759 lines
28 KiB
Python
759 lines
28 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created Oct/Nov 2014
|
|
|
|
Implementation of the Characteristic Functions (CF) published and described in:
|
|
|
|
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & EGELADOS Working Group, 2010:
|
|
Automated determination of P-phase arrival times at regional and local distances
|
|
using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
|
|
|
Kueperkoch, L., Meier, T., Bruestle, A., Lee, J., Friederich, W., & EGELADOS
|
|
Working Group, 2012: Automated determination of S-phase arrival times using
|
|
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
|
188, 687-702.
|
|
|
|
:author: MAGS2 EP3 working group
|
|
"""
|
|
import numpy as np
|
|
try:
|
|
from scipy.signal import tukey
|
|
except ImportError:
|
|
from scipy.signal.windows import tukey
|
|
from obspy.core import Stream
|
|
|
|
from pylot.core.pick.utils import PickingFailedException
|
|
|
|
|
|
class CharacteristicFunction(object):
|
|
"""
|
|
SuperClass for different types of characteristic functions.
|
|
"""
|
|
|
|
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None):
|
|
"""
|
|
Initialize data type object with information from the original
|
|
Seismogram.
|
|
:param data: stream object containing traces for which the cf should
|
|
be calculated
|
|
:type data: ~obspy.core.stream.Stream
|
|
:param cut: (starttime, endtime) in seconds relative to beginning of trace
|
|
:type cut: tuple
|
|
:param t2:
|
|
:type t2: float
|
|
:param order:
|
|
:type order: int
|
|
:param t1: float (optional, only for AR)
|
|
:param fnoise: (optional, only for AR)
|
|
:type fnoise: float
|
|
"""
|
|
|
|
assert isinstance(data, Stream), "%s is not a stream object" % str(data)
|
|
|
|
self.orig_data = data
|
|
self.dt = self.orig_data[0].stats.delta
|
|
self.setCut(cut)
|
|
self.setTime1(t1)
|
|
self.setTime2(t2)
|
|
self.setOrder(order)
|
|
self.setFnoise(fnoise)
|
|
self.setARdetStep(t2)
|
|
self.calcCF()
|
|
self.arpara = np.array([])
|
|
self.xpred = np.array([])
|
|
|
|
def __str__(self):
|
|
return '''\n\t{name} object:\n
|
|
Cut:\t\t{cut}\n
|
|
t1:\t{t1}\n
|
|
t2:\t{t2}\n
|
|
Order:\t\t{order}\n
|
|
Fnoise:\t{fnoise}\n
|
|
ARdetStep:\t{ardetstep}\n
|
|
'''.format(name=type(self).__name__,
|
|
cut=self.getCut(),
|
|
t1=self.getTime1(),
|
|
t2=self.getTime2(),
|
|
order=self.getOrder(),
|
|
fnoise=self.getFnoise(),
|
|
ardetstep=self.getARdetStep()[0]())
|
|
|
|
def getCut(self):
|
|
return self.cut
|
|
|
|
def setCut(self, cut):
|
|
self.cut = (int(cut[0]), int(cut[1]))
|
|
|
|
def getTime1(self):
|
|
return self.t1
|
|
|
|
def setTime1(self, t1):
|
|
self.t1 = t1
|
|
|
|
def getTime2(self):
|
|
return self.t2
|
|
|
|
def setTime2(self, t2):
|
|
self.t2 = t2
|
|
|
|
def getARdetStep(self):
|
|
return self.ARdetStep
|
|
|
|
def setARdetStep(self, t1):
|
|
if t1:
|
|
self.ARdetStep = []
|
|
self.ARdetStep.append(t1 / 4)
|
|
self.ARdetStep.append(int(np.ceil(self.getTime2() / self.getIncrement()) / 4))
|
|
|
|
def getOrder(self):
|
|
return self.order
|
|
|
|
def setOrder(self, order):
|
|
self.order = order
|
|
|
|
def getIncrement(self):
|
|
"""
|
|
:rtype : int
|
|
"""
|
|
return self.dt
|
|
|
|
def getTimeArray(self):
|
|
"""
|
|
:return: array if time indices
|
|
:rtype: np.array
|
|
"""
|
|
incr = self.getIncrement()
|
|
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
|
|
return self.TimeArray
|
|
|
|
def getFnoise(self):
|
|
return self.fnoise
|
|
|
|
def setFnoise(self, fnoise):
|
|
self.fnoise = fnoise
|
|
|
|
def getCF(self):
|
|
return self.cf
|
|
|
|
def getXCF(self):
|
|
return self.xcf
|
|
|
|
def getDataArray(self, cut=None):
|
|
"""
|
|
If cut times are given, time series is cut from cut[0] (start time)
|
|
till cut[1] (stop time) in order to calculate CF for certain part
|
|
only where you expect the signal!
