1238 lines
57 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Function to run automated picking algorithms using AIC,
HOS and AR prediction. Uses objects CharFuns and Picker and
function conglomerate utils.
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import matplotlib.pyplot as plt
import numpy as np
import traceback
from obspy.taup import TauPyModel
from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
from pylot.core.pick.picker import AICPicker, PragPicker
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
getSNR, fmpicker, checkPonsets, wadaticheck
from pylot.core.util.utils import getPatternLine, gen_Pool, \
real_Bool, identifyPhaseID
def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None, ncores=0, metadata=None, origin=None):
"""
:param data: ObsPy stream object containing waveform data of all stations in the event
:type data: ~obspy.core.stream.Stream
:param param: PylotParameter object containing parameters used for picking
:type param: pylot.core.io.inputs.PylotParameter
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, Boolean or String
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param fig_dict_wadatijack: dictionary containing Matplotlib figures used for plotting jackknife-, wadati- and
mediantest results
:type fig_dict_wadatijack: dict
:param ncores: number of cores used for parallel processing. Default (0) uses all available cores
:type ncores: int
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary containing picked stations and pick information
:rtype: dictionary
"""
stations = []
all_onsets = {}
input_tuples = []
try:
iplot = int(iplot)
except ValueError:
if iplot is True or iplot == 'True':
iplot = 2
else:
iplot = 0
# get some parameters for quality control from
# parameter input file (usually pylot.in).
wdttolerance = param.get('wdttolerance')
mdttolerance = param.get('mdttolerance')
jackfactor = param.get('jackfactor')
apverbose = param.get('apverbose')
for n in range(len(data)):
station = data[n].stats.station
if station not in stations:
stations.append(station)
else:
continue
for station in stations:
topick = data.select(station=station)
input_tuples.append((topick, param, apverbose, iplot, fig_dict, metadata, origin))
if iplot > 0:
print('iPlot Flag active: NO MULTIPROCESSING possible.')
ncores = 1
# rename ncores for string representation in case ncores == 0 (use all cores)
ncores_str = ncores if ncores != 0 else 'all available'
print('Autopickstation: Distribute autopicking for {} '
'stations on {} cores.'.format(len(input_tuples), ncores_str))
if ncores == 1:
results = serial_picking(input_tuples)
else:
results = parallel_picking(input_tuples, ncores)
for result, station in results:
if type(result) == dict:
all_onsets[station] = result
else:
if result is None:
result = 'Picker exited unexpectedly.'
print('Could not pick a station: {}\nReason: {}'.format(station, result))
# no Wadati/JK for single station (also valid for tuning mode)
if len(stations) == 1:
return all_onsets
# quality control
# median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, jackfactor, iplot, fig_dict_wadatijack)
# check S-P times (Wadati)
wadationsets = wadaticheck(jk_checked_onsets, wdttolerance, iplot, fig_dict_wadatijack)
return wadationsets
def serial_picking(input_tuples):
result = []
for input_tuple in input_tuples:
result.append(call_autopickstation(input_tuple))
return result
def parallel_picking(input_tuples, ncores):
pool = gen_Pool(ncores)
result = pool.imap_unordered(call_autopickstation, input_tuples)
pool.close()
return result
def call_autopickstation(input_tuple):
"""
helper function used for multiprocessing
:param input_tuple: contains all parameters used for autopicking
:type input_tuple: tuple
:return: dictionary containing P pick, S pick and station name
:rtype: dict
"""
wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin = input_tuple
if fig_dict:
print('Running in interactive mode')
# multiprocessing not possible with interactive plotting
try:
return autopickstation(wfstream, pickparam, verbose, fig_dict=fig_dict, iplot=iplot, metadata=metadata,
origin=origin)
except Exception as e:
tbe = traceback.format_exc()
return tbe, wfstream[0].stats.station
def autopickstation(wfstream, pickparam, verbose=False,
iplot=0, fig_dict=None, metadata=None, origin=None):
"""
picks a single station
:param wfstream: stream object containing waveform of all traces
:type wfstream: ~obspy.core.stream.Stream
:param pickparam: container of picking parameters from input file, usually pylot.in
:type pickparam: pylot.core.io.inputs.PylotParameter
:param verbose: used to control output to log during picking. True = more information printed
:type verbose: bool
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, (Boolean or String)
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary containing P pick, S pick and station name
:rtype: dict
"""
