pylot/autoPyLoT.py

565 lines
28 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import print_function
import argparse
import datetime
import glob
import os
import traceback
from obspy import read_events
from obspy.core.event import ResourceIdentifier
import pylot.core.loc.focmec as focmec
import pylot.core.loc.hash as hash
import pylot.core.loc.hypo71 as hypo71
import pylot.core.loc.hypodd as hypodd
import pylot.core.loc.hyposat as hyposat
import pylot.core.loc.nll as nll
import pylot.core.loc.velest as velest
# from PySide.QtGui import QWidget, QInputDialog
from pylot.core.analysis.magnitude import MomentMagnitude, LocalMagnitude
from pylot.core.io.data import Data
from pylot.core.io.inputs import PylotParameter
from pylot.core.pick.autopick import autopickevent, iteratepicker
from pylot.core.util.dataprocessing import restitute_data, Metadata
from pylot.core.util.defaults import SEPARATOR
from pylot.core.util.event import Event
from pylot.core.util.structure import DATASTRUCTURE
from pylot.core.util.utils import get_None, trim_station_components, check4gapsAndRemove, check4doubled, \
check4rotated
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, eventid=None, savepath=None,
savexml=True, station='all', iplot=0, ncores=0, obspyDMT_wfpath=False):
"""
Determine phase onsets automatically utilizing the automatic picking
algorithms by Kueperkoch et al. 2010/2012.
:param obspyDMT_wfpath: if obspyDMT is used, name of data directory ("raw" or "processed")
:param input_dict:
:type input_dict:
:param parameter: PylotParameter object containing parameters used for automatic picking
:type parameter: pylot.core.io.inputs.PylotParameter
:param inputfile: path to the input file containing all parameter information for automatic picking
(for formatting details, see. `~pylot.core.io.inputs.PylotParameter`
:type inputfile: str
:param fnames: list of data file names or None when called from GUI
:type fnames: str
:param eventid: event path incl. event ID (path to waveform files)
:type eventid: str
:param savepath: save path for autoPyLoT output, if None/"None" output will be saved in event folder
:type savepath: str
:param savexml: export results in XML file if True
:type savexml: bool
:param station: choose specific station name or 'all' to pick all stations
:type station: str
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int
:param ncores: number of cores used for parallel processing. Default (0) uses all available cores
:type ncores: int
:return: dictionary containing picks
:rtype: dict
"""
if ncores == 1:
sp_info = 'autoPyLoT is running serial on 1 cores.'
else:
if ncores == 0:
ncores_readable = 'all available'
else:
ncores_readable = ncores
sp_info = 'autoPyLoT is running in parallel on {} cores.'.format(ncores_readable)
splash = '''************************************\n
*********autoPyLoT starting*********\n
The Python picking and Location Tool\n
Version {version} 2017\n
\n
Authors:\n
L. Kueperkoch (BESTEC GmbH, Landau i. d. Pfalz, \n
now at igem GmbH, Mainz)
M. Paffrath (Ruhr-Universitaet Bochum)\n
S. Wehling-Benatelli (Ruhr-Universitaet Bochum)\n
{sp}
***********************************'''.format(version=_getVersionString(),
sp=sp_info)
print(splash)
parameter = get_None(parameter)
inputfile = get_None(inputfile)
eventid = get_None(eventid)
fig_dict = None
fig_dict_wadatijack = None
if input_dict and isinstance(input_dict, dict):
if 'parameter' in input_dict:
parameter = input_dict['parameter']
if 'fig_dict' in input_dict:
fig_dict = input_dict['fig_dict']
if 'fig_dict_wadatijack' in input_dict:
fig_dict_wadatijack = input_dict['fig_dict_wadatijack']
if 'station' in input_dict:
station = input_dict['station']
if 'fnames' in input_dict:
fnames = input_dict['fnames']
if 'eventid' in input_dict:
eventid = input_dict['eventid']
if 'iplot' in input_dict:
iplot = input_dict['iplot']
if 'savexml' in input_dict:
savexml = input_dict['savexml']
if 'obspyDMT_wfpath' in input_dict:
obspyDMT_wfpath = input_dict['obspyDMT_wfpath']
if not parameter:
if inputfile:
parameter = PylotParameter(inputfile)
# iplot = parameter['iplot']
else:
infile = os.path.join(os.path.expanduser('~'), '.pylot', 'pylot.in')
print('Using default input file {}'.format(infile))
parameter = PylotParameter(infile)
else:
if not type(parameter) == PylotParameter:
print('Wrong input type for parameter: {}'.format(type(parameter)))
return
if inputfile:
print('Parameters set and input file given. Choose either of both.')