|
|
:param cut: contains (start time, stop time) for cutting the time series
|
|
:type cut: tuple
|
|
:return: cut data/time series
|
|
:rtype:
|
|
"""
|
|
if cut is not None:
|
|
if len(self.orig_data) == 1:
|
|
if self.cut[0] == 0 and self.cut[1] == 0:
|
|
start = 0
|
|
stop = len(self.orig_data[0])
|
|
elif self.cut[0] == 0 and self.cut[1] != 0:
|
|
start = 0
|
|
stop = self.cut[1] / self.dt
|
|
else:
|
|
start = self.cut[0] / self.dt
|
|
stop = self.cut[1] / self.dt
|
|
zz = self.orig_data.copy()
|
|
z1 = zz[0].copy()
|
|
zz[0].data = z1.data[int(start):int(stop)]
|
|
if zz[0].stats.npts == 0: # cut times do not fit data length!
|
|
zz[0].data = z1.data # take entire data
|
|
data = zz
|
|
return data
|
|
elif len(self.orig_data) == 2:
|
|
if self.cut[0] == 0 and self.cut[1] == 0:
|
|
start = 0
|
|
stop = min([len(self.orig_data[0]), len(self.orig_data[1])])
|
|
elif self.cut[0] == 0 and self.cut[1] != 0:
|
|
start = 0
|
|
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
|
len(self.orig_data[1])])
|
|
else:
|
|
start = max([0, self.cut[0] / self.dt])
|
|
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
|
len(self.orig_data[1])])
|
|
hh = self.orig_data.copy()
|
|
h1 = hh[0].copy()
|
|
h2 = hh[1].copy()
|
|
hh[0].data = h1.data[int(start):int(stop)]
|
|
hh[1].data = h2.data[int(start):int(stop)]
|
|
data = hh
|
|
return data
|
|
elif len(self.orig_data) == 3:
|
|
if self.cut[0] == 0 and self.cut[1] == 0:
|
|
start = 0
|
|
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
|
len(self.orig_data[1]), len(self.orig_data[2])])
|
|
elif self.cut[0] == 0 and self.cut[1] != 0:
|
|
start = 0
|
|
stop = self.cut[1] / self.dt
|
|
else:
|
|
start = max([0, self.cut[0] / self.dt])
|
|
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
|
len(self.orig_data[1]), len(self.orig_data[2])])
|
|
hh = self.orig_data.copy()
|
|
h1 = hh[0].copy()
|
|
h2 = hh[1].copy()
|
|
h3 = hh[2].copy()
|
|
hh[0].data = h1.data[int(start):int(stop)]
|
|
hh[1].data = h2.data[int(start):int(stop)]
|
|
hh[2].data = h3.data[int(start):int(stop)]
|
|
data = hh
|
|
return data
|
|
else:
|
|
data = self.orig_data.copy()
|
|
return data
|
|
|
|
def calcCF(self):
|
|
pass
|
|
|
|
|
|
class AICcf(CharacteristicFunction):
|
|
|
|
def calcCF(self):
|
|
"""
|
|
Function to calculate the Akaike Information Criterion (AIC) after Maeda (1985).