# declaring pickparam variables (only for convenience)
# read your pylot.in for details!
plt_flag = 0
# special parameters for P picking
algoP = pickparam.get('algoP')
pstart = pickparam.get('pstart')
pstop = pickparam.get('pstop')
thosmw = pickparam.get('tlta')
tsnrz = pickparam.get('tsnrz')
hosorder = pickparam.get('hosorder')
bpz1 = pickparam.get('bpz1')
bpz2 = pickparam.get('bpz2')
pickwinP = pickparam.get('pickwinP')
aictsmoothP = pickparam.get('aictsmooth')
tsmoothP = pickparam.get('tsmoothP')
ausP = pickparam.get('ausP')
nfacP = pickparam.get('nfacP')
tpred1z = pickparam.get('tpred1z')
tdet1z = pickparam.get('tdet1z')
tpred2z = pickparam.get('tpred2z')
tdet2z = pickparam.get('tdet2z')
Parorder = pickparam.get('Parorder')
addnoise = pickparam.get('addnoise')
Precalcwin = pickparam.get('Precalcwin')
minAICPslope = pickparam.get('minAICPslope')
minAICPSNR = pickparam.get('minAICPSNR')
timeerrorsP = pickparam.get('timeerrorsP')
# special parameters for S picking
algoS = pickparam.get('algoS')
sstart = pickparam.get('sstart')
sstop = pickparam.get('sstop')
use_taup = real_Bool(pickparam.get('use_taup'))
taup_model = pickparam.get('taup_model')
bph1 = pickparam.get('bph1')
bph2 = pickparam.get('bph2')
tsnrh = pickparam.get('tsnrh')
pickwinS = pickparam.get('pickwinS')
tpred1h = pickparam.get('tpred1h')
tdet1h = pickparam.get('tdet1h')
tpred2h = pickparam.get('tpred2h')
tdet2h = pickparam.get('tdet2h')
Sarorder = pickparam.get('Sarorder')
aictsmoothS = pickparam.get('aictsmoothS')
tsmoothS = pickparam.get('tsmoothS')
ausS = pickparam.get('ausS')
minAICSslope = pickparam.get('minAICSslope')
minAICSSNR = pickparam.get('minAICSSNR')
Srecalcwin = pickparam.get('Srecalcwin')
nfacS = pickparam.get('nfacS')
timeerrorsS = pickparam.get('timeerrorsS')
# parameters for first-motion determination
minFMSNR = pickparam.get('minFMSNR')
fmpickwin = pickparam.get('fmpickwin')
minfmweight = pickparam.get('minfmweight')
# parameters for checking signal length
minsiglength = pickparam.get('minsiglength')
minpercent = pickparam.get('minpercent')
nfacsl = pickparam.get('noisefactor')
# parameter to check for spuriously picked S onset
zfac = pickparam.get('zfac')
# path to inventory-, dataless- or resp-files
# initialize output
Pweight = 4 # weight for P onset
Sweight = 4 # weight for S onset
FM = 'N' # first motion (polarity)
SNRP = None # signal-to-noise ratio of P onset
SNRPdB = None # signal-to-noise ratio of P onset [dB]
SNRS = None # signal-to-noise ratio of S onset
SNRSdB = None # signal-to-noise ratio of S onset [dB]
mpickP = None # most likely P onset
lpickP = None # latest possible P onset
epickP = None # earliest possible P onset
mpickS = None # most likely S onset
lpickS = None # latest possible S onset
epickS = None # earliest possible S onset
Perror = None # symmetrized picking error P onset
Serror = None # symmetrized picking error S onset
aicSflag = 0
aicPflag = 0
Pflag = 0
Sflag = 0
Pmarker = []
Ao = None # Wood-Anderson peak-to-peak amplitude
picker = 'auto' # type of picks
# split components
zdat = wfstream.select(component="Z")
if len(zdat) == 0: # check for other components
print('HIT: 3')
zdat = wfstream.select(component="3")
edat = wfstream.select(component="E")
if len(edat) == 0: # check for other components
edat = wfstream.select(component="2")
print('HIT: 2')
ndat = wfstream.select(component="N")
if len(ndat) == 0: # check for other components
ndat = wfstream.select(component="1")
print('HIT: 1')
picks = {}
station = wfstream[0].stats.station
if not zdat:
print('No z-component found for station {}. STOP'.format(station))
return picks, station
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
msg = '##################################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=wfstream[0].stats.station,
data=str(zdat))
if verbose: print(msg)
z_copy = zdat.copy()
tr_filt = zdat[0].copy()
# remove constant offset from data to avoid unwanted filter response
tr_filt.detrend(type='demean')
# filter and taper data
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1],
zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann')
