pylot/pylot/core/pick/autopick.py
Sebastian Wehling-Benatelli 0634d24814 fix: disabled button in case flag is false
The button was not disabled in case the flag variable was false. The get_Bool function was renamed and improved to also work in case in the input variable is of type int or float.

Additionally, the environment file was corrected to also work for macOS installations with ARM architecture.
2023-04-06 16:40:20 +02:00

1322 lines
64 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Function to run automated picking algorithms using AIC,
HOS and AR prediction. Uses objects CharFuns and Picker and
function conglomerate utils.
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import copy
import traceback
import matplotlib.pyplot as plt
import numpy as np
from obspy import Trace
from obspy.taup import TauPyModel
from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
from pylot.core.pick.picker import AICPicker, PragPicker
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
getSNR, fmpicker, checkPonsets, wadaticheck, get_quality_class
from pylot.core.util.utils import getPatternLine, gen_Pool, \
get_bool, identifyPhaseID, get_None, correct_iplot
def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None, ncores=0, metadata=None, origin=None):
"""
:param data: ObsPy stream object containing waveform data of all stations in the event
:type data: ~obspy.core.stream.Stream
:param param: PylotParameter object containing parameters used for picking
:type param: pylot.core.io.inputs.PylotParameter
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, Boolean or String
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param fig_dict_wadatijack: dictionary containing Matplotlib figures used for plotting jackknife-, wadati- and
mediantest results
:type fig_dict_wadatijack: dict
:param ncores: number of cores used for parallel processing. Default (0) uses all available cores
:type ncores: int
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary containing picked stations and pick information
:rtype: dictionary
"""
stations = []
all_onsets = {}
input_tuples = []
try:
iplot = int(iplot)
except ValueError:
if iplot is True or iplot == 'True':
iplot = 2
else:
iplot = 0
# get some parameters for quality control from
# parameter input file (usually pylot.in).
wdttolerance = param.get('wdttolerance')
mdttolerance = param.get('mdttolerance')
jackfactor = param.get('jackfactor')
apverbose = param.get('apverbose')
for n in range(len(data)):
station = data[n].stats.station
if station not in stations:
stations.append(station)
else:
continue
for station in stations:
topick = data.select(station=station)
input_tuples.append((topick, param, apverbose, iplot, fig_dict, metadata, origin))
if iplot > 0:
print('iPlot Flag active: NO MULTIPROCESSING possible.')
ncores = 1
# rename ncores for string representation in case ncores == 0 (use all cores)
ncores_str = ncores if ncores != 0 else 'all available'
print('Autopickstation: Distribute autopicking for {} '
'stations on {} cores.'.format(len(input_tuples), ncores_str))
if ncores == 1:
results = serial_picking(input_tuples)
else:
results = parallel_picking(input_tuples, ncores)
for result, station in results:
if type(result) == dict:
all_onsets[station] = result
else:
if result is None:
result = 'Picker exited unexpectedly.'
print('Could not pick a station: {}\nReason: {}'.format(station, result))
# no Wadati/JK for single station (also valid for tuning mode)
if len(stations) == 1:
return all_onsets
# quality control
# median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, jackfactor, iplot, fig_dict_wadatijack)
# check S-P times (Wadati)
wadationsets = wadaticheck(jk_checked_onsets, wdttolerance, iplot, fig_dict_wadatijack)
return wadationsets
def serial_picking(input_tuples):
result = []
for input_tuple in input_tuples:
result.append(call_autopickstation(input_tuple))
return result
def parallel_picking(input_tuples, ncores):
pool = gen_Pool(ncores)
result = pool.imap_unordered(call_autopickstation, input_tuples)
pool.close()
return result
def call_autopickstation(input_tuple):
"""
helper function used for multiprocessing
:param input_tuple: contains all parameters used for autopicking
:type input_tuple: tuple
:return: dictionary containing P pick, S pick and station name
:rtype: dict
"""
wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin = input_tuple
if fig_dict:
print('Running in interactive mode')
# multiprocessing not possible with interactive plotting
try:
return autopickstation(wfstream, pickparam, verbose, fig_dict=fig_dict, iplot=iplot, metadata=metadata,
origin=origin)
except Exception as e:
tbe = traceback.format_exc()
return tbe, wfstream[0].stats.station
def get_source_coords(parser, station_id):
"""
retrieves station coordinates from metadata
:param parser: Parser object containing metadata read from inventory file
:type parser: ~obspy.io.xseed.parser.Parser
:param station_id: station id of which the coordinates should be retrieved, for example 'BW.RJOB..EHZ'. Only
network and station name is required, channel id (last part) is ignored.
:type station_id: str
:return: dictionary containing 'latitude', 'longitude', 'elevation' and 'local_depth' of station
:rtype: dict
"""
station_coords = None
try:
station_coords = parser.get_coordinates(station_id)
except Exception as e:
print('Could not get source coordinates for station {}: {}'.format(station_id, e))
return station_coords
class PickingResults(dict):
"""
Used to store picking results.
PickingResults is a dict like class that adds attribute (dot) access to the dictionaries values.
"""
def __init__(self):
"""
Inits default values of picking results. Called to generate a clean
PickingResults instance with sensible defaults.
:return:
:rtype:
"""
# Magnitude parameters
self.Mo = None
self.Mw = None
# TODO What are those?
self.w0 = None
self.fc = None
self.Ao = None # Wood-Anderson peak-to-peak amplitude
# Station information
self.network = None
self.channel = None
# pick information
self.picker = 'auto' # type of pick
self.marked = []
# pick results
self.epp = None # earliest possible pick
self.mpp = None # most likely onset
self.lpp = None # latest possible pick
self.fm = 'N' # first motion polarity, can be set to 'U' (Up) or 'D' (Down)
self.snr = None # signal-to-noise ratio of onset
self.snrdb = None # signal-to-noise ratio of onset [dB]
self.spe = None # symmetrized picking error
self.weight = 4 # weight of onset
# to correctly provide dot access to dictionary attributes, all attribute access of the class is forwarded to the
# dictionary
def __getattr__(self, item):
"""Override getattr to return an AttributeError instead of a KeyError when the instance doesn't have the
attribute.