|
|
:return: AIC function
|
|
:rtype:
|
|
"""
|
|
x = self.getDataArray()
|
|
xnp = x[0].data
|
|
ind = np.where(~np.isnan(xnp))[0]
|
|
if ind.size:
|
|
xnp[:ind[0]] = xnp[ind[0]]
|
|
xnp = tukey(len(xnp), alpha=0.05) * xnp
|
|
xnp = xnp - np.mean(xnp)
|
|
datlen = len(xnp)
|
|
k = np.arange(1, datlen)
|
|
cf = np.zeros(datlen)
|
|
cumsumcf = np.cumsum(np.power(xnp, 2))
|
|
i = np.where(cumsumcf == 0)
|
|
cumsumcf[i] = np.finfo(np.float64).eps
|
|
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
|
|
np.log((cumsumcf[datlen - 1] - cumsumcf[k - 1]) / (datlen - k + 1)))
|
|
cf[0] = cf[1]
|
|
inf = np.isinf(cf)
|
|
ff = np.where(inf is True)
|
|
if len(ff) >= 1:
|
|
cf[ff] = 0
|
|
|
|
self.cf = cf - np.mean(cf)
|
|
self.xcf = x
|
|
|
|
|
|
class HOScf(CharacteristicFunction):
|
|
|
|
def __init__(self, data, cut, pickparams):
|
|
"""
|
|
Call parent constructor while extracting the right parameters:
|
|
:param pickparams: PylotParameters instance
|
|
"""
|
|
super(HOScf, self).__init__(data, cut, pickparams["tlta"], pickparams["hosorder"])
|
|
|
|
def calcCF(self):
|
|
"""
|
|
Function to calculate skewness (statistics of order 3) or kurtosis
|
|
(statistics of order 4), using one long moving window, as published
|
|
in Kueperkoch et al. (2010), or order 2, i.e. STA/LTA.
|
|
:return: HOS cf
|
|
:rtype:
|
|
"""
|
|
x = self.getDataArray(self.getCut())
|
|
xnp = x[0].data
|
|
nn = np.isnan(xnp)
|
|
if len(nn) > 1:
|
|
xnp[nn] = 0
|
|
if self.getOrder() == 3: # this is skewness
|
|
y = np.power(xnp, 3)
|
|
y1 = np.power(xnp, 2)
|
|
elif self.getOrder() == 4: # this is kurtosis
|
|
y = np.power(xnp, 4)
|
|
y1 = np.power(xnp, 2)
|
|
|
|
# Initialisation
|
|
# t2: long term moving window
|
|
ilta = int(round(self.getTime2() / self.getIncrement()))
|
|
lta = y[0]
|
|
lta1 = y1[0]
|
|
# moving windows
|
|
LTA = np.zeros(len(xnp))
|
|
for j in range(0, len(xnp)):
|
|
if j < 4:
|
|
LTA[j] = 0
|
|
elif j <= ilta:
|
|
lta = (y[j] + lta * (j - 1)) / j
|
|
lta1 = (y1[j] + lta1 * (j - 1)) / j
|
|
else:
|
|
lta = (y[j] - y[j - ilta]) / ilta + lta
|
|
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
|
|
# define LTA
|
|
if self.getOrder() == 3:
|
|
LTA[j] = lta / np.power(lta1, 1.5)
|
|
elif self.getOrder() == 4:
|
|
LTA[j] = lta / np.power(lta1, 2)
|
|
|
|
# remove NaN's with first not-NaN-value,
|
|
# so autopicker doesnt pick discontinuity at start of the trace
|
|
ind = np.where(~np.isnan(LTA))[0]
|
|
if ind.size:
|
|
first = ind[0]
|
|
LTA[:first] = LTA[first]
|
|
|
|
self.cf = LTA
|
|
self.xcf = x
|
|
|
|
|
|
class ARZcf(CharacteristicFunction):
|
|
|
|
def __init__(self, data, cut, t1, t2, pickparams):
|
|
super(ARZcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Parorder"],
|
|
fnoise=pickparams["addnoise"])
|
|
|
|
def calcCF(self):
|
|
"""
|
|
function used to calculate the AR prediction error from a single vertical trace. Can be used to pick
|
|
P onsets.
