989 lines
34 KiB
Python
989 lines
34 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
#
|
|
"""
|
|
Created Mar/Apr 2015
|
|
Collection of helpful functions for manual and automatic picking.
|
|
|
|
:author: Ludger Kueperkoch, BESTEC GmbH
|
|
"""
|
|
|
|
import warnings
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from obspy.core import Stream, UTCDateTime
|
|
|
|
|
|
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False):
|
|
'''
|
|
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
|
as reasonable uncertainties. Latest possible pick is based on noise level,
|
|
earliest possible pick is half a signal wavelength in front of most likely
|
|
pick given by PragPicker or manually set by analyst. Most likely pick
|
|
(initial pick Pick1) must be given.
|
|
|
|
:param: X, time series (seismogram)
|
|
:type: `~obspy.core.stream.Stream`
|
|
|
|
:param: nfac (noise factor), nfac times noise level to calculate latest possible pick
|
|
:type: int
|
|
|
|
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
|
:type: tuple (T_noise, T_gap, T_signal)
|
|
|
|
:param: Pick1, initial (most likely) onset time, starting point for earllatepicker
|
|
:type: float
|
|
|
|
:param: iplot, if given, results are plotted in figure(iplot)
|
|
:type: int
|
|
'''
|
|
|
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
|
|
|
LPick = None
|
|
EPick = None
|
|
PickError = None
|
|
if stealth_mode is False:
|
|
print('earllatepicker: Get earliest and latest possible pick'
|
|
' relative to most likely pick ...')
|
|
|
|
x = X[0].data
|
|
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
|
X[0].stats.delta)
|
|
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
|
|
# get signal window
|
|
isignal = getsignalwin(t, Pick1, TSNR[2])
|
|
# remove mean
|
|
x = x - np.mean(x[inoise])
|
|
# calculate noise level
|
|
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
|
|
# get time where signal exceeds nlevel
|
|
ilup, = np.where(x[isignal] > nlevel)
|
|
ildown, = np.where(x[isignal] < -nlevel)
|
|
if not ilup.size and not ildown.size:
|
|
if stealth_mode is False:
|
|
print ("earllatepicker: Signal lower than noise level!\n"
|
|
"Skip this trace!")
|
|
return LPick, EPick, PickError
|
|
il = min(np.min(ilup) if ilup.size else float('inf'),
|
|
np.min(ildown) if ildown.size else float('inf'))
|
|
LPick = t[isignal][il]
|
|
|
|
# get earliest possible pick
|
|
|
|
EPick = np.nan;
|
|
count = 0
|
|
pis = isignal
|
|
|
|
# if EPick stays NaN the signal window size will be doubled
|
|
while np.isnan(EPick):
|
|
if count > 0:
|
|
if stealth_mode is False:
|
|
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
|
"because of NaN for earliest pick." % count)
|
|
isigDoubleWinStart = pis[-1] + 1
|
|
isignalDoubleWin = np.arange(isigDoubleWinStart,
|
|
isigDoubleWinStart + len(pis))
|
|
if (isigDoubleWinStart + len(pis)) < X[0].data.size:
|
|
pis = np.concatenate((pis, isignalDoubleWin))
|
|
else:
|
|
if stealth_mode is False:
|
|
print("Could not double signal window. Index out of bounds.")
|
|
break
|
|
count += 1
|
|
# determine all zero crossings in signal window (demeaned)
|
|
zc = crossings_nonzero_all(x[pis] - x[pis].mean())
|
|
# calculate mean half period T0 of signal as the average of the
|
|
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length!
|
|
EPick = Pick1 - T0 # half wavelength as suggested by Diehl et al.