return
evt = None
# reading parameter file
if parameter.hasParam('datastructure'):
# getting information on data structure
datastructure = DATASTRUCTURE[parameter.get('datastructure')]()
dsfields = {'root': parameter.get('rootpath'),
'dpath': parameter.get('datapath'),
'dbase': parameter.get('database')}
exf = ['root', 'dpath', 'dbase']
if parameter['eventID'] != '*' and fnames == 'None':
dsfields['eventID'] = parameter['eventID']
exf.append('eventID')
datastructure.modifyFields(**dsfields)
datastructure.setExpandFields(exf)
# check if default location routine NLLoc is available and all stations are used
if get_None(parameter['nllocbin']) and station == 'all':
locflag = 1
# get NLLoc-root path
nllocroot = parameter.get('nllocroot')
# get path to NLLoc executable
nllocbin = parameter.get('nllocbin')
nlloccall = '%s/NLLoc' % nllocbin
# get name of phase file
phasef = parameter.get('phasefile')
phasefile = '%s/obs/%s' % (nllocroot, phasef)
# get name of NLLoc-control file
ctrf = parameter.get('ctrfile')
ctrfile = '%s/run/%s' % (nllocroot, ctrf)
# pattern of NLLoc ttimes from location grid
ttpat = parameter.get('ttpatter')
# pattern of NLLoc-output file
nllocoutpatter = parameter.get('outpatter')
maxnumit = 2 # maximum number of iterations for re-picking
else:
locflag = 0
print(" !!! ")
print("!!No location routine available, autoPyLoT is running in non-location mode!!")
print("!!No source parameter estimation possible!!")
print(" !!! ")
wfpath_extension = ''
if obspyDMT_wfpath not in [None, False, 'False', '']:
wfpath_extension = obspyDMT_wfpath
print('Using obspyDMT structure. There will be no restitution, as pre-processed data are expected.')
if wfpath_extension != 'processed':
print('WARNING: Expecting wfpath_extension to be "processed" for'
' pre-processed data but received "{}" instead!!!'.format(wfpath_extension))
if not input_dict:
# started in production mode
datapath = datastructure.expandDataPath()
if fnames == 'None' and parameter['eventID'] != '*':
# multiple event processing
# read each event in database
events = [event for event in glob.glob(os.path.join(datapath, '*')) if
(os.path.isdir(event) and not event.endswith('EVENTS-INFO'))]
elif fnames == 'None' and parameter['eventID'] != '*' and not type(parameter['eventID']) == list:
# single event processing
events = glob.glob(os.path.join(datapath, parameter['eventID']))
elif fnames == 'None' and type(parameter['eventID']) == list:
# multiple event processing
events = []
for eventID in parameter['eventID']:
events.append(os.path.join(datapath, eventID))
else:
# autoPyLoT was initialized from GUI
events = [eventid]
evID = os.path.split(eventid)[-1]
locflag = 2
else:
# started in tune or interactive mode
datapath = os.path.join(parameter['rootpath'],
parameter['datapath'])
events = []
for eventID in eventid:
events.append(os.path.join(datapath,
parameter['database'],
eventID))
if not events:
print('autoPyLoT: No events given. Return!')