|
|
:return: ARZ cf
|
|
:rtype:
|
|
"""
|
|
print('Calculating AR-prediction error from single trace ...')
|
|
x = self.getDataArray(self.getCut())
|
|
xnp = x[0].data
|
|
nn = np.isnan(xnp)
|
|
if len(nn) > 1:
|
|
xnp[nn] = 0
|
|
# some parameters needed
|
|
# add noise to time series
|
|
xnoise = xnp + np.random.normal(0.0, 1.0, len(xnp)) * self.getFnoise() * max(abs(xnp))
|
|
tend = len(xnp)
|
|
# Time1: length of AR-determination window [sec]
|
|
# Time2: length of AR-prediction window [sec]
|
|
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
|
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
|
|
|
cf = np.zeros(len(xnp))
|
|
loopstep = self.getARdetStep()
|
|
arcalci = ldet + self.getOrder() # AR-calculation index
|
|
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
|
if i == arcalci:
|
|
# determination of AR coefficients
|
|
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
|
self.arDetZ(xnoise, self.getOrder(), i - ldet, i)
|
|
arcalci = arcalci + loopstep[1]
|
|
# AR prediction of waveform using calculated AR coefficients
|
|
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
|
# prediction error = CF
|
|
cf[i + lpred - 1] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred - 1] - xnp[i:i + lpred - 1], 2)) / lpred)
|
|
nn = np.isnan(cf)
|
|
if len(nn) > 1:
|
|
cf[nn] = 0
|
|
# remove zeros and artefacts
|
|
tap = np.hanning(len(cf))
|
|
cf = tap * cf
|
|
io = np.where(cf == 0)
|
|
ino = np.where(cf > 0)
|
|
if np.size(ino):
|
|
cf[io] = cf[ino[0][0]]
|
|
|
|
self.cf = cf
|
|
self.xcf = x
|
|
|
|
def arDetZ(self, data, order, rind, ldet):
|
|
"""
|
|
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
|
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
|
Penrose inverse, i.e. the least-squares approach.
|
|
:param: data, time series to calculate AR parameters from
|
|
:type: array
|
|
|
|
:param: order, order of AR process
|
|
:type: int
|
|
|
|
:param: rind, first running summation index
|
|
:type: int
|
|
|
|
:param: ldet, length of AR-determination window (=end of summation index)
|
|
:type: int
|
|
|
|
Output: AR parameters arpara
|
|
"""
|
|
|
|
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
|
rhs = np.zeros(self.getOrder())
|
|
for k in range(0, self.getOrder()):
|
|
for i in range(rind, ldet + 1):
|
|
ki = k + 1
|
|
rhs[k] = rhs[k] + data[i] * data[i - ki]
|
|
|
|
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
|
A = np.zeros((self.getOrder(), self.getOrder()))
|
|
for k in range(1, self.getOrder() + 1):
|
|
for j in range(1, k + 1):
|
|
for i in range(rind, ldet + 1):
|
|
ki = k - 1
|
|
ji = j - 1
|
|
A[ki, ji] = A[ki, ji] + data[i - j] * data[i - k]
|
|
|
|
A[ji, ki] = A[ki, ji]
|
|
|
|
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
|
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
|
|
|
def arPredZ(self, data, arpara, rind, lpred):
|
|
"""
|
|
Function to predict waveform, assuming an autoregressive process of order
|
|
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
|
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
|
:param: data, time series to be predicted
|
|
:type: array
|
|
|
|
:param: arpara, AR parameters
|
|
:type: float
|
|
|
|
:param: rind, first running summation index
|
|
:type: int
|
|
|
|
:param: lpred, length of prediction window (=end of summation index)
|
|
:type: int
|
|
|
|
Output: predicted waveform z
|
|
"""
|
|
# be sure of the summation indices
|
|
if rind < len(arpara):
|
|
rind = len(arpara)
|
|
if rind > len(data) - lpred:
|
|
rind = len(data) - lpred
|
|
if lpred < 1:
|
|
lpred = 1
|
|
if lpred > len(data) - 2:
|
|
lpred = len(data) - 2
|
|
|
|
z = np.append(data[0:rind], np.zeros(lpred))
|
|
for i in range(rind, rind + lpred):
|
|
for j in range(1, len(arpara) + 1):
|
|
ji = j - 1
|
|
z[i] = z[i] + arpara[ji] * z[i - j]
|
|
|
|
self.xpred = z
|
|
|
|
|
|
class ARHcf(CharacteristicFunction):
|
|
|
|
def __init__(self, data, cut, t1, t2, pickparams):
|
|
super(ARHcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
|
fnoise=pickparams["addnoise"])
|
|
|
|
def calcCF(self):
|
|
"""
|
|
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
|
both horizontal traces.