"""
try:
attr = dict.__getitem__(self, item)
except KeyError:
raise AttributeError('{classname} has no attribute {attrname}'.format(classname=self.__class__.__name__,
attrname=item))
return attr
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class PickingContainer:
"""
Keeps intermediary results and values during picking
"""
def __init__(self):
# flags for plotting
self.p_aic_plot_flag = 0
self.aicSflag = 0
self.Pflag = 0
self.Sflag = 0
class MissingTraceException(ValueError):
"""
Used to indicate missing traces in a obspy.core.stream.Stream object
"""
pass
class PickingFailedException(Exception):
"""
Raised when picking fails due to missing values etc.
"""
pass
class AutopickStation(object):
def __init__(self, wfstream, pickparam, verbose, iplot=0, fig_dict=None, metadata=None, origin=None):
"""
:param wfstream: stream object containing waveform of all traces
:type wfstream: ~obspy.core.stream.Stream
:param pickparam: container of picking parameters from input file, usually pylot.in
:type pickparam: pylot.core.io.inputs.PylotParameter
:param verbose: used to control output to log during picking. True = more information printed
:type verbose: bool
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, (Boolean or String)
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary-like object containing P pick, S pick and station name
:rtype:
"""
# save given parameters
self.wfstream = wfstream
self.pickparams = copy.deepcopy(pickparam)
self.verbose = verbose
self.iplot = correct_iplot(iplot)
self.fig_dict = get_None(fig_dict)
self.metadata = metadata
self.origin = origin
# initialize picking results
self.p_results = PickingResults()
self.s_results = PickingResults()
# intialize containers that keep intermediary values between picking P- and S phase and plotting
self.p_data = PickingContainer()
self.s_data = PickingContainer()
# extract additional information
# TODO get channelorder from the pylot preferences
self.channelorder = {'Z': 3, 'N': 1, 'E': 2}
self.station_name = wfstream[0].stats.station
self.network_name = wfstream[0].stats.network
self.station_id = '{}.{}'.format(self.network_name, self.station_name)
# save streams and traces
self.zstream, self.nstream, self.estream = self.get_components_from_waveformstream()
self.ztrace, self.ntrace, self.etrace = self.get_traces_from_streams()
# default values used in old autopickstation function
# #TODO way for user to set those
self.detrend_type = 'demean'
self.filter_type = 'bandpass'
self.zerophase = False
self.taper_max_percentage = 0.05
self.taper_type = 'hann'
# Used during picking to plot results
self.current_figure = None
self.current_linecolor = None
def horizontal_traces_exist(self):
"""
Return true when at least one horizontal trace exists
:rtype: bool
"""
if len(self.nstream) == len(self.estream) == 0:
return False
return True
def vprint(self, s):
"""Only print statement if verbose picking is set to true."""
if self.verbose:
print(s)
def get_components_from_waveformstream(self):
"""
Splits waveformstream into multiple components zdat, ndat, edat. For traditional orientation (ZNE) these contain
the vertical, north-south or east-west component. Otherwise they contain components numbered 123 with
orientation diverging from the traditional orientation.
:param waveformstream: Stream containing all three components for one station either by ZNE or 123 channel code
(mixture of both options is handled as well)
:type waveformstream: obspy.core.stream.Stream
:return: Tuple containing (z waveform, n waveform, e waveform) selected by the given channels. If no waveform
could be found for a given channel, an empty obspy Stream will be returned for that channel
:rtype: (obspy.core.stream.Stream, obspy.core.stream.Stream, obspy.core.stream.Stream)
"""
waveform_data = {}
for key in self.channelorder:
waveform_data[key] = self.wfstream.select(component=key) # try ZNE first
if len(waveform_data[key]) == 0:
waveform_data[key] = self.wfstream.select(
component=str(self.channelorder[key])) # use 123 as second option
return waveform_data['Z'], waveform_data['N'], waveform_data['E']
def get_traces_from_streams(self):
"""
Extract Trace from Stream. If a component has no data, an empty trace will be returned
:return: Tuple of obspy.Trace instances in order ZNE
:rtype: (obspy.Trace)
"""
if len(self.zstream) == 0:
msg = 'No Z-component found for station {}. STOP'.format(self.wfstream[0].stats.station)
raise MissingTraceException(msg)
if not self.horizontal_traces_exist():
# Both horizontal traces missing, only P pick can be determined
msg = 'No horizontal traces found for station {}'.format(self.wfstream[0].stats.station)
self.vprint(msg)
return self.zstream[0], Trace(), Trace()
ztrace = self.zstream[0]
try:
ntrace = self.nstream[0]
except IndexError:
# if N trace is missing, copy E trace
self.nstream = self.estream
ntrace = self.nstream[0]
try:
# if E trace is missing, copy N trace
etrace = self.estream[0]
except IndexError:
self.estream = self.nstream
etrace = self.estream[0]
return ztrace, ntrace, etrace
def prepare_wfstream(self, wfstream, freqmin=None, freqmax=None):
"""
Prepare a waveformstream for picking by applying detrending, filtering and tapering. Creates a copy of the
waveform the leave the original unchanged.
:param wfstream: waveform stream
:type wfstream: obspy.core.stream.Stream
:param freqmin: Lower frequency of bandpass or highpass
:type freqmin: float
:param freqmax: Upper frequency of bandpass or lowpass
:type freqmax: float
:return: Tuple containing the changed waveform stream and the changed first trace of the stream
:rtype: (obspy.core.trace.Trace, obspy.core.stream.Stream)
"""
wfstream_copy = wfstream.copy()
trace_copy = wfstream[0].copy()
trace_copy.detrend(type=self.detrend_type)
trace_copy.filter(self.filter_type, freqmin=freqmin, freqmax=freqmax, zerophase=self.zerophase)
trace_copy.taper(max_percentage=self.taper_max_percentage, type=self.taper_type)
wfstream_copy[0].data = trace_copy.data
return trace_copy, wfstream_copy
def modify_starttimes_taupy(self):
"""
Calculate theoretical arrival times for a source at self.origin and a station at self.metadata. Modify
self.pstart and self.pstop so they are based on a time window around these theoretical arrival times.