z_copy[0].data = tr_filt.data
##############################################################
# check length of waveform and compare with cut times
# for global seismology: use tau-p method for estimating travel times (needs source and station coords.)
# if not given: sets Lc to infinity to use full stream
if use_taup is True:
Lc = np.inf
print('autopickstation: use_taup flag active.')
if not metadata:
print('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
else:
station_id = wfstream[0].get_id()
station_coords = metadata.get_coordinates(station_id, time=wfstream[0].stats.starttime)
if station_coords and origin:
source_origin = origin[0]
model = TauPyModel(taup_model)
arrivals = model.get_travel_times_geo(
source_origin.depth,
source_origin.latitude,
source_origin.longitude,
station_coords['latitude'],
station_coords['longitude']
)
phases = {'P': [],
'S': []}
for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS))
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
pstart += (source_origin.time + estFirstP) - zdat[0].stats.starttime
pstop += (source_origin.time + estFirstP) - zdat[0].stats.starttime
print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(pstart, pstop))
elif not origin:
print('No source origins given!')
# make sure pstart and pstop are inside zdat[0]
pstart = max(pstart, 0)
pstop = min(pstop, len(zdat[0]) * zdat[0].stats.delta)
if not use_taup is True or origin:
Lc = pstop - pstart
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
if not Lwf > 0:
print('autopickstation: empty trace! Return!')
return picks, station
Ldiff = Lwf - abs(Lc)
if Ldiff <= 0 or pstop <= pstart or pstop - pstart <= thosmw:
msg = 'autopickstation: Cutting times are too large for actual ' \
'waveform!\nUsing entire waveform instead!'
if verbose: print(msg)
pstart = 0
pstop = len(zdat[0].data) * zdat[0].stats.delta
cuttimes = [pstart, pstop]
cf1 = None
if algoP == 'HOS':
# calculate HOS-CF using subclass HOScf of class
# CharacteristicFunction
cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) # instance of HOScf
elif algoP == 'ARZ':
# calculate ARZ-CF using subclass ARZcf of class
# CharcteristicFunction
cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z,
addnoise) # instance of ARZcf
##############################################################
# calculate AIC-HOS-CF using subclass AICcf of class
# CharacteristicFunction
# class needs stream object => build it
assert isinstance(cf1, CharacteristicFunction), 'cf2 is not set ' \
'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format(
algoP=algoP)
tr_aic = tr_filt.copy()
tr_aic.data = cf1.getCF()
z_copy[0].data = tr_aic.data
aiccf = AICcf(z_copy, cuttimes) # instance of AICcf
##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking
key = 'aicFig'
if fig_dict:
fig = fig_dict[key]
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, aictsmoothP, fig=fig, linecolor=linecolor)
# add pstart and pstop to aic plot
if fig:
for ax in fig.axes:
ax.vlines(pstart, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P start')
ax.vlines(pstop, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P stop')
ax.legend(loc=1)
##############################################################
if aicpick.getpick() is not None:
# check signal length to detect spuriously picked noise peaks
# use all available components to avoid skipping correct picks
# on vertical traces with weak P coda
z_copy[0].data = tr_filt.data
zne = z_copy
if len(ndat) == 0 or len(edat) == 0:
msg = 'One or more horizontal component(s) missing!\nSignal ' \
'length only checked on vertical component!\n' \
'Decreasing minsiglengh from {0} to ' \
'{1}'.format(minsiglength, minsiglength / 2)
if verbose: print(msg)
key = 'slength'
if fig_dict:
fig = fig_dict[key]
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength / 2,
nfacsl, minpercent, iplot,
fig, linecolor)
else:
# filter and taper horizontal traces
trH1_filt = edat.copy()
trH2_filt = ndat.copy()
# remove constant offset from data to avoid unwanted filter response
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
zne += trH1_filt
zne += trH2_filt
if fig_dict:
fig = fig_dict['slength']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength,
nfacsl, minpercent, iplot,
fig, linecolor)
if Pflag == 1:
# check for spuriously picked S onset
# both horizontal traces needed
if len(ndat) == 0 or len(edat) == 0:
msg = 'One or more horizontal components missing!\n' \
'Skipping control function checkZ4S.'