|
|
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
|
between the predicted and the actual waveform servers as a characteristic function.
|
|
:return: ARH cf
|
|
:rtype:
|
|
"""
|
|
|
|
print('Calculating AR-prediction error from both horizontal traces ...')
|
|
|
|
xnp = self.getDataArray(self.getCut())
|
|
if len(xnp[0]) == 0:
|
|
raise PickingFailedException('calcCF: Found empty data trace for cut times. Return')
|
|
|
|
n0 = np.isnan(xnp[0].data)
|
|
if len(n0) > 1:
|
|
xnp[0].data[n0] = 0
|
|
n1 = np.isnan(xnp[1].data)
|
|
if len(n1) > 1:
|
|
xnp[1].data[n1] = 0
|
|
|
|
# some parameters needed
|
|
# add noise to time series
|
|
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
|
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
|
Xnoise = np.array([xenoise.tolist(), xnnoise.tolist()])
|
|
tend = len(xnp[0].data)
|
|
# Time1: length of AR-determination window [sec]
|
|
# Time2: length of AR-prediction window [sec]
|
|
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
|
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
|
|
|
cf = np.zeros(len(xenoise))
|
|
loopstep = self.getARdetStep()
|
|
arcalci = lpred + self.getOrder() - 1 # AR-calculation index
|
|
# arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
|
for i in range(lpred + self.getOrder() - 1, tend - 2 * lpred + 1):
|
|
if i == arcalci:
|
|
# determination of AR coefficients
|
|
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
|
self.arDetH(Xnoise, self.getOrder(), i - ldet, i)
|
|
arcalci = arcalci + loopstep[1]
|
|
# AR prediction of waveform using calculated AR coefficients
|
|
self.arPredH(xnp, self.arpara, i + 1, lpred)
|
|
# prediction error = CF
|
|
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2)
|
|
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)
|
|
) / (2 * lpred))
|
|
nn = np.isnan(cf)
|
|
if len(nn) > 1:
|
|
cf[nn] = 0
|
|
# remove zeros and artefacts
|
|
tap = np.hanning(len(cf))
|
|
cf = tap * cf
|
|
io = np.where(cf == 0)
|
|
ino = np.where(cf > 0)
|
|
if np.size(ino):
|
|
cf[io] = cf[ino[0][0]]
|
|
|
|
self.cf = cf
|
|
self.xcf = xnp
|
|
|
|
def arDetH(self, data, order, rind, ldet):
|
|
"""
|
|
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
|
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
|
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
|
|
AR parameters are calculated based on both horizontal components in order
|
|
to account for polarization.