:rtype: None
"""
def get_seed_id():
"""
Returns seed id of ztrace
:return: Seed id with format Network.Station.Location.Channel
:rtype: str
"""
stats = self.ztrace.stats
id = "{network}.{station}.{location}.{channel}"
id = id.format(network=stats.network, station=stats.station, location=stats.location, channel=stats.channel)
return id
def create_arrivals(metadata, origin, taup_model):
"""
Create List of arrival times for all phases for a given origin and station
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:param taup_model: Model name to use. See obspy.taup.tau.TauPyModel for options
:type taup_model: str
:return: List of Arrival objects
:rtype: obspy.taup.tau.Arrivals
:raises:
AttributeError when no metadata or source origins is given
"""
id = get_seed_id()
station_coords = metadata.get_coordinates(id, self.ztrace.stats.starttime)
if station_coords is None:
exit_taupy()
raise AttributeError('Warning: Could not find station in metadata')
# TODO: raise when metadata.get_coordinates returns None
source_origin = origin[0]
model = TauPyModel(taup_model)
taup_phases = self.pickparams['taup_phases']
# for backward compatibility of older input files
taup_phases = 'ttall' if not taup_phases or taup_phases == 'None' else taup_phases
phase_list = [item.strip() for item in taup_phases.split(',')]
arrivals = model.get_travel_times_geo(source_depth_in_km=source_origin.depth,
source_latitude_in_deg=source_origin.latitude,
source_longitude_in_deg=source_origin.longitude,
receiver_latitude_in_deg=station_coords['latitude'],
receiver_longitude_in_deg=station_coords['longitude'],
phase_list=phase_list)
return arrivals
def first_PS_onsets(arrivals):
"""
Get first P and S onsets from arrivals list
:param arrivals: List of Arrival objects
:type arrivals: obspy.taup.tau.Arrivals
:return:
:rtype:
"""
phases = {'P': [], 'S': []}
# sort phases in P and S phases
for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list
estFirstP = 0
estFirstS = 0
if len(phases['P']) > 0:
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
if len(phases['S']) > 0:
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS))
return estFirstP, estFirstS
def exit_taupy():
"""If taupy failed to calculate theoretical starttimes, picking continues.
For this a clean exit is required, since the P starttime is no longer relative to the theoretic onset but
to the vertical trace starttime, eg. it can't be < 0."""
# TODO here the pickparams is modified, instead of a copy
if self.pickparams["pstart"] < 0:
self.pickparams["pstart"] = 0
if self.pickparams["sstart"] < 0:
self.pickparams["sstart"] = 0
if get_bool(self.pickparams["use_taup"]) is False:
# correct user mistake where a relative cuttime is selected (pstart < 0) but use of taupy is disabled/ has
# not the required parameters
exit_taupy()
return
print('autopickstation: use_taup flag active.')
# catch missing metadata or origin information. Onset calculation is stopped, given cuttimes are then used.
if not self.metadata:
raise AttributeError('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
if not self.origin:
raise AttributeError('No source origins given!')
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
estFirstP, estFirstS = first_PS_onsets(arrivals)
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
self.pickparams["pstart"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
self.pickparams["pstop"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
self.pickparams["pstart"] = max(self.pickparams["pstart"], 0)
self.pickparams["pstop"] = min(self.pickparams["pstop"], len(self.ztrace) * self.ztrace.stats.delta)
if self.horizontal_traces_exist():
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
self.pickparams["sstart"] += (self.origin[0].time + estFirstS) - trace_s_start
self.pickparams["sstop"] += (self.origin[0].time + estFirstS) - trace_s_start
print('autopick: CF calculation times respectively:'
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces
self.pickparams["sstart"] = max(self.pickparams["sstart"], 0)
self.pickparams["sstop"] = min(self.pickparams["sstop"], len(self.ntrace) * self.ntrace.stats.delta,
len(self.etrace) * self.etrace.stats.delta)
def autopickstation(self):
"""
Main function of autopickstation, which calculates P and S picks and returns them in a dictionary.
:return: dict with keys 'P', 'S', and 'station'.
P's value is a PickingResults instance containing P results.
S's value is a PickingResults instance containing S results.
station's value is the station name on which the picks were calculated.
:rtype: dict
"""
if get_bool(self.pickparams['use_taup']) is True and self.origin is not None:
try:
# modify pstart, pstop, sstart, sstop to be around theoretical onset if taupy should be used,
# else do nothing
self.modify_starttimes_taupy()
except AttributeError as ae:
print(ae)
except MissingTraceException as mte:
print(mte)
try:
self.pick_p_phase()
except MissingTraceException as mte:
print(mte)
except PickingFailedException as pfe:
print(pfe)
if self.horizontal_traces_exist():
if (self.p_results.weight is not None and self.p_results.weight < 4) or \
get_bool(self.pickparams.get('use_taup')):
try:
self.pick_s_phase()
except MissingTraceException as mte:
print(mte)
except PickingFailedException as pfe:
print(pfe)
self.plot_pick_results()
self.finish_picking()
return [{'P': self.p_results, 'S': self.s_results}, self.ztrace.stats.station]
def finish_picking(self):
# calculate "real" onset times, save them in PickingResults
if self.p_results.lpp is not None and self.p_results.lpp == self.p_results.mpp:
self.p_results.lpp += self.ztrace.stats.delta
if self.p_results.epp is not None and self.p_results.epp == self.p_results.mpp:
self.p_results.epp -= self.ztrace.stats.delta
if self.p_results.mpp is not None and self.p_results.epp is not None and self.p_results.lpp is not None:
self.p_results.lpp = self.ztrace.stats.starttime + self.p_results.lpp
self.p_results.epp = self.ztrace.stats.starttime + self.p_results.epp
self.p_results.mpp = self.ztrace.stats.starttime + self.p_results.mpp
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iterative picking
self.p_results.lpp = self.ztrace.stats.starttime + self.pickparams["timeerrorsP"][3]
self.p_results.epp = self.ztrace.stats.starttime - self.pickparams["timeerrorsP"][3]
self.p_results.mpp = self.ztrace.stats.starttime
self.p_results.channel = self.ztrace.stats.channel
self.p_results.network = self.ztrace.stats.network
#
# S results
#
if not self.horizontal_traces_exist():
# no horizontal components means there is no S pick to be finished
return