if verbose: print(msg)
else:
if iplot > 1:
if fig_dict:
fig = fig_dict['checkZ4s']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checkZ4S(zne, aicpick.getpick(), zfac,
tsnrz[2], iplot, fig, linecolor)
if Pflag == 0:
Pmarker = 'SinsteadP'
Pweight = 9
else:
Pmarker = 'shortsignallength'
Pweight = 9
##############################################################
# go on with processing if AIC onset passes quality control
slope = aicpick.getSlope()
if not slope:
slope = 0
if slope >= minAICPslope and aicpick.getSNR() >= minAICPSNR and Pflag == 1:
aicPflag = 1
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering vertical trace ' \
'...'.format(aicpick.getSlope(), aicpick.getSNR())
if verbose: print(msg)
# re-filter waveform with larger bandpass
z_copy = zdat.copy()
tr_filt = zdat[0].copy()
tr_filt.detrend(type='demean')
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1],
zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann')
z_copy[0].data = tr_filt.data
#############################################################
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])),
round(min([len(zdat[0].data) * zdat[0].stats.delta,
aicpick.getpick() + Precalcwin]))]
cf2 = None
if algoP == 'HOS':
# calculate HOS-CF using subclass HOScf of class
# CharacteristicFunction
cf2 = HOScf(z_copy, cuttimes2, thosmw,
hosorder) # instance of HOScf
elif algoP == 'ARZ':
# calculate ARZ-CF using subclass ARZcf of class
# CharcteristicFunction
cf2 = ARZcf(z_copy, cuttimes2, tpred2z, Parorder, tdet2z,
addnoise) # instance of ARZcf
##############################################################
# get refined onset time from CF2 using class Picker
assert isinstance(cf2, CharacteristicFunction), 'cf2 is not set ' \
'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format(
algoP=algoP)
if fig_dict:
fig = fig_dict['refPpick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP,
aicpick.getpick(), fig, linecolor)
mpickP = refPpick.getpick()
#############################################################
if mpickP is not None:
# quality assessment
# get earliest/latest possible pick and symmetrized uncertainty
if iplot:
if fig_dict:
fig = fig_dict['el_Ppick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
epickP, lpickP, Perror = earllatepicker(z_copy, nfacP, tsnrz,
mpickP, iplot, fig=fig,
linecolor=linecolor)
else:
epickP, lpickP, Perror = earllatepicker(z_copy, nfacP, tsnrz,
mpickP, iplot)
# get SNR
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP)
# weight P-onset using symmetric error
if Perror is None:
Pweight = 4
else:
if Perror <= timeerrorsP[0]:
Pweight = 0
elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
Pweight = 1
elif timeerrorsP[1] < Perror <= timeerrorsP[2]:
Pweight = 2
elif timeerrorsP[2] < Perror <= timeerrorsP[3]:
Pweight = 3
elif Perror > timeerrorsP[3]:
Pweight = 4
##############################################################
# get first motion of P onset
# certain quality required
if Pweight <= minfmweight and SNRP >= minFMSNR:
if iplot:
if fig_dict:
fig = fig_dict['fm_picker']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot, fig, linecolor)
else:
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot)
else:
FM = 'N'
msg = "autopickstation: P-weight: {0}, " \
"SNR: {1}, SNR[dB]: {2}, Polarity: {3}".format(Pweight,
SNRP,
SNRPdB,
FM)
print(msg)
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'.format(zdat[0].stats.starttime \
+ mpickP, Perror)
print(msg)
Sflag = 1
else:
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)'.format(aicpick.getSNR(),
aicpick.getSlope(),
minAICPSNR,
minAICPslope)
if verbose: print(msg)
Sflag = 0
else:
print('autopickstation: No vertical component data available!, '
'Skipping station!')