|
|
:param: data, horizontal component seismograms to calculate AR parameters from
|
|
:type: structured array
|
|
|
|
:param: order, order of AR process
|
|
:type: int
|
|
|
|
:param: rind, first running summation index
|
|
:type: int
|
|
|
|
:param: ldet, length of AR-determination window (=end of summation index)
|
|
:type: int
|
|
|
|
Output: AR parameters arpara
|
|
"""
|
|
|
|
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
|
rhs = np.zeros(self.getOrder())
|
|
for k in range(0, self.getOrder()):
|
|
for i in range(rind, ldet):
|
|
rhs[k] = rhs[k] + data[0, i] * data[0, i - k] + data[1, i] * data[1, i - k]
|
|
|
|
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
|
A = np.zeros((4, 4))
|
|
for k in range(1, self.getOrder() + 1):
|
|
for j in range(1, k + 1):
|
|
for i in range(rind, ldet):
|
|
ki = k - 1
|
|
ji = j - 1
|
|
A[ki, ji] = A[ki, ji] + data[0, i - ji] * data[0, i - ki] \
|
|
+ data[1, i - ji] * data[1, i - ki]
|
|
A[ji, ki] = A[ki, ji]
|
|
|
|
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
|
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
|
|
|
def arPredH(self, data, arpara, rind, lpred):
|
|
"""
|
|
Function to predict waveform, assuming an autoregressive process of order
|
|
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
|
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
|
:param: data, horizontal component seismograms to be predicted
|
|
:type: structured array
|
|
|
|
:param: arpara, AR parameters
|
|
:type: float
|
|
|
|
:param: rind, first running summation index
|
|
:type: int
|
|
|
|
:param: lpred, length of prediction window (=end of summation index)
|
|
:type: int
|
|
|
|
Output: predicted waveform z
|
|
:type: structured array
|
|
"""
|
|
# be sure of the summation indeces
|
|
if rind < len(arpara) + 1:
|
|
rind = len(arpara) + 1
|
|
if rind > len(data[0]) - lpred + 1:
|
|
rind = len(data[0]) - lpred + 1
|
|
if lpred < 1:
|
|
lpred = 1
|
|
if lpred > len(data[0]) - 1:
|
|
lpred = len(data[0]) - 1
|
|
|
|
z1 = np.append(data[0][0:rind], np.zeros(lpred))
|
|
z2 = np.append(data[1][0:rind], np.zeros(lpred))
|
|
for i in range(rind, rind + lpred):
|
|
for j in range(1, len(arpara) + 1):
|
|
ji = j - 1
|
|
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
|
|
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
|
|
|
z = np.array([z1.tolist(), z2.tolist()])
|
|
self.xpred = z
|
|
|
|
|
|
class AR3Ccf(CharacteristicFunction):
|
|
|
|
def __init__(self, data, cut, t1, t2, pickparams):
|
|
super(AR3Ccf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
|
fnoise=pickparams["addnoise"])
|
|
|
|
def calcCF(self):
|
|
"""
|
|
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
|
all three traces.
|
|
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
|
between the predicted and the actual waveform servers as a characteristic function
|
|
:return: AR3C cf
|
|
:rtype:
|
|
"""
|
|
print('Calculating AR-prediction error from all 3 components ...')
|
|
|
|
xnp = self.getDataArray(self.getCut())
|
|
n0 = np.isnan(xnp[0].data)
|
|
if len(n0) > 1:
|
|
xnp[0].data[n0] = 0
|
|
n1 = np.isnan(xnp[1].data)
|
|
if len(n1) > 1:
|
|
xnp[1].data[n1] = 0
|
|
n2 = np.isnan(xnp[2].data)
|
|
if len(n2) > 1:
|
|
xnp[2].data[n2] = 0
|
|
|
|
# some parameters needed
|
|
# add noise to time series
|
|
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
|
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
|
xznoise = xnp[2].data + np.random.normal(0.0, 1.0, len(xnp[2].data)) * self.getFnoise() * max(abs(xnp[2].data))
|
|
Xnoise = np.array([xenoise.tolist(), xnnoise.tolist(), xznoise.tolist()])
|
|
tend = len(xnp[0].data)
|
|
# Time1: length of AR-determination window [sec]
|
|
# Time2: length of AR-prediction window [sec]
|
|
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
|
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
|
|
|
cf = np.zeros(len(xenoise))
|
|
loopstep = self.getARdetStep()
|
|
arcalci = ldet + self.getOrder() - 1 # AR-calculation index
|
|
for i in range(ldet + self.getOrder() - 1, tend - 2 * lpred + 1):
|
|
if i == arcalci:
|
|
# determination of AR coefficients
|
|
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
|
self.arDet3C(Xnoise, self.getOrder(), i - ldet, i)
|
|
arcalci = arcalci + loopstep[1]
|
|
|
|
# AR prediction of waveform using calculated AR coefficients
|
|
self.arPred3C(xnp, self.arpara, i + 1, lpred)
|
|
# prediction error = CF
|
|
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2)
|
|
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)
|
|
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)
|
|
) / (3 * lpred))
|
|
nn = np.isnan(cf)
|
|
if len(nn) > 1:
|
|
cf[nn] = 0
|
|
# remove zeros and artefacts
|
|
tap = np.hanning(len(cf))
|
|
cf = tap * cf
|
|
io = np.where(cf == 0)
|
|
ino = np.where(cf > 0)
|
|
if np.size(ino):
|
|
cf[io] = cf[ino[0][0]]
|
|
|
|
self.cf = cf
|
|
self.xcf = xnp
|
|
|
|
def arDet3C(self, data, order, rind, ldet):
|
|
"""
|
|
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
|
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
|
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
|
|
AR parameters are calculated based on both horizontal components and vertical
|
|
componant.
