station %s' % zdat[ 0].stats.station print 'Filtering vertical trace ...' print zdat z_copy = zdat.copy() # filter and taper data tr_filt = zdat[0].copy() tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1], zerophase=False) tr_filt.taper(max_percentage=0.05, type='hann') z_copy[0].data = tr_filt.data ############################################################## # check length of waveform and compare with cut times Lc = pstop - pstart Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime Ldiff = Lwf - Lc if Ldiff < 0: print 'autopickstation: Cutting times are too large for actual ' \ 'waveform!' print 'Use entire waveform instead!' pstart = 0 pstop = len(zdat[0].data) * zdat[0].stats.delta cuttimes = [pstart, pstop] if algoP == 'HOS': # calculate HOS-CF using subclass HOScf of class # CharacteristicFunction cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) # instance of HOScf elif algoP == 'ARZ': # calculate ARZ-CF using subclass ARZcf of class # CharcteristicFunction cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z, addnoise) # instance of ARZcf ############################################################## # calculate AIC-HOS-CF using subclass AICcf of class # CharacteristicFunction # class needs stream object => build it tr_aic = tr_filt.copy() tr_aic.data = cf1.getCF() z_copy[0].data = tr_aic.data aiccf = AICcf(z_copy, cuttimes) # instance of AICcf ############################################################## # get prelimenary onset time from AIC-HOS-CF using subclass AICPicker # of class AutoPicking aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP) ############################################################## if aicpick.getpick() is not None: # check signal length to detect spuriously picked noise peaks z_copy[0].data = tr_filt.data Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz, minsiglength, \ nfacsl, minpercent, iplot) if Pflag == 1: # check for spuriously picked S onset # both horizontal traces needed if len(ndat) == 0 or len(edat) == 0: print 'One or more horizontal components missing!' print 'Skip control function checkZ4S.' else: # filter and taper horizontal traces trH1_filt = edat.copy() trH2_filt = ndat.copy() trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], \ zerophase=False) trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], \ zerophase=False) trH1_filt.taper(max_percentage=0.05, type='hann') trH2_filt.taper(max_percentage=0.05, type='hann') zne = z_copy zne += trH1_filt zne += trH2_filt Pflag = checkZ4S(zne, aicpick.getpick(), zfac, \ tsnrz[3], iplot) if Pflag == 0: Pmarker = 'SinsteadP' Pweight = 9 else: Pmarker = 'shortsignallength' Pweight = 9 ############################################################## # go on with processing if AIC onset passes quality control if (aicpick.getSlope() >= minAICPslope and aicpick.getSNR() >= minAICPSNR and Pflag == 1): aicPflag = 1 print 'AIC P-pick passes quality control: Slope: %f counts/s, SNR: %f' % \ (aicpick.getSlope(), aicpick.getSNR()) print 'Go on with refined picking ...' # re-filter waveform with larger bandpass print 'autopickstation: re-filtering vertical trace ...' z_copy = zdat.copy() tr_filt = zdat[0].copy() tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1], zerophase=False) tr_filt.taper(max_percentage=0.05, type='hann') z_copy[0].data = tr_filt.data ############################################################# # re-calculate CF from re-filtered trace in vicinity of initial # onset cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])), round(min([len(zdat[0].data) * zdat[0].stats.delta, aicpick.getpick() + Precalcwin]))] if algoP == 'HOS': # calculate HOS-CF using subclass HOScf of class # CharacteristicFunction cf2 = HOScf(z_copy, cuttimes2, thosmw, hosorder) # instance of HOScf elif algoP == 'ARZ': # calculate ARZ-CF using subclass ARZcf of class # CharcteristicFunction cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z, addnoise) # instance of ARZcf ############################################################## # get refined onset time from CF2 using class Picker refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP, aicpick.getpick()) mpickP = refPpick.getpick() ############################################################# if mpickP is not None: # quality assessment # get earliest and latest possible pick and symmetrized uncertainty [lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, mpickP, iplot) # get SNR [SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP) # weight P-onset using symmetric error if Perror <= timeerrorsP[0]: Pweight = 0 elif timeerrorsP[0] < Perror <= timeerrorsP[1]: Pweight = 1 elif timeerrorsP[1] < Perror <= timeerrorsP[2]: Pweight = 2 elif timeerrorsP[2] < Perror <= timeerrorsP[3]: Pweight = 3 elif Perror > timeerrorsP[3]: Pweight = 4 ############################################################## # get first motion of P onset # certain quality required if Pweight <= minfmweight and SNRP >= minFMSNR: FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot) else: FM = 'N' print 'autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, ' \ 'Polarity: %s' % (Pweight, SNRP, SNRPdB, FM) Sflag = 1 else: print 'Bad initial (AIC) P-pick, skip this onset!' print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope(), 'counts/s' print '(min. AIC-SNR=', minAICPSNR, ', min. AIC-Slope=', minAICPslope, 'counts/s)' Sflag = 0 else: print 'autopickstation: No vertical component data availabler!, ' \ 'Skip station!' if edat is not None and ndat is not None and len(edat) > 0 and len( ndat) > 0 and Pweight < 4: print 'Go on picking S onset ...' print '##################################################' print 'Working on S onset of station %s' % edat[0].stats.station print 'Filtering horizontal traces ...' # determine time window for calculating CF after P onset cuttimesh = [round(max([mpickP + sstart, 0])), round(min([mpickP + sstop, Lwf]))] if algoS == 'ARH': print edat, ndat # re-create stream object including both horizontal components hdat = edat.copy() hdat += ndat h_copy = hdat.copy() # filter and taper data trH1_filt = hdat[0].copy() trH2_filt = hdat[1].copy() trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) trH1_filt.taper(max_percentage=0.05, type='hann') trH2_filt.taper(max_percentage=0.05, type='hann') h_copy[0].data = trH1_filt.data h_copy[1].data = trH2_filt.data elif algoS == 'AR3': print zdat, edat, ndat # re-create stream object including all components hdat = zdat.copy() hdat += edat hdat += ndat h_copy = hdat.copy() # filter and taper data trH1_filt = hdat[0].copy() trH2_filt = hdat[1].copy() trH3_filt = hdat[2].copy() trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) trH1_filt.taper(max_percentage=0.05, type='hann') trH2_filt.taper(max_percentage=0.05, type='hann') trH3_filt.taper(max_percentage=0.05, type='hann') h_copy[0].data = trH1_filt.data h_copy[1].data = trH2_filt.data h_copy[2].data = trH3_filt.data ############################################################## if algoS == 'ARH': # calculate ARH-CF using subclass ARHcf of class # CharcteristicFunction arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) # instance of ARHcf elif algoS == 'AR3': # calculate ARH-CF using subclass AR3cf of class # CharcteristicFunction arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) # instance of ARHcf ############################################################## # calculate AIC-ARH-CF using subclass AICcf of class # CharacteristicFunction # class needs stream object => build it tr_arhaic = trH1_filt.copy() tr_arhaic.data = arhcf1.getCF() h_copy[0].data = tr_arhaic.data # calculate ARH-AIC-CF haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf ############################################################## # get prelimenary onset time from AIC-HOS-CF using subclass AICPicker # of class AutoPicking aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None, aictsmoothS) ############################################################### # go on with processing if AIC onset passes quality control if (aicarhpick.getSlope() >= minAICSslope and aicarhpick.getSNR() >= minAICSSNR and aicarhpick.getpick() is not None): aicSflag = 1 print 'AIC S-pick passes quality control: Slope: %f counts/s, SNR: %f' \ % (aicarhpick.getSlope(), aicarhpick.getSNR()) print 'Go on with refined picking ...' # re-calculate CF from re-filtered trace in vicinity of initial # onset cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin), round(aicarhpick.getpick() + Srecalcwin)] # re-filter waveform with larger bandpass print 'autopickstation: re-filtering horizontal traces...' h_copy = hdat.copy() # filter and taper data if algoS == 'ARH': trH1_filt = hdat[0].copy() trH2_filt = hdat[1].copy() trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) trH1_filt.taper(max_percentage=0.05, type='hann') trH2_filt.taper(max_percentage=0.05, type='hann') h_copy[0].data = trH1_filt.data h_copy[1].data = trH2_filt.data ############################################################# arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) # instance of ARHcf elif algoS == 'AR3': trH1_filt = hdat[0].copy() trH2_filt = hdat[1].copy() trH3_filt = hdat[2].copy() trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) trH1_filt.taper(max_percentage=0.05, type='hann') trH2_filt.taper(max_percentage=0.05, type='hann') trH3_filt.taper(max_percentage=0.05, type='hann') h_copy[0].data = trH1_filt.data h_copy[1].data = trH2_filt.data h_copy[2].data = trH3_filt.data ############################################################# arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) # instance of ARHcf # get refined onset time from CF2 using class Picker refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS, tsmoothS, aicarhpick.getpick()) mpickS = refSpick.getpick() ############################################################# if mpickS is not None: # quality assessment # get earliest and latest possible pick and symmetrized uncertainty h_copy[0].data = trH1_filt.data [lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS, tsnrh, mpickS, iplot) h_copy[0].data = trH2_filt.data [lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS, tsnrh, mpickS, iplot) if algoS == 'ARH': # get earliest pick of both earliest possible picks epick = [epickS1, epickS2] lpick = [lpickS1, lpickS2] pickerr = [Serror1, Serror2] if epickS1 == None and epickS2 is not None: ipick = 1 elif epickS1 is not None and epickS2 == None: ipick = 0 elif epickS1 is not None and epickS2 is not None: ipick = np.argmin([epickS1, epickS2]) elif algoS == 'AR3': [lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS, tsnrh, mpickS, iplot) # get earliest pick of all three picks epick = [epickS1, epickS2, epickS3] lpick = [lpickS1, lpickS2, lpickS3] pickerr = [Serror1, Serror2, Serror3] if epickS1 == None and epickS2 is not None \ and epickS3 is not None: ipick = np.argmin([epickS2, epickS3]) elif epickS1 is not None and epickS2 == None \ and epickS3 is not None: ipick = np.argmin([epickS2, epickS3]) elif epickS1 is not None and epickS2 is not None \ and epickS3 == None: ipick = np.argmin([epickS1, epickS2]) elif epickS1 is not None and epickS2 is not None \ and epickS3 is not None: ipick = np.argmin([epickS1, epickS2, epickS3]) epickS = epick[ipick] lpickS = lpick[ipick] Serror = pickerr[ipick] # get SNR [SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, mpickS) # weight S-onset using symmetric error if Serror <= timeerrorsS[0]: Sweight = 0 elif timeerrorsS[0] < Serror <= timeerrorsS[1]: Sweight = 1 elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]: Sweight = 2 elif timeerrorsS[2] < Serror <= timeerrorsS[3]: Sweight = 3 elif Serror > timeerrorsS[3]: Sweight = 4 print 'autopickstation: S-weight: %d, SNR: %f, SNR[dB]: %f' % ( Sweight, SNRS, SNRSdB) else: print 'Bad initial (AIC) S-pick, skip this onset!' print 'AIC-SNR=', aicarhpick.getSNR(), \ 'AIC-Slope=', aicarhpick.getSlope(), 'counts/s' print '(min. AIC-SNR=', minAICSSNR, ', min. AIC-Slope=', \ minAICSslope, 'counts/s)' else: print 'autopickstation: No horizontal component data available or ' \ 'bad P onset, skipping S picking!' ############################################################## if iplot > 0: # plot vertical trace plt.figure() plt.subplot(3, 1, 1) tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate, tr_filt.stats.delta) # check equal length of arrays, sometimes they are different!? wfldiff = len(tr_filt.data) - len(tdata) if wfldiff < 0: tdata = tdata[0:len(tdata) - abs(wfldiff)] p1, = plt.plot(tdata, tr_filt.data / max(tr_filt.data), 'k') if Pweight < 4: p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()), 'b') if aicPflag == 1: p3, = plt.plot(cf2.getTimeArray(), cf2.getCF() / max(cf2.getCF()), 'm') p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r') plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [1, 1], 'r') plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [-1, -1], 'r') p5, = plt.