if ((len(edat) > 0 and len(ndat) == 0) or (len(ndat) > 0 and len(edat) == 0)) and Pweight < 4:
msg = 'Go on picking S onset ...\n' \
'##################################################\n' \
'Only one horizontal component available!\n' \
'ARH prediction requires at least 2 components!\n' \
'Copying existing horizontal component ...'
if verbose: print(msg)
# check which component is missing
if len(edat) == 0:
edat = ndat
else:
ndat = edat
pickSonset = (edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4)
if pickSonset:
# determine time window for calculating CF after P onset
cuttimesh = [
round(max([mpickP + sstart, 0])), # MP MP relative time axis
round(min([
mpickP + sstop,
edat[0].stats.endtime - edat[0].stats.starttime,
ndat[0].stats.endtime - ndat[0].stats.starttime
]))
]
if not cuttimesh[1] >= cuttimesh[0]:
print('Cut window for horizontal phases too small! Will not pick S onsets.')
pickSonset = False
if pickSonset:
msg = 'Go on picking S onset ...\n' \
'##################################################\n' \
'Working on S onset of station {0}\nFiltering horizontal ' \
'traces ...'.format(edat[0].stats.station)
if verbose: print(msg)
if algoS == 'ARH':
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
# filter and taper data
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
elif algoS == 'AR3':
# re-create stream object including all components
hdat = zdat.copy()
hdat += edat
hdat += ndat
h_copy = hdat.copy()
# filter and taper data
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH3_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
trH3_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
##############################################################
if algoS == 'ARH':
# calculate ARH-CF using subclass ARHcf of class
# CharcteristicFunction
arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
addnoise) # instance of ARHcf
elif algoS == 'AR3':
# calculate ARH-CF using subclass AR3cf of class
# CharcteristicFunction
arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
addnoise) # instance of ARHcf
##############################################################
# calculate AIC-ARH-CF using subclass AICcf of class
# CharacteristicFunction
# class needs stream object => build it
tr_arhaic = trH1_filt.copy()
tr_arhaic.data = arhcf1.getCF()
h_copy[0].data = tr_arhaic.data
# calculate ARH-AIC-CF
haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf
##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking
if fig_dict:
fig = fig_dict['aicARHfig']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None,
aictsmoothS, fig=fig, linecolor=linecolor)
###############################################################
# go on with processing if AIC onset passes quality control
slope = aicarhpick.getSlope()
if not slope:
slope = 0
if (slope >= minAICSslope and
aicarhpick.getSNR() >= minAICSSNR and aicarhpick.getpick() is not None):
aicSflag = 1
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering horizontal traces ' \
'...'.format(aicarhpick.getSlope(), aicarhpick.getSNR())
if verbose: print(msg)
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin),
round(aicarhpick.getpick() + Srecalcwin)]
# re-filter waveform with larger bandpass
h_copy = hdat.copy()
# filter and taper data
if algoS == 'ARH':
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
#############################################################
arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
addnoise) # instance of ARHcf
elif algoS == 'AR3':
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH3_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
trH3_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
#############################################################
arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
addnoise) # instance of ARHcf
# get refined onset time from CF2 using class Picker
if fig_dict:
fig = fig_dict['refSpick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS,
tsmoothS, aicarhpick.getpick(), fig, linecolor)
mpickS = refSpick.getpick()
#############################################################
if mpickS is not None:
# quality assessment
# get earliest/latest possible pick and symmetrized uncertainty
h_copy[0].data = trH1_filt.data
if iplot:
if fig_dict:
fig = fig_dict['el_S1pick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot,
fig=fig,
linecolor=linecolor)
else:
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot)