return
# transform system path separator to '/'
for index, eventpath in enumerate(events):
eventpath = eventpath.replace(SEPARATOR, '/')
events[index] = eventpath
allpicks = {}
glocflag = locflag
nEvents = len(events)
for index, eventpath in enumerate(events):
print('Working on: {} ({}/{})'.format(eventpath, index + 1, nEvents))
evID = os.path.split(eventpath)[-1]
event_datapath = os.path.join(eventpath, wfpath_extension)
fext = '.xml'
filename = os.path.join(eventpath, 'PyLoT_' + evID + fext)
try:
data = Data(evtdata=filename)
data.get_evt_data().path = eventpath
print('Reading event data from filename {}...'.format(filename))
except Exception as e:
print('Could not read event from file {}: {}'.format(filename, e))
data = Data()
pylot_event = Event(eventpath) # event should be path to event directory
data.setEvtData(pylot_event)
if fnames == 'None':
data.setWFData(glob.glob(os.path.join(datapath, event_datapath, '*')))
# the following is necessary because within
# multiple event processing no event ID is provided
# in autopylot.in
try:
parameter.get('eventID')
except Exception:
now = datetime.datetime.now()
eventID = '%d%02d%02d%02d%02d' % (now.year,
now.month,
now.day,
now.hour,
now.minute)
parameter.setParam(eventID=eventID)
else:
data.setWFData(fnames)
eventpath = events[0]
# now = datetime.datetime.now()
# evID = '%d%02d%02d%02d%02d' % (now.year,
# now.month,
# now.day,
# now.hour,
# now.minute)
parameter.setParam(eventID=eventid)
wfdat = data.getWFData() # all available streams
if not station == 'all':
wfdat = wfdat.select(station=station)
if not wfdat:
print('Could not find station {}. STOP!'.format(station))
return
#wfdat = remove_underscores(wfdat)
# trim components for each station to avoid problems with different trace starttimes for one station
wfdat = check4gapsAndRemove(wfdat)
wfdat = check4doubled(wfdat)
wfdat = trim_station_components(wfdat, trim_start=True, trim_end=False)
if not wfpath_extension:
metadata = Metadata(parameter.get('invdir'))
else:
metadata = Metadata(os.path.join(eventpath, 'resp'))
corr_dat = None
if metadata:
# rotate stations to ZNE
try:
wfdat = check4rotated(wfdat, metadata)
except Exception as e:
print('Could not rotate station {} to ZNE:\n{}'.format(wfdat[0].stats.station,
traceback.format_exc()))
if locflag:
print("Restitute data ...")
corr_dat = restitute_data(wfdat.copy(), metadata, ncores=ncores)
if not corr_dat and locflag:
locflag = 2
print('Stations: %s' % (station))
print(wfdat)
##########################################################
# !automated picking starts here!
fdwj = None
if fig_dict_wadatijack:
fdwj = fig_dict_wadatijack[evID]
picks = autopickevent(wfdat, parameter, iplot=iplot, fig_dict=fig_dict,
fig_dict_wadatijack=fdwj,
ncores=ncores, metadata=metadata, origin=data.get_evt_data().origins)
##########################################################
# locating
if locflag > 0:
# write phases to NLLoc-phase file
nll.export(picks, phasefile, parameter)
# For locating the event the NLLoc-control file has to be modified!
nllocout = '%s_%s' % (evID, nllocoutpatter)
# create comment line for NLLoc-control file
nll.modify_inputs(ctrf, nllocroot, nllocout, phasef,
ttpat)
# locate the event
nll.locate(ctrfile, parameter)