if self.etrace:
hdat = self.etrace
elif self.ntrace:
hdat = self.ntrace
if self.s_results.lpp is not None and self.s_results.lpp == self.s_results.mpp:
self.s_results.lpp += hdat.stats.delta
if self.s_results.epp is not None and self.s_results.epp == self.s_results.mpp:
self.s_results.epp -= hdat.stats.delta
if self.s_results.mpp is not None and self.s_results.epp is not None and self.s_results.lpp is not None:
self.s_results.lpp = hdat.stats.starttime + self.s_results.lpp
self.s_results.epp = hdat.stats.starttime + self.s_results.epp
self.s_results.mpp = hdat.stats.starttime + self.s_results.mpp
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
self.s_results.lpp = hdat.stats.starttime + self.pickparams["timeerrorsS"][3]
self.s_results.epp = hdat.stats.starttime - self.pickparams["timeerrorsS"][3]
self.s_results.mpp = hdat.stats.starttime
self.s_results.channel = self.etrace.stats.channel
self.s_results.network = self.etrace.stats.network
self.s_results.fm = None # override default value 'N'
def plot_pick_results(self):
if self.iplot > 0:
# plot vertical trace
if self.fig_dict is None:
fig = plt.figure()
plt_flag = 1
linecolor = 'k'
else:
fig = self.fig_dict['mainFig']
linecolor = self.fig_dict['plot_style']['linecolor']['rgba_mpl']
plt_flag = 0
fig._tight = True
ax1 = fig.add_subplot(311)
tdata = np.linspace(start=0, stop=self.ztrace.stats.endtime - self.ztrace.stats.starttime,
num=self.ztrace.stats.npts)
# plot tapered trace filtered with bpz2 filter settings
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
label='Data')
if self.p_results.weight < 4:
# plot CF of initial onset (HOScf or ARZcf)
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
if self.p_data.p_aic_plot_flag == 1:
aicpick = self.p_data.aicpick
refPpick = self.p_data.refPpick
# plot CF of precise pick (HOScf or ARZcf)
ax1.plot(self.cf2.getTimeArray(), self.cf2.getCF() / max(self.cf2.getCF()), 'm', label='CF2')
# plot inital P pick
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r', label='Initial P Onset')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [1, 1], 'r')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [-1, -1], 'r')
# plot precise P pick
ax1.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [1.3, 1.3], 'r', linewidth=2)
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [-1.3, -1.3], 'r', linewidth=2)
# plot latest possible P pick
ax1.plot([self.p_results.lpp, self.p_results.lpp], [-1.1, 1.1], 'r--', label='lpp')
# plot earliest possible P pick
ax1.plot([self.p_results.epp, self.p_results.epp], [-1.1, 1.1], 'r--', label='epp')
# add title to plot
title = '{station}, {channel}, P weight={pweight:d}, SNR={snr:7.2}, SNR[dB]={snrdb:7.2}, Polarity: {polarity}'
ax1.set_title(title.format(station=self.ztrace.stats.station,
channel=self.ztrace.stats.channel,
pweight=self.p_results.weight,
snr=self.p_results.snr,
snrdb=self.p_results.snrdb,
polarity=self.p_results.fm))
else:
title = '{channel}, P weight={pweight}, SNR=None, SNR[dB]=None'
ax1.set_title(title.format(channel=self.ztrace.stats.channel, pweight=self.p_results.weight))
ax1.legend(loc=1)
ax1.set_yticks([])
ax1.set_ylim([-1.5, 1.5])
ax1.set_ylabel('Normalized Counts')
if self.horizontal_traces_exist() and self.s_data.Sflag == 1:
# plot E trace
ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
th1data = np.linspace(0, self.etrace.stats.endtime - self.etrace.stats.starttime,
self.etrace.stats.npts)
# plot filtered and tapered waveform
ax2.plot(th1data, self.etrace.data / max(self.etrace.data), color=linecolor, linewidth=0.7,
label='Data')
if self.p_results.weight < 4:
# plot initial CF (ARHcf or AR3Ccf)
ax2.plot(self.arhcf1.getTimeArray(), self.arhcf1.getCF() / max(self.arhcf1.getCF()), 'b',
label='CF1')
if self.s_data.aicSflag == 1 and self.s_results.weight <= 4:
aicarhpick = self.aicarhpick
refSpick = self.refSpick
# plot second cf, used for determing precise onset (ARHcf or AR3Ccf)
ax2.plot(self.arhcf2.getTimeArray(), self.arhcf2.getCF() / max(self.arhcf2.getCF()), 'm',
label='CF2')
# plot preliminary onset time, calculated from CF1
ax2.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g', label='Initial S Onset')
ax2.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
ax2.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
# plot precise onset time, calculated from CF2
ax2.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2,
label='Final S Pick')
ax2.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
ax2.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
ax2.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
ax2.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
title = '{channel}, S weight={sweight}, SNR={snr:7.2}, SNR[dB]={snrdb:7.2}'
ax2.set_title(title.format(channel=str(self.etrace.stats.channel),
sweight=str(self.s_results.weight),
snr=str(self.s_results.snr),
snrdb=str(self.s_results.snrdb)))
else:
title = '{channel}, S weight={sweight}, SNR=None, SNR[dB]=None'
ax2.set_title(title.format(channel=str(self.etrace.stats.channel),
sweight=str(self.s_results.weight)))
ax2.legend(loc=1)
ax2.set_yticks([])
ax2.set_ylim([-1.5, 1.5])
ax2.set_ylabel('Normalized Counts')
# plot N trace
ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
th2data = np.linspace(0, self.ntrace.stats.endtime - self.ntrace.stats.starttime,
self.ntrace.stats.npts)
# plot trace
ax3.plot(th2data, self.ntrace.data / max(self.ntrace.data), color=linecolor, linewidth=0.7,
label='Data')
if self.p_results.weight < 4:
p22, = ax3.plot(self.arhcf1.getTimeArray(), self.arhcf1.getCF() / max(self.arhcf1.getCF()), 'b',
label='CF1')
if self.s_data.aicSflag == 1:
aicarhpick = self.aicarhpick
refSpick = self.refSpick
ax3.plot(self.arhcf2.getTimeArray(), self.arhcf2.getCF() / max(self.arhcf2.getCF()), 'm',
label='CF2')
ax3.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g', label='Initial S Onset')
ax3.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
ax3.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
ax3.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2,
label='Final S Pick')
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
ax3.legend(loc=1)
ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5])
ax3.set_xlabel('Time [s] after %s' % self.ntrace.stats.starttime)
ax3.set_ylabel('Normalized Counts')
ax3.set_title(self.ntrace.stats.channel)
if plt_flag == 1:
fig.show()
try:
input()
except SyntaxError:
pass
plt.close(fig)
def _pick_p_quality_control(self, aicpick, z_copy, tr_filt):
"""
Quality control of first pick using minseglength and checkZ4S.