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2) plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [1.3, 1.3], 'r', linewidth=2) plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [-1.3, -1.3], 'r', linewidth=2) plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--') plt.plot([epickP, epickP], [-1.1, 1.1], 'r--') plt.legend([p1, p2, p3, p4, p5], ['Data', 'CF1', 'CF2', 'Initial P Onset', 'Final P Pick']) plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f ' 'Polarity: %s' % (tr_filt.stats.station, tr_filt.stats.channel, Pweight, SNRP, SNRPdB, FM)) else: plt.legend([p1, p2], ['Data', 'CF1']) plt.title('%s, P Weight=%d, SNR=None, ' 'SNRdB=None' % (tr_filt.stats.channel, Pweight)) plt.yticks([]) plt.ylim([-1.5, 1.5]) plt.ylabel('Normalized Counts') plt.suptitle(tr_filt.stats.starttime) if len(edat[0]) > 1 and len(ndat[0]) > 1 and Sflag == 1: # plot horizontal traces plt.subplot(3, 1, 2) th1data = np.arange(0, trH1_filt.stats.npts / trH1_filt.stats.sampling_rate, trH1_filt.stats.delta) # check equal length of arrays, sometimes they are different!? wfldiff = len(trH1_filt.data) - len(th1data) if wfldiff < 0: th1data = th1data[0:len(th1data) - abs(wfldiff)] p21, = plt.plot(th1data, trH1_filt.data / max(trH1_filt.data), 'k') if Pweight < 4: p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF() / max(arhcf1.getCF()), 'b') if aicSflag == 1: p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF() / max(arhcf2.getCF()), 'm') p24, = plt.plot( [aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g') plt.plot( [aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g') plt.plot( [aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g') p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2) plt.plot( [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2) plt.plot( [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2) plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--') plt.plot([epickS, epickS], [-1.1, 1.1], 'g--') plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick']) plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % ( trH1_filt.stats.channel, Sweight, SNRS, SNRSdB)) else: plt.legend([p21, p22], ['Data', 'CF1']) plt.title('%s, S Weight=%d, SNR=None, SNRdB=None' % ( trH1_filt.stats.channel, Sweight)) plt.yticks([]) plt.ylim([-1.5, 1.5]) plt.ylabel('Normalized Counts') plt.suptitle(trH1_filt.stats.starttime) plt.subplot(3, 1, 3) th2data = np.arange(0, trH2_filt.stats.npts / trH2_filt.stats.sampling_rate, trH2_filt.stats.delta) # check equal length of arrays, sometimes they are different!? wfldiff = len(trH2_filt.data) - len(th2data) if wfldiff < 0: th2data = th2data[0:len(th2data) - abs(wfldiff)] plt.plot(th2data, trH2_filt.data / max(trH2_filt.data), 'k') if Pweight < 4: p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF() / max(arhcf1.getCF()), 'b') if aicSflag == 1: p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF() / max(arhcf2.getCF()), 'm') p24, = plt.plot( [aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g') plt.plot( [aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g') plt.plot( [aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g') p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2) plt.plot( [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2) plt.plot( [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2) plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--') plt.plot([epickS, epickS], [-1.1, 1.1], 'g--') plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick']) else: plt.legend([p21, p22], ['Data', 'CF1']) plt.yticks([]) plt.ylim([-1.5, 1.5]) plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime) plt.ylabel('Normalized Counts') plt.title(trH2_filt.stats.channel) plt.show() raw_input() plt.close() ########################################################################## # calculate "real" onset times if mpickP is not None: lpickP = zdat[0].stats.starttime + lpickP epickP = zdat[0].stats.starttime + epickP mpickP = zdat[0].stats.starttime + mpickP if mpickS is not None: lpickS = edat[0].stats.starttime + lpickS epickS = edat[0].stats.starttime + epickS mpickS = edat[0].stats.starttime + mpickS # create dictionary # for P phase phase = 'P' phasepick = {'lpp': lpickP, 'epp': epickP, 'mpp': mpickP, 'spe': Perror, \ 'snr': SNRP, 'snrdb': SNRPdB, 'weight': Pweight, 'fm': FM} picks = {phase: phasepick} # add P marker picks[phase]['marked'] = Pmarker # add S phase phase = 'S' phasepick = {'lpp': lpickS, 'epp': epickS, 'mpp': mpickS, 'spe': Serror, \ 'snr': SNRS, 'snrdb': SNRSdB, 'weight': Sweight, 'fm': None} picks[phase] = phasepick return picks