h_copy[0].data = trH2_filt.data
if iplot:
if fig_dict:
fig = fig_dict['el_S2pick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = ''
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot,
fig=fig,
linecolor=linecolor)
else:
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot)
if epickS1 is not None and epickS2 is not None:
if algoS == 'ARH':
# get earliest pick of both earliest possible picks
epick = [epickS1, epickS2]
lpick = [lpickS1, lpickS2]
pickerr = [Serror1, Serror2]
if epickS1 is None and epickS2 is not None:
ipick = 1
elif epickS1 is not None and epickS2 is None:
ipick = 0
elif epickS1 is not None and epickS2 is not None:
ipick = np.argmin([epickS1, epickS2])
elif algoS == 'AR3':
[epickS3, lpickS3, Serror3] = earllatepicker(h_copy,
nfacS,
tsnrh,
mpickS,
iplot)
# get earliest pick of all three picks
epick = [epickS1, epickS2, epickS3]
lpick = [lpickS1, lpickS2, lpickS3]
pickerr = [Serror1, Serror2, Serror3]
if epickS1 is None and epickS2 is not None \
and epickS3 is not None:
ipick = np.argmin([epickS2, epickS3])
elif epickS1 is not None and epickS2 is None \
and epickS3 is not None:
ipick = np.argmin([epickS2, epickS3])
elif epickS1 is not None and epickS2 is not None \
and epickS3 is None:
ipick = np.argmin([epickS1, epickS2])
elif epickS1 is not None and epickS2 is not None \
and epickS3 is not None:
ipick = np.argmin([epickS1, epickS2, epickS3])
epickS = epick[ipick]
lpickS = lpick[ipick]
Serror = pickerr[ipick]
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(hdat[0].stats.starttime \
+ mpickS, Serror)
print(msg)
# get SNR
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, mpickS)
# weight S-onset using symmetric error
if Serror <= timeerrorsS[0]:
Sweight = 0
elif timeerrorsS[0] < Serror <= timeerrorsS[1]:
Sweight = 1
elif timeerrorsS[1] < Serror <= timeerrorsS[2]:
Sweight = 2
elif timeerrorsS[2] < Serror <= timeerrorsS[3]:
Sweight = 3
elif Serror > timeerrorsS[3]:
Sweight = 4
print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n'
'##################################################'
''.format(Sweight, SNRS, SNRSdB))
################################################################
# get Wood-Anderson peak-to-peak amplitude
# initialize Data object
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
else:
msg = 'Bad initial (AIC) S-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)\n' \
'##################################################' \
''.format(aicarhpick.getSNR(),
aicarhpick.getSlope(),
minAICSSNR,
minAICSslope)
if verbose: print(msg)
############################################################
# get Wood-Anderson peak-to-peak amplitude
# initialize Data object
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
else:
print('autopickstation: No horizontal component data available or '
'bad P onset, skipping S picking!')
##############################################################
try:
iplot = int(iplot)
except ValueError:
if iplot is True or iplot == 'True':
iplot = 2
else:
iplot = 0
if iplot > 0:
# plot vertical trace
if fig_dict is None or fig_dict == 'None':
fig = plt.figure()
plt_flag = 1
linecolor = 'k'
else:
fig = fig_dict['mainFig']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
fig._tight = True
ax1 = fig.add_subplot(311)
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
tr_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(tr_filt.data) - len(tdata)
if wfldiff < 0:
tdata = tdata[0:len(tdata) - abs(wfldiff)]
ax1.plot(tdata, tr_filt.data / max(tr_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4:
ax1.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
'b', label='CF1')
if aicPflag == 1:
ax1.plot(cf2.getTimeArray(),
cf2.getCF() / max(cf2.getCF()), 'm', label='CF2')
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
'r', label='Initial P Onset')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[1, 1], 'r')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[-1, -1], 'r')
ax1.plot([refPpick.getpick(), refPpick.getpick()],
[-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[1.3, 1.3], 'r', linewidth=2)
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[-1.3, -1.3], 'r', linewidth=2)
ax1.plot([lpickP, lpickP], [-1.1, 1.1], 'r--', label='lpp')
ax1.plot([epickP, epickP], [-1.1, 1.1], 'r--', label='epp')
ax1.set_title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
'Polarity: %s' % (tr_filt.stats.station,
tr_filt.stats.channel,