:param aicpick: Instance of AICPicker to run quality control on
:type aicpick: AICPicker
:param z_copy: Stream if vertical trace, data replaced with values from from initial CF (HOScf or ARHcf)
:type z_copy: obspy.core.stream.Stream
:param tr_filt: Filtered and tapered trace of vertical component
:type tr_filt: obspy.core.trace.trace
:return: Flag if P onset passed quality control, 1 if passed, 0 if failed.
:rtype: int
"""
self.set_current_figure('slength')
if aicpick.getpick() is None:
msg = "Bad initial (AIC) P-pick, skipping this onset!\nAIC-SNR={0}, AIC-Slope={1}counts/s\n " \
"(min. AIC-SNR={2}, min. AIC-Slope={3}counts/s)"
msg = msg.format(aicpick.getSNR(), aicpick.getSlope(), self.pickparams["minAICPSNR"],
self.pickparams["minAICPslope"])
self.vprint(msg)
return 0
# Quality check initial pick with minimum signal length
z_copy[0].data = tr_filt.data # save filtered, tapered trace in z_copy stream object
zne = z_copy
minsiglength = self.pickparams["minsiglength"]
if len(self.nstream) == 0 or len(self.estream) == 0:
msg = 'One or more horizontal component(s) missing!\n' \
'Signal length only checked on vertical component!\n' \
'Decreasing minsiglengh from {0} to {1}' \
.format(minsiglength, minsiglength / 2)
self.vprint(msg)
minsiglength = minsiglength / 2
else:
# filter, taper other traces as well since signal length is compared on all traces
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.pickparams["bph1"][0],
freqmax=self.pickparams["bph1"][1])
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.pickparams["bph1"][0],
freqmax=self.pickparams["bph1"][1])
zne += trH1_filt
zne += trH2_filt
minsiglength = minsiglength
Pflag = checksignallength(zne, aicpick.getpick(), minsiglength, self.pickparams,
self.iplot, self.current_figure, self.current_linecolor)
if Pflag == 0:
self.p_results.marked = 'shortsignallength'
self.p_results.weight = 9
return 0
if self.nstream == self.estream:
# todo: old implementation skipped this test if one component was missing, why not use one component?
msg = 'One or more horizontal components missing!\n Skipping control function checkZ4S.'
self.vprint(msg)
return 1
if self.iplot > 1: self.set_current_figure('checkZ4s')
Pflag = checkZ4S(zne, aicpick.getpick(), self.pickparams, self.iplot,
self.current_figure, self.current_linecolor)
if Pflag == 0:
self.p_results.marked = 'SinsteadP'
self.p_results.weight = 9
return 0
return 1
def pick_p_phase(self):
"""
Pick p phase, store results in self.p_results
:return: None
:raises:
MissingTraceException: If vertical trace is missing.
"""
try:
stream_string_repr = str(self.zstream)
except Exception as e:
stream_string_repr = None
print('Could not get string representation of Stream: {}'.format(e))
msg = '##################################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=self.station_name, data=stream_string_repr)
self.vprint(msg)
tr_filt, z_copy = self.prepare_wfstream(self.zstream, self.pickparams["bpz1"][0], self.pickparams["bpz1"][1])
# save filtered trace in instance for later plotting
self.tr_filt_z_bpz2 = tr_filt
Lc = self.pickparams['pstop'] - self.pickparams['pstart']
Lwf = self.ztrace.stats.endtime - self.ztrace.stats.starttime
if Lwf < 0:
raise PickingFailedException('autopickstation: empty trace! Return!')
Ldiff = Lwf - abs(Lc)
if Ldiff < self.pickparams['tlta'] or self.pickparams['pstop'] <= self.pickparams['pstart']:
msg = 'autopickstation: Cutting times are too large for actual waveform!\nUsing entire waveform instead!'
self.vprint(msg)
self.pickparams['pstart'] = 0
self.pickparams['pstop'] = len(self.ztrace.data) * self.ztrace.stats.delta
cuttimes = self._calculate_cuttimes('P', 1)
# calculate first CF
if self.pickparams["algoP"] == 'HOS':
self.cf1 = HOScf(z_copy, cuttimes, self.pickparams)
elif self.pickparams["algoP"] == 'ARZ':
self.cf1 = ARZcf(z_copy, cuttimes, self.pickparams["tdet1z"], self.pickparams["tpred1z"], self.pickparams)
else:
self.cf1 = None
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
' is corrupted'.format(self.pickparams["algoP"])
# calculate AIC cf from first cf (either HOS or ARZ)
z_copy[0].data = self.cf1.getCF()
aiccf = AICcf(z_copy, cuttimes)
# get preliminary onset time from AIC-CF
self.set_current_figure('aicFig')
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
linecolor=self.current_linecolor)
# save aicpick for plotting later
self.p_data.aicpick = aicpick
# add pstart and pstop to aic plot
if self.current_figure:
# TODO remove plotting from picking, make own plot function
for ax in self.current_figure.axes:
ax.vlines(self.pickparams["pstart"], ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed',
label='P start')
ax.vlines(self.pickparams["pstop"], ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed',
label='P stop')
ax.legend(loc=1)
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
# go on with processing if AIC onset passes quality control
slope = aicpick.getSlope()