# !iterative picking if traces remained unpicked or occupied with bad picks!
# get theoretical onset times for picks with weights >= 4
# in order to reprocess them using smaller time windows around theoretical onset
# get stations with bad onsets
badpicks = []
for key in picks:
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
badpicks.append([key, picks[key]['P']['mpp']])
# TODO keep code DRY (Don't Repeat Yourself) the following part is written twice
# suggestion: delete block and modify the later similar block to work properly
if len(badpicks) == 0:
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
# get NLLoc-location file
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
if len(glob.glob(locsearch)) > 0:
# get latest NLLoc-location file if several are available
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
evt = read_events(nllocfile)[0]
# calculate seismic moment Mo and moment magnitude Mw
moment_mag = MomentMagnitude(corr_dat, evt, parameter.get('vp'),
parameter.get('Qp'),
parameter.get('rho'), True,
iplot)
# update pick with moment property values (w0, fc, Mo)
for stats, props in moment_mag.moment_props.items():
picks[stats]['P'].update(props)
evt = moment_mag.updated_event()
net_mw = moment_mag.net_magnitude()
if net_mw is not None:
print("Network moment magnitude: %4.1f" % net_mw.mag)
# calculate local (Richter) magntiude
WAscaling = parameter.get('WAscaling')
magscaling = parameter.get('magscaling')
local_mag = LocalMagnitude(corr_dat, evt,
parameter.get('sstop'),
WAscaling, True, iplot)
# update pick with local magnitude property values
for stats, amplitude in local_mag.amplitudes.items():
picks[stats]['S']['Ao'] = amplitude.generic_amplitude
print("Local station magnitudes scaled with:")
print("log(Ao) + %f * log(r) + %f * r + %f" % (WAscaling[0],
WAscaling[1],
WAscaling[2]))
evt = local_mag.updated_event(magscaling)
net_ml = local_mag.net_magnitude(magscaling)
if net_ml:
print("Network local magnitude: %4.1f" % net_ml.mag)
if magscaling is None:
scaling = False
elif magscaling[0] != 0 and magscaling[1] != 0:
scaling = False
else:
scaling = True
if scaling:
print("Network local magnitude scaled with:")
print("%f * Ml + %f" % (magscaling[0], magscaling[1]))
else:
print("autoPyLoT: No NLLoc-location file available!")
print("No source parameter estimation possible!")
locflag = 9
else:
# get theoretical P-onset times from NLLoc-location file
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
if len(glob.glob(locsearch)) > 0:
# get latest file if several are available
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
nlloccounter = 0
while len(badpicks) > 0 and nlloccounter <= maxnumit:
nlloccounter += 1
if nlloccounter > maxnumit:
print("autoPyLoT: Number of maximum iterations reached, stop iterative picking!")
break
print("autoPyLoT: Starting with iteration No. %d ..." % nlloccounter)
if input_dict:
if 'fig_dict' in input_dict:
fig_dict = input_dict['fig_dict']
picks = iteratepicker(wfdat, nllocfile, picks, badpicks, parameter,
fig_dict=fig_dict)
else:
picks = iteratepicker(wfdat, nllocfile, picks, badpicks, parameter)
# write phases to NLLoc-phase file
nll.export(picks, phasefile, parameter)
# remove actual NLLoc-location file to keep only the last
os.remove(nllocfile)
# locate the event
nll.locate(ctrfile, parameter)
print("autoPyLoT: Iteration No. %d finished." % nlloccounter)
# get updated NLLoc-location file
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
# check for bad picks
badpicks = []
for key in picks:
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
badpicks.append([key, picks[key]['P']['mpp']])
print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter,
len(badpicks)))
if len(badpicks) == 0:
print("autoPyLoT: No more bad onsets found, stop iterative picking!")
nlloccounter = maxnumit
evt = read_events(nllocfile)[0]
if locflag < 2:
# calculate seismic moment Mo and moment magnitude Mw
moment_mag = MomentMagnitude(corr_dat, evt, parameter.get('vp'),
parameter.get('Qp'),
parameter.get('rho'), True,
iplot)
# update pick with moment property values (w0, fc, Mo)
for stats, props in moment_mag.moment_props.items():
if stats in picks:
picks[stats]['P'].update(props)
evt = moment_mag.updated_event()
net_mw = moment_mag.net_magnitude()
if net_mw is not None:
print("Network moment magnitude: %4.1f" % net_mw.mag)
# calculate local (Richter) magntiude
WAscaling = parameter.get('WAscaling')
magscaling = parameter.get('magscaling')
local_mag = LocalMagnitude(corr_dat, evt,
parameter.get('sstop'),
WAscaling, True, iplot)
# update pick with local magnitude property values
for stats, amplitude in local_mag.amplitudes.items():
if stats in picks:
picks[stats]['S']['Ao'] = amplitude.generic_amplitude
print("Local station magnitudes scaled with:")
print("log(Ao) + %f * log(r) + %f * r + %f" % (WAscaling[0],
WAscaling[1],
WAscaling[2]))
evt = local_mag.updated_event(magscaling)
net_ml = local_mag.net_magnitude(magscaling)
if net_ml:
print("Network local magnitude: %4.1f" % net_ml.mag)
if magscaling is None:
scaling = False
elif magscaling[0] != 0 and magscaling[1] != 0:
scaling = False
else:
scaling = True
if scaling:
print("Network local magnitude scaled with:")
print("%f * Ml + %f" % (magscaling[0], magscaling[1]))
else:
print("autoPyLoT: No NLLoc-location file available! Stop iteration!")