Pweight,
SNRP,
SNRPdB,
FM))
else:
ax1.set_title('%s, P Weight=%d, SNR=None, '
'SNRdB=None' % (tr_filt.stats.channel, Pweight))
else:
ax1.set_title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
tr_filt.stats.channel,
Pweight))
ax1.legend(loc=1)
ax1.set_yticks([])
ax1.set_ylim([-1.5, 1.5])
ax1.set_ylabel('Normalized Counts')
# fig.suptitle(tr_filt.stats.starttime)
# only continue if one horizontal stream exists
if (ndat or edat) and Sflag == 1:
# mirror components in case one does not exist
if not edat:
edat = ndat
if not ndat:
ndat = edat
if len(edat[0]) > 1 and len(ndat[0]) > 1:
# plot horizontal traces
ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
th1data = np.arange(0,
trH1_filt.stats.npts /
trH1_filt.stats.sampling_rate,
trH1_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(trH1_filt.data) - len(th1data)
if wfldiff < 0:
th1data = th1data[0:len(th1data) - abs(wfldiff)]
ax2.plot(th1data, trH1_filt.data / max(trH1_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4:
ax2.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1 and Sweight < 4:
ax2.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
ax2.plot(
[aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g', label='Initial S Onset')
ax2.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[1, 1], 'g')
ax2.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[-1, -1], 'g')
ax2.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2)
ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2)
ax2.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
ax2.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
ax2.set_title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
trH1_filt.stats.channel,
Sweight, SNRS, SNRSdB))
else:
ax2.set_title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
trH1_filt.stats.channel, Sweight))
ax2.legend(loc=1)
ax2.set_yticks([])
ax2.set_ylim([-1.5, 1.5])
ax2.set_ylabel('Normalized Counts')
# fig.suptitle(trH1_filt.stats.starttime)
ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
th2data = np.arange(0,
trH2_filt.stats.npts /
trH2_filt.stats.sampling_rate,
trH2_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(trH2_filt.data) - len(th2data)
if wfldiff < 0:
th2data = th2data[0:len(th2data) - abs(wfldiff)]
ax3.plot(th2data, trH2_filt.data / max(trH2_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4:
p22, = ax3.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1:
ax3.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
ax3.plot(
[aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g', label='Initial S Onset')
ax3.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[1, 1], 'g')
ax3.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[-1, -1], 'g')
ax3.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2)
ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2)
ax3.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
ax3.legend(loc=1)
ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5])
ax3.set_xlabel('Time [s] after %s' % tr_filt.stats.starttime)
ax3.set_ylabel('Normalized Counts')
ax3.set_title(trH2_filt.stats.channel)
if plt_flag == 1:
fig.show()
try:
input()
except SyntaxError:
pass
plt.close(fig)
##########################################################################
# calculate "real" onset times
if lpickP is not None and lpickP == mpickP:
lpickP += zdat[0].stats.delta
if epickP is not None and epickP == mpickP:
epickP -= zdat[0].stats.delta
if mpickP is not None and epickP is not None and lpickP is not None:
lpickP = zdat[0].stats.starttime + lpickP
epickP = zdat[0].stats.starttime + epickP
mpickP = zdat[0].stats.starttime + mpickP
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
lpickP = zdat[0].stats.starttime + timeerrorsP[3]
epickP = zdat[0].stats.starttime - timeerrorsP[3]
mpickP = zdat[0].stats.starttime
# create dictionary
# for P phase
ccode = zdat[0].stats.channel
ncode = zdat[0].stats.network
ppick = dict(channel=ccode, network=ncode, lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP,
snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None,
Mw=None, picker=picker, marked=Pmarker)
if edat:
hdat = edat[0]
elif ndat:
hdat = ndat[0]
else:
# no horizontal components given
picks = dict(P=ppick)
return picks, station
if lpickS is not None and lpickS == mpickS:
lpickS += hdat.stats.delta
if epickS is not None and epickS == mpickS:
epickS -= hdat.stats.delta