if not slope: slope = 0
# todo why did picking fail was saved in the pick dictionary, should this be reimplemented?
if Pflag != 1:
raise PickingFailedException('AIC P onset quality control failed')
if slope <= self.pickparams["minAICPslope"]:
error_msg = 'AIC P onset slope to small: got {}, min {}'.format(slope, self.pickparams["minAICPslope"])
raise PickingFailedException(error_msg)
if aicpick.getSNR() < self.pickparams["minAICPSNR"]:
error_msg = 'AIC P onset SNR to small: got {}, min {}'.format(aicpick.getSNR(),
self.pickparams["minAICPSNR"])
raise PickingFailedException(error_msg)
self.p_data.p_aic_plot_flag = 1
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering vertical trace...'.format(aicpick.getSlope(), aicpick.getSNR())
self.vprint(msg)
# refilter waveform with larger bandpass
tr_filt, z_copy = self.prepare_wfstream(self.zstream, freqmin=self.pickparams["bpz2"][0],
freqmax=self.pickparams["bpz2"][1])
# save filtered trace in instance for later plotting
self.tr_filt_z_bpz2 = tr_filt
# determine new times around initial onset
cuttimes2 = self._calculate_cuttimes('P', 2)
if self.pickparams["algoP"] == 'HOS':
self.cf2 = HOScf(z_copy, cuttimes2, self.pickparams)
elif self.pickparams["algoP"] == 'ARZ':
self.cf2 = ARZcf(z_copy, cuttimes2, self.pickparams["tdet2z"], self.pickparams["tpred2z"], self.pickparams)
else:
self.cf2 = None
assert isinstance(self.cf2, CharacteristicFunction), 'cf2 is not set correctly: maybe the algorithm name () is ' \
'corrupted'.format(self.pickparams["algoP"])
self.set_current_figure('refPpick')
# get refined onset time from CF2
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
self.pickparams["ausP"],
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
self.current_linecolor)
# save PragPicker result for plotting
self.p_data.refPpick = refPpick
self.p_results.mpp = refPpick.getpick()
if self.p_results.mpp is None:
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n AIC-SNR={}, AIC-Slope={}counts/s\n' \
'(min. AIC-SNR={}, min. AIC-Slope={}counts/s)'
msg.format(aicpick.getSNR(), aicpick.getSlope(), self.pickparams["minAICPSNR"],
self.pickparams["minAICPslope"])
self.vprint(msg)
self.s_data.Sflag = 0
raise PickingFailedException(msg)
# quality assessment, get earliest/latest pick and symmetrized uncertainty
# todo quality assessment in own function
self.set_current_figure('el_Ppick')
elpicker_results = earllatepicker(z_copy, self.pickparams["nfacP"], self.pickparams["tsnrz"],
self.p_results.mpp,
self.iplot, fig=self.current_figure, linecolor=self.current_linecolor)
self.p_results.epp, self.p_results.lpp, self.p_results.spe = elpicker_results
snr_results = getSNR(z_copy, self.pickparams["tsnrz"], self.p_results.mpp)
self.p_results.snr, self.p_results.snrdb, _ = snr_results
# weight P-onset using symmetric error
self.p_results.weight = get_quality_class(self.p_results.spe, self.pickparams["timeerrorsP"])
if self.p_results.weight <= self.pickparams["minfmweight"] and self.p_results.snr >= self.pickparams[
"minFMSNR"]:
# if SNR is high enough, try to determine first motion of onset
self.set_current_figure('fm_picker')
self.p_results.fm = fmpicker(self.zstream, z_copy, self.pickparams["fmpickwin"], self.p_results.mpp,
self.iplot, self.current_figure, self.current_linecolor)
msg = "autopickstation: P-weight: {}, SNR: {}, SNR[dB]: {}, Polarity: {}"
msg = msg.format(self.p_results.weight, self.p_results.snr, self.p_results.snrdb, self.p_results.fm)
print(msg)
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'
msg = msg.format(self.p_results.mpp, self.p_results.spe)
print(msg)
self.s_data.Sflag = 1
def _calculate_cuttimes(self, type, iteration):
"""
Calculate cuttimes for a trace
:param type: 'P' or 'S', denoting the pick for which cuttime should be calculated
:type type: str
:param iteration: Calculate cut times for initial pick or for the smaller window of the precise pick around
the initial pick
:type iteration: int
:return: tuple of (starttime, endtime) in seconds
:rtype: (int, int)
"""
# extract parameters
Precalcwin = self.pickparams["Precalcwin"]
Srecalcwin = self.pickparams["Srecalcwin"]
if type.upper() == 'P':
if iteration == 1:
return [self.pickparams["pstart"], self.pickparams["pstop"]]
if iteration == 2:
starttime2 = round(max(self.p_data.aicpick.getpick() - Precalcwin, 0))
endtime2 = round(
min(len(self.ztrace.data) * self.ztrace.stats.delta, self.p_data.aicpick.getpick() + Precalcwin))
return [starttime2, endtime2]
elif type.upper() == 'S':
if iteration == 1:
# Calculate start times for preliminary S onset
start = round(max(self.p_results.mpp + self.pickparams["sstart"], 0)) # limit start time to >0 seconds
stop = round(min([
self.p_results.mpp + self.pickparams["sstop"],
self.etrace.stats.endtime - self.etrace.stats.starttime,
self.ntrace.stats.endtime - self.ntrace.stats.starttime
]))
cuttimesh = (start, stop)
if cuttimesh[1] <= cuttimesh[0]:
raise PickingFailedException('Cut window for horizontal phases too small! Will not pick S onsets.')