locflag = 9
##########################################################
# write phase files for various location
# and fault mechanism calculation routines
# ObsPy event object
if evt is not None:
event_id = eventpath.split('/')[-1]
evt.resource_id = ResourceIdentifier('smi:local/' + event_id)
data.applyEVTData(evt, 'event')
data.applyEVTData(picks)
if savexml:
if savepath == 'None' or savepath is None:
saveEvtPath = eventpath
else:
saveEvtPath = savepath
fnqml = '%s/PyLoT_%s_autopylot' % (saveEvtPath, evID)
data.exportEvent(fnqml, fnext='.xml', fcheck=['auto', 'magnitude', 'origin'])
if locflag == 1:
# HYPO71
hypo71file = '%s/PyLoT_%s_HYPO71_phases' % (eventpath, evID)
hypo71.export(picks, hypo71file, parameter)
# HYPOSAT
hyposatfile = '%s/PyLoT_%s_HYPOSAT_phases' % (eventpath, evID)
hyposat.export(picks, hyposatfile, parameter)
# VELEST
velestfile = '%s/PyLoT_%s_VELEST_phases.cnv' % (eventpath, evID)
velest.export(picks, velestfile, evt, parameter)
# hypoDD
hypoddfile = '%s/PyLoT_%s_hypoDD_phases.pha' % (eventpath, evID)
hypodd.export(picks, hypoddfile, parameter, evt)
# FOCMEC
focmecfile = '%s/PyLoT_%s_FOCMEC.in' % (eventpath, evID)
focmec.export(picks, focmecfile, parameter, evt)
# HASH
hashfile = '%s/PyLoT_%s_HASH' % (eventpath, evID)
hash.export(picks, hashfile, parameter, evt)
endsplash = '''------------------------------------------\n'
-----Finished event %s!-----\n'
------------------------------------------'''.format \
(version=_getVersionString()) % evID
print(endsplash)
locflag = glocflag
if locflag == 0:
print("autoPyLoT was running in non-location mode!")
# save picks for current event ID to dictionary with ALL picks
allpicks[evID] = picks
endsp = '''####################################\n
************************************\n
*********autoPyLoT terminates*******\n
The Python picking and Location Tool\n
************************************'''.format(version=_getVersionString())
print(endsp)
return allpicks
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser(
description='''autoPyLoT automatically picks phase onset times using higher order statistics,
autoregressive prediction and AIC followed by locating the seismic events using
NLLoc''')
parser.add_argument('-i', '-I', '--inputfile', type=str,
action='store',
help='''full path to the file containing the input
parameters for autoPyLoT''')
parser.add_argument('-p', '-P', '--iplot', type=int,
action='store', default=0,
help='''optional, logical variable for plotting: 0=none, 1=partial, 2=all''')
parser.add_argument('-f', '-F', '--fnames', type=str,
action='store',
help='''optional, list of data file names''')
parser.add_argument('-e', '--eventid', type=str,
action='store',
help='''optional, event path incl. event ID''')
parser.add_argument('-s', '-S', '--spath', type=str,
action='store',
help='''optional, save path for autoPyLoT output''')
parser.add_argument('-c', '-C', '--ncores', type=int,
action='store', default=0,
help='''optional, number of CPU cores used for parallel processing (default: all available(=0))''')
parser.add_argument('-dmt', '-DMT', '--obspy_dmt_wfpath', type=str,
action='store', default=False,
help='''optional, wftype (raw, processed) used for obspyDMT database structure''')
cla = parser.parse_args()
picks = autoPyLoT(inputfile=str(cla.inputfile), fnames=str(cla.fnames),
eventid=str(cla.eventid), savepath=str(cla.spath),
ncores=cla.ncores, iplot=int(cla.iplot), obspyDMT_wfpath=str(cla.obspy_dmt_wfpath))