if mpickS is not None and epickS is not None and lpickS is not None:
lpickS = hdat.stats.starttime + lpickS
epickS = hdat.stats.starttime + epickS
mpickS = hdat.stats.starttime + mpickS
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
lpickS = hdat.stats.starttime + timeerrorsS[3]
epickS = hdat.stats.starttime - timeerrorsS[3]
mpickS = hdat.stats.starttime
# add S phase
ccode = hdat.stats.channel
ncode = hdat.stats.network
spick = dict(channel=ccode, network=ncode, lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS,
snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao)
# merge picks into returning dictionary
picks = dict(P=ppick, S=spick)
return picks, station
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter, fig_dict=None):
"""
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
:param wf: waveform, obspy stream object
:type wf: ~obspy.core.stream.Stream
:param NLLocfile: path/name of NLLoc-location file
:type NLLocfile: str
:param picks: dictionary of available onset times
:type picks: dict
:param badpicks: picks to be repicked
:type badpicks:
:param pickparameter: picking parameters from autoPyLoT-input file
:type pickparameter: pylot.core.io.inputs.PylotParameter
:param fig_dict: dictionary containing Matplotlib figures used for plotting results
:type fig_dict: dict
:return: dictionary containing iterative picks
:rtype: dict
"""
msg = '##################################################\n' \
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
'starting re-picking them ...'.format(len(badpicks), badpicks)
print(msg)
newpicks = {}
for i in range(0, len(badpicks)):
if len(badpicks[i][0]) > 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) == 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) < 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
nllocline = getPatternLine(NLLocfile, Ppattern)
res = nllocline.split(None)[16]
# get theoretical P-onset time from residuum
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
# get corresponding waveform stream
msg = '##################################################\n' \
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
print(msg)
wf2pick = wf.select(station=badpicks[i][0])
# modify some picking parameters
pstart_old = pickparameter.get('pstart')
pstop_old = pickparameter.get('pstop')
sstop_old = pickparameter.get('sstop')
pickwinP_old = pickparameter.get('pickwinP')
Precalcwin_old = pickparameter.get('Precalcwin')
noisefactor_old = pickparameter.get('noisefactor')
zfac_old = pickparameter.get('zfac')
twindows = pickparameter.get('tsnrz')
tsafety = twindows[1]
pstart = max([0, badpicks[i][1] - wf2pick[0].stats.starttime - pickparameter.get('tlta')])
if abs(float(res)) <= tsafety / 2 or pstart == 0:
print("iteratepicker: Small residuum, leave parameters unchanged for this phase!")
else:
pickparameter.setParam(pstart=pstart)
pickparameter.setParam(pstop=pickparameter.get('pstart') + (pickparameter.get('Precalcwin')))
pickparameter.setParam(sstop=pickparameter.get('sstop') / 2)
pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2)
pickparameter.setParam(Precalcwin=pickparameter.get('Precalcwin') / 2)
pickparameter.setParam(noisefactor=1.0)
pickparameter.setParam(zfac=1.0)
print(
"iteratepicker: The following picking parameters have been modified for iterative picking:")
print(
"pstart: %fs => %fs" % (pstart_old, pickparameter.get('pstart')))
print(
"pstop: %fs => %fs" % (pstop_old, pickparameter.get('pstop')))
print(
"sstop: %fs => %fs" % (sstop_old, pickparameter.get('sstop')))
print("pickwinP: %fs => %fs" % (
pickwinP_old, pickparameter.get('pickwinP')))
print("Precalcwin: %fs => %fs" % (
Precalcwin_old, pickparameter.get('Precalcwin')))
print("noisefactor: %f => %f" % (
noisefactor_old, pickparameter.get('noisefactor')))
print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac')))
# repick station
newpicks, _ = autopickstation(wf2pick, pickparameter, fig_dict=fig_dict)
# replace old dictionary with new one
picks[badpicks[i][0]] = newpicks
# reset temporary change of picking parameters
print("iteratepicker: Resetting picking parameters ...")
pickparameter.setParam(pstart=pstart_old)
pickparameter.setParam(pstop=pstop_old)
pickparameter.setParam(sstop=sstop_old)
pickparameter.setParam(pickwinP=pickwinP_old)
pickparameter.setParam(Precalcwin=Precalcwin_old)
pickparameter.setParam(noisefactor=noisefactor_old)
pickparameter.setParam(zfac=zfac_old)
return picks