return cuttimesh
if iteration == 2:
# recalculate cf from refiltered trace in vicinity of initial onset
start = round(self.aicarhpick.getpick() - Srecalcwin)
stop = round(self.aicarhpick.getpick() + Srecalcwin)
return (start, stop)
else:
raise ValueError('Wrong type given, can only be P or S')
def _calculate_autoregressive_cf_s_pick(self, cuttimesh):
algoS = self.pickparams["algoS"]
filter_freq_min, filter_freq_max = self.pickparams["bph1"]
# prepare traces for picking by filtering, taper
if algoS == 'ARH':
self.hdat = self.nstream.copy() + self.estream.copy()
trH1_filt, _ = self.prepare_wfstream(self.estream, filter_freq_min, filter_freq_max)
trH2_filt, _ = self.prepare_wfstream(self.nstream, filter_freq_min, filter_freq_max)
h_copy = self.hdat.copy()
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
if algoS == 'AR3':
self.hdat = self.zstream.copy() + self.estream.copy() + self.nstream.copy()
trH1_filt, _ = self.prepare_wfstream(self.zstream, filter_freq_min, filter_freq_max)
trH2_filt, _ = self.prepare_wfstream(self.estream, filter_freq_min, filter_freq_max)
trH3_filt, _ = self.prepare_wfstream(self.nstream, filter_freq_min, filter_freq_max)
h_copy = self.hdat.copy()
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
self.trH1_filt = trH1_filt
self.h_copy = h_copy
# calculate initial CF based on autoregression
if algoS == 'ARH':
arhcf1 = ARHcf(h_copy, cuttimesh, self.pickparams["tdet1h"], self.pickparams["tpred1h"], self.pickparams)
elif algoS == 'AR3':
arhcf1 = AR3Ccf(h_copy, cuttimesh, self.pickparams["tdet1h"], self.pickparams["tpred1h"], self.pickparams)
return arhcf1
def _calculate_aic_cf_s_pick(self, cuttimesh):
stream = self.estream.copy()
stream[0].data = self.arhcf1.getCF()
haiccf = AICcf(stream, cuttimesh)
return haiccf
def _pick_s_quality_control(self):
"""
Check quality of pick. Function will raise a PickingFailedException if the S pick does not fullfill all quality
criteria. Else nothing happens and picking can continue.
"""
# go on with processing if AIC onset passes quality control
slope = self.aicarhpick.getSlope()
minSlope = self.pickparams["minAICSslope"]
minSNR = self.pickparams["minAICSSNR"]
if not slope:
slope = 0
if slope < minSlope:
error_msg = error_msg = 'AIC S onset slope to small: got {}, min {}'.format(slope, minSlope)
raise PickingFailedException(error_msg)
if self.aicarhpick.getSNR() < minSNR:
error_msg = 'AIC S onset SNR to small: got {}, min {}'.format(self.aicarhpick.getSNR(), minSNR)
raise PickingFailedException(error_msg)
if self.aicarhpick.getpick() is None:
error_msg = 'Invalid AIC S pick!'
raise PickingFailedException(error_msg)
self.s_data.aicSflag = 1
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering horizontal traces ' \
'...'.format(self.aicarhpick.getSlope(), self.aicarhpick.getSNR())
self.vprint(msg)
def _pick_s_calculate_ar_cf_2(self):
algoS = self.pickparams["algoS"]
filter_freq_min, filter_freq_max = self.pickparams["bph2"]
cuttimesh2 = self._calculate_cuttimes('S', 2)
# refilter waveform with larger bandpass
trH1_filt, _ = self.prepare_wfstream(self.estream, filter_freq_min, filter_freq_max)
trH2_filt, _ = self.prepare_wfstream(self.nstream, filter_freq_min, filter_freq_max)
if algoS == 'ARH':
h_copy = self.hdat.copy()
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
elif algoS == 'AR3':
trH3_filt, _ = self.prepare_wfstream(self.zstream, filter_freq_min, filter_freq_max)
h_copy = self.hdat.copy()
h_copy[0].data = trH3_filt.data
h_copy[1].data = trH1_filt.data
h_copy[2].data = trH2_filt.data
# save filtered traces for plotting
self.estream_bph2 = trH1_filt
self.nstream_bph2 = trH2_filt
# calculate second cf
if algoS == 'ARH':
arhcf2 = ARHcf(h_copy, cuttimesh2, self.pickparams["tdet2h"], self.pickparams["tpred2h"], self.pickparams)
elif algoS == 'AR3':
arhcf2 = AR3Ccf(h_copy, cuttimesh2, self.pickparams["tdet2h"], self.pickparams["tpred2h"], self.pickparams)
# save cf for later plotting
self.arhcf2 = arhcf2
self.h_copy = h_copy
return arhcf2
def _pick_s_quality_assessment(self, h_copy):
"""
quality assessment: get earliest/latest possible pick and symmetrized uncertainty
"""
h_copy[0].data = self.estream_bph2.data
if self.iplot:
self.set_current_figure('el_S1pick')
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, self.pickparams["nfacS"], self.pickparams["tsnrh"],
self.s_results.mpp, self.iplot, fig=self.current_figure,
linecolor=self.current_linecolor)
h_copy[0].data = self.nstream_bph2.data
if self.iplot:
self.set_current_figure('el_S2pick')
else:
# why is it set to empty here? DA
linecolor = ''
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, self.pickparams["nfacS"], self.pickparams["tsnrh"],
self.s_results.mpp, self.iplot, fig=self.current_figure,
linecolor=self.current_linecolor)
if epickS1 is not None and epickS2 is not None:
if self.pickparams["algoS"] == 'ARH':
# get earliest pick of both earliest possible picks
epick = [epickS1, epickS2]
lpick = [lpickS1, lpickS2]
pickerr = [Serror1, Serror2]
ipick = np.argmin(epick)
if self.pickparams["algoS"] == 'AR3':
epickS3, lpickS3, Serror3 = earllatepicker(h_copy, self.pickparams["nfacS"], self.pickparams["tsnrh"],
self.s_results.mpp, self.iplot)
# get earliest of all three picks
epick = [epickS1, epickS2, epickS3]
lpick = [lpickS1, lpickS2, lpickS3]
pickerr = [Serror1, Serror2, Serror3]
if epickS3 is not None:
ipick = np.argmin(epick)
else:
ipick = np.argmin([epickS1, epickS2])
self.s_results.epp = epick[ipick]
self.s_results.lpp = lpick[ipick]
self.s_results.spe = pickerr[ipick]
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(self.s_results.mpp,
self.s_results.spe)
print(msg)
# get SNR
self.s_results.snr, self.s_results.snrdb, _ = getSNR(h_copy, self.pickparams["tsnrh"], self.s_results.mpp)
self.s_results.weight = get_quality_class(self.s_results.spe, self.pickparams["timeerrorsS"])
print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n'
'##################################################'
''.format(self.s_results.weight, self.s_results.snr, self.s_results.snrdb))
def pick_s_phase(self):
if get_bool(self.pickparams.get('use_taup')) is True:
cuttimesh = (self.pickparams.get('sstart'), self.pickparams.get('sstop'))
else:
# determine time window for calculating CF after P onset
cuttimesh = self._calculate_cuttimes(type='S', iteration=1)
# calculate autoregressive CF
self.arhcf1 = self._calculate_autoregressive_cf_s_pick(cuttimesh)
# calculate AIC cf
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
# get preliminary onset time from AIC cf
self.set_current_figure('aicARHfig')
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
linecolor=self.current_linecolor)
# save pick for later plotting
self.aicarhpick = aicarhpick
# check quality of pick
self._pick_s_quality_control()
arhcf2 = self._pick_s_calculate_ar_cf_2()
# get refined onset time from CF2
self.set_current_figure('refSpick')
refSpick = PragPicker(arhcf2, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
self.pickparams["ausS"],
self.pickparams["tsmoothS"], aicarhpick.getpick(), self.current_figure,
self.current_linecolor)
# save refSpick for later plotitng
self.refSpick = refSpick
self.s_results.mpp = refSpick.getpick()
if self.s_results.mpp is not None:
self._pick_s_quality_assessment(self.h_copy)
def set_current_figure(self, figkey):
"""
Extracts a figure by name from dictionary and set it as the currently active figure.