|
|
:param: data, horizontal component seismograms to calculate AR parameters from
|
|
:type: structured array
|
|
|
|
:param: order, order of AR process
|
|
:type: int
|
|
|
|
:param: rind, first running summation index
|
|
:type: int
|
|
|
|
:param: ldet, length of AR-determination window (=end of summation index)
|
|
:type: int
|
|
|
|
Output: AR parameters arpara
|
|
"""
|
|
|
|
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
|
rhs = np.zeros(self.getOrder())
|
|
for k in range(0, self.getOrder()):
|
|
for i in range(rind, ldet):
|
|
rhs[k] = rhs[k] + data[0, i] * data[0, i - k] + data[1, i] * data[1, i - k] \
|
|
+ data[2, i] * data[2, i - k]
|
|
|
|
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
|
A = np.zeros((4, 4))
|
|
for k in range(1, self.getOrder() + 1):
|
|
for j in range(1, k + 1):
|
|
for i in range(rind, ldet):
|
|
ki = k - 1
|
|
ji = j - 1
|
|
A[ki, ji] = A[ki, ji] + data[0, i - ji] * data[0, i - ki] \
|
|
+ data[1, i - ji] * data[1, i - ki] \
|
|
+ data[2, i - ji] * data[2, i - ki]
|
|
|
|
A[ji, ki] = A[ki, ji]
|
|
|
|
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
|
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
|
|
|
def arPred3C(self, data, arpara, rind, lpred):
|
|
"""
|
|
Function to predict waveform, assuming an autoregressive process of order
|
|
p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
|
|
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
|
:param: data, horizontal and vertical component seismograms to be predicted
|
|
:type: structured array
|
|
|
|
:param: arpara, AR parameters
|
|
:type: float
|
|
|
|
:param: rind, first running summation index
|
|
:type: int
|
|
|
|
:param: lpred, length of prediction window (=end of summation index)
|
|
:type: int
|
|
|
|
Output: predicted waveform z
|
|
:type: structured array
|
|
"""
|
|
# be sure of the summation indeces
|
|
if rind < len(arpara) + 1:
|
|
rind = len(arpara) + 1
|
|
if rind > len(data[0]) - lpred + 1:
|
|
rind = len(data[0]) - lpred + 1
|
|
if lpred < 1:
|
|
lpred = 1
|
|
if lpred > len(data[0]) - 1:
|
|
lpred = len(data[0]) - 1
|
|
|
|
z1 = np.append(data[0][0:rind], np.zeros(lpred))
|
|
z2 = np.append(data[1][0:rind], np.zeros(lpred))
|
|
z3 = np.append(data[2][0:rind], np.zeros(lpred))
|
|
for i in range(rind, rind + lpred):
|
|
for j in range(1, len(arpara) + 1):
|
|
ji = j - 1
|
|
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
|
|
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
|
z3[i] = z3[i] + arpara[ji] * z3[i - ji]
|
|
|
|
z = np.array([z1.tolist(), z2.tolist(), z3.tolist()])
|
|
self.xpred = z
|