pylot/pylot/core/pick/compare.py

254 lines
8.6 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import copy
import numpy as np
import matplotlib.pyplot as plt
from obspy import read_events
from pylot.core.io.phases import picks_to_dict
from pylot.core.util.pdf import ProbabilityDensityFunction
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
__author__ = 'sebastianw'
class Comparison(object):
"""
A Comparison object contains information on the evaluated picks' probability
density function and compares these in terms of building the difference of
compared pick sets. The results can be displayed as histograms showing its
properties.
"""
def __init__(self, **kwargs):
names = list()
self._pdfs = dict()
for name, fn in kwargs.items():
self._pdfs[name] = PDFDictionary.from_quakeml(fn)
names.append(name)
if len(names) > 2:
raise ValueError('Comparison is only defined for two '
'arguments!')
self._names = names
self._compare = self.compare_picksets()
def __nonzero__(self):
if not len(self.names) == 2 or not self._pdfs:
return False
return True
def get(self, name):
return self._pdfs[name]
@property
def names(self):
return self._names
@names.setter
def names(self, names):
assert isinstance(names, list) and len(names) == 2, 'variable "names"' \
' is either not a' \
' list or its ' \
'length is not 2:' \
'names : {names}'.format(
names=names)
self._names = names
@property
def comparison(self):
return self._compare
@property
def stations(self):
return self.comparison.keys()
@property
def nstations(self):
return len(self.stations)
def compare_picksets(self, type='exp'):
"""
Compare two picksets A and B and return a dictionary compiling the results.
Comparison is carried out with the help of pdf representation of the picks
and a probabilistic approach to the time difference of two onset
measurements.
:param a: filename for pickset A
:type a: str
:param b: filename for pickset B
:type b: str
:return: dictionary containing the resulting comparison pdfs for all picks
:rtype: dict
"""
compare_pdfs = dict()
pdf_a = self.get(self.names[0]).pdf_data(type)
pdf_b = self.get(self.names[1]).pdf_data(type)
for station, phases in pdf_a.items():
if station in pdf_b.keys():
compare_pdf = dict()
for phase in phases:
if phase in pdf_b[station].keys():
compare_pdf[phase] = phases[phase] - pdf_b[station][
phase]
if compare_pdf is not None:
compare_pdfs[station] = compare_pdf
return compare_pdfs
def plot(self):
nstations = self.nstations
stations = self.stations
istations = range(nstations)
fig, axarr = plt.subplots(nstations, 2, sharex='col', sharey='row')
for n in istations:
station = stations[n]
compare_pdf = self.comparison[station]
for l, phase in enumerate(compare_pdf.keys()):
axarr[n, l].plot(compare_pdf[phase].axis,
compare_pdf[phase].data)
if n is 0:
axarr[n, l].set_title(phase)
if l is 0:
axann = axarr[n, l].annotate(station, xy=(.05, .5),
xycoords='axes fraction')
bbox_props = dict(boxstyle='round', facecolor='lightgrey',
alpha=.7)
axann.set_bbox(bbox_props)
if n == int(np.median(istations)) and l is 0:
label = 'probability density (qualitative)'
axarr[n, l].set_ylabel(label)
plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False)
plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False)
plt.setp([a.get_yticklabels() for a in axarr[:, 0]], visible=False)
plt.show()
def get_expectation_array(self, phase):
pdf_dict = self.comparison
exp_array = list()
for station, phases in pdf_dict.items():
try:
exp_array.append(phases[phase].expectation())
except KeyError as e:
print('{err_msg}; station = {station}, phase = {phase}'.format(
err_msg=str(e), station=station, phase=phase))
continue
return exp_array
def get_std_array(self, phase):
pdf_dict = self.comparison
std_array = list()
for station, phases in pdf_dict.items():
try:
std_array.append(phases[phase].standard_deviation())
except KeyError as e:
print('{err_msg}; station = {station}, phase = {phase}'.format(
err_msg=str(e), station=station, phase=phase))
continue
return std_array
def hist_expectation(self, phases='all', bins=20, normed=False):
phases.strip()
if phases.find('all') is 0:
phases = 'ps'
phases = phases.upper()
nsp = len(phases)
fig, axarray = plt.subplots(1, nsp, sharey=True)
for n, phase in enumerate(phases):
ax = axarray[n]
data = self.get_expectation_array(phase)
xlims = [min(data), max(data)]
ax.hist(data, range=xlims, bins=bins, normed=normed)
title_str = 'phase: {0}, samples: {1}'.format(phase, len(data))
ax.set_title(title_str)
ax.set_xlabel('expectation [s]')
if n is 0:
ax.set_ylabel('abundance [-]')
plt.setp([a.get_yticklabels() for a in axarray[1:]], visible=False)
plt.show()
def hist_standard_deviation(self, phases='all', bins=20, normed=False):
phases.strip()
if phases.find('all') == 0:
phases = 'ps'
phases = phases.upper()
nsp = len(phases)
fig, axarray = plt.subplots(1, nsp, sharey=True)
for n, phase in enumerate(phases):
ax = axarray[n]
data = self.get_std_array(phase)
xlims = [min(data), max(data)]
ax.hist(data, range=xlims, bins=bins, normed=normed)
title_str = 'phase: {0}, samples: {1}'.format(phase, len(data))
ax.set_title(title_str)
ax.set_xlabel('standard deviation [s]')
if n is 0:
ax.set_ylabel('abundance [-]')
plt.setp([a.get_yticklabels() for a in axarray[1:]], visible=False)
plt.show()
def hist(self, type='std'):
pass
class PDFDictionary(object):
"""
A PDFDictionary is a dictionary like object containing structured data on
the probability density function of seismic phase onsets.
"""
def __init__(self, data):
self._pickdata = data
def __nonzero__(self):
if len(self.pick_data) < 1:
return False
else:
return True
@property
def pick_data(self):
return self._pickdata
@pick_data.setter
def pick_data(self, data):
self._pickdata = data
@classmethod
def from_quakeml(self, fn):
cat = read_events(fn)
if len(cat) > 1:
raise NotImplementedError('reading more than one event at the same '
'time is not implemented yet! Sorry!')
return PDFDictionary(picks_to_dict(cat[0]))
def pdf_data(self, type='exp'):
"""
Returns probabiliy density function dictionary containing the
representation of the actual pick_data.
:param type: type of the returned
`~pylot.core.util.pdf.ProbabilityDensityFunction` object
:type type: str
:return: a dictionary containing the picks represented as pdfs
"""
pdf_picks = copy.deepcopy(self.pick_data)
for station, phases in pdf_picks.items():
for phase, values in phases.items():
phases[phase] = ProbabilityDensityFunction.from_pick(
values['epp'],
values['mpp'],
values['lpp'],
type=type)
return pdf_picks