All functions that create plots during picking will use the currently active figure to plot them.
:param figkey:
:type figkey:
:return:
:rtype:
"""
if self.fig_dict is None:
return None, None
self.current_figure = self.fig_dict.get(figkey, None)
plot_style = self.fig_dict.get('plot_style', 'k')
self.current_linecolor = plot_style['linecolor']['rgba_mpl']
def autopickstation(wfstream, pickparam, verbose=False, iplot=0, fig_dict=None, metadata=None, origin=None):
"""
Main function to calculate picks for the station.
:return:
:rtype: dict
"""
try:
station = AutopickStation(wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin)
return station.autopickstation()
except MissingTraceException as e:
# Either vertical or both horizontal traces are missing
print(e)
try:
station_name = wfstream[0].stats.station
except IndexError:
station_name = 'None'
return None, station_name
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter, fig_dict=None):
"""
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
:param wf: waveform, obspy stream object
:type wf: ~obspy.core.stream.Stream
:param NLLocfile: path/name of NLLoc-location file
:type NLLocfile: str
:param picks: dictionary of available onset times
:type picks: dict
:param badpicks: picks to be repicked
:type badpicks:
:param pickparameter: picking parameters from autoPyLoT-input file
:type pickparameter: pylot.core.io.inputs.PylotParameter
:param fig_dict: dictionary containing Matplotlib figures used for plotting results
:type fig_dict: dict
:return: dictionary containing iterative picks
:rtype: dict
"""
msg = '##################################################\n' \
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
'starting re-picking them ...'.format(len(badpicks), badpicks)
print(msg)
newpicks = {}
for i in range(0, len(badpicks)):
if len(badpicks[i][0]) > 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) == 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) < 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
nllocline = getPatternLine(NLLocfile, Ppattern)
res = nllocline.split(None)[16]
# get theoretical P-onset time from residuum
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
# get corresponding waveform stream
msg = '##################################################\n' \
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
print(msg)
wf2pick = wf.select(station=badpicks[i][0])
# modify some picking parameters
pstart_old = pickparameter.get('pstart')
pstop_old = pickparameter.get('pstop')
sstop_old = pickparameter.get('sstop')
pickwinP_old = pickparameter.get('pickwinP')
Precalcwin_old = pickparameter.get('Precalcwin')
noisefactor_old = pickparameter.get('noisefactor')
zfac_old = pickparameter.get('zfac')
twindows = pickparameter.get('tsnrz')
tsafety = twindows[1]
pstart = max([0, badpicks[i][1] - wf2pick[0].stats.starttime - pickparameter.get('tlta')])
if abs(float(res)) <= tsafety / 2 or pstart == 0:
print("iteratepicker: Small residuum, leave parameters unchanged for this phase!")
else:
pickparameter.setParam(pstart=pstart)
pickparameter.setParam(pstop=pickparameter.get('pstart') + (pickparameter.get('Precalcwin')))
pickparameter.setParam(sstop=pickparameter.get('sstop') / 2)
pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2)
pickparameter.setParam(Precalcwin=pickparameter.get('Precalcwin') / 2)
pickparameter.setParam(noisefactor=1.0)
pickparameter.setParam(zfac=1.0)
print(
"iteratepicker: The following picking parameters have been modified for iterative picking:")
print(
"pstart: %fs => %fs" % (pstart_old, pickparameter.get('pstart')))
print(
"pstop: %fs => %fs" % (pstop_old, pickparameter.get('pstop')))
print(
"sstop: %fs => %fs" % (sstop_old, pickparameter.get('sstop')))
print("pickwinP: %fs => %fs" % (
pickwinP_old, pickparameter.get('pickwinP')))
print("Precalcwin: %fs => %fs" % (
Precalcwin_old, pickparameter.get('Precalcwin')))
print("noisefactor: %f => %f" % (
noisefactor_old, pickparameter.get('noisefactor')))
print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac')))
# repick station
newpicks, _ = autopickstation(wf2pick, pickparameter, fig_dict=fig_dict)
# replace old dictionary with new one
picks[badpicks[i][0]] = newpicks
# reset temporary change of picking parameters
print("iteratepicker: Resetting picking parameters ...")
pickparameter.setParam(pstart=pstart_old)
pickparameter.setParam(pstop=pstop_old)
pickparameter.setParam(sstop=sstop_old)
pickparameter.setParam(pickwinP=pickwinP_old)
pickparameter.setParam(Precalcwin=Precalcwin_old)
pickparameter.setParam(noisefactor=noisefactor_old)
pickparameter.setParam(zfac=zfac_old)
return picks