|
|
|
|
# get symmetric pick error as mean from earliest and latest possible pick
|
|
# by weighting latest possible pick two times earliest possible pick
|
|
diffti_tl = LPick - Pick1
|
|
diffti_te = Pick1 - EPick
|
|
PickError = symmetrize_error(diffti_te, diffti_tl)
|
|
|
|
if iplot > 1:
|
|
p = plt.figure(iplot)
|
|
p1, = plt.plot(t, x, 'k')
|
|
p2, = plt.plot(t[inoise], x[inoise])
|
|
p3, = plt.plot(t[isignal], x[isignal], 'r')
|
|
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
|
p5, = plt.plot(t[isignal[zc]], np.zeros(len(zc)), '*g',
|
|
markersize=14)
|
|
plt.legend([p1, p2, p3, p4, p5],
|
|
['Data', 'Noise Window', 'Signal Window', 'Noise Level',
|
|
'Zero Crossings'],
|
|
loc='best')
|
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
|
plt.plot([Pick1, Pick1], [max(x), -max(x)], 'b', linewidth=2)
|
|
plt.plot([LPick, LPick], [max(x) / 2, -max(x) / 2], '--k')
|
|
plt.plot([EPick, EPick], [max(x) / 2, -max(x) / 2], '--k')
|
|
plt.plot([Pick1 + PickError, Pick1 + PickError],
|
|
[max(x) / 2, -max(x) / 2], 'r--')
|
|
plt.plot([Pick1 - PickError, Pick1 - PickError],
|
|
[max(x) / 2, -max(x) / 2], 'r--')
|
|
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
|
plt.yticks([])
|
|
plt.title(
|
|
'Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' %
|
|
X[0].stats.station)
|
|
plt.show()
|
|
raw_input()
|
|
plt.close(p)
|
|
|
|
return EPick, LPick, PickError
|
|
|
|
|
|
def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|
'''
|
|
Function to derive first motion (polarity) of given phase onset Pick.
|
|
Calculation is based on zero crossings determined within time window pickwin
|
|
after given onset time.
|
|
|
|
:param: Xraw, unfiltered time series (seismogram)
|
|
:type: `~obspy.core.stream.Stream`
|
|
|
|
:param: Xfilt, filtered time series (seismogram)
|
|
:type: `~obspy.core.stream.Stream`
|
|
|
|
:param: pickwin, time window after onset Pick within zero crossings are calculated
|
|
:type: float
|
|
|
|
:param: Pick, initial (most likely) onset time, starting point for fmpicker
|
|
:type: float
|
|
|
|
:param: iplot, if given, results are plotted in figure(iplot)
|
|
:type: int
|
|
'''
|
|
|
|
warnings.simplefilter('ignore', np.RankWarning)
|
|
|
|
assert isinstance(Xraw, Stream), "%s is not a stream object" % str(Xraw)
|
|
assert isinstance(Xfilt, Stream), "%s is not a stream object" % str(Xfilt)
|
|
|
|
FM = None
|
|
if Pick is not None:
|
|
print ("fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...")
|
|
|
|
xraw = Xraw[0].data
|
|
xfilt = Xfilt[0].data
|
|
t = np.arange(0, Xraw[0].stats.npts / Xraw[0].stats.sampling_rate,
|
|
Xraw[0].stats.delta)
|
|
# get pick window
|
|
ipick = np.where(
|
|
(t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick))
|
|
# remove mean
|
|
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
|
|
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
|
|
|
|
# get zero crossings after most likely pick
|
|
# initial onset is assumed to be the first zero crossing
|
|
# first from unfiltered trace
|
|
zc1 = []
|
|
zc1.append(Pick)
|
|
index1 = []
|
|
i = 0
|
|
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
|
i = i + 1
|
|
if xraw[j - 1] <= 0 <= xraw[j]:
|
|
zc1.append(t[ipick][i])
|
|
index1.append(i)
|
|
elif xraw[j - 1] > 0 >= xraw[j]:
|
|
zc1.append(t[ipick][i])
|
|
index1.append(i)
|
|
if len(zc1) == 3:
|
|
break
|
|
|
|
# if time difference betweeen 1st and 2cnd zero crossing
|
|
# is too short, get time difference between 1st and 3rd
|
|
# to derive maximum
|
|
if zc1[1] - zc1[0] <= Xraw[0].stats.delta:
|
|
li1 = index1[1]
|
|
else:
|
|
li1 = index1[0]
|
|
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
|
|
print ("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
|
|
P1 = None
|
|
else:
|
|
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
|
if imax1 == 0:
|
|
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
|
|
if imax1 == 0:
|
|
print ("fmpicker: Zero crossings too close!")
|
|
print ("Skip first motion determination!")
|
|
return FM
|
|
|
|
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
|
# calculate slope as polynomal fit of order 1
|
|
xslope1 = np.arange(0, len(xraw[islope1]), 1)
|
|
P1 = np.polyfit(xslope1, xraw[islope1], 1)
|
|
datafit1 = np.polyval(P1, xslope1)
|
|
|
|
# now using filterd trace
|
|
# next zero crossings after most likely pick
|
|
zc2 = []
|
|
zc2.append(Pick)
|
|
index2 = []
|
|
i = 0
|
|
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
|
i = i + 1
|
|
if xfilt[j - 1] <= 0 <= xfilt[j]:
|
|
zc2.append(t[ipick][i])
|
|
index2.append(i)
|
|
elif xfilt[j - 1] > 0 >= xfilt[j]:
|
|
zc2.append(t[ipick][i])
|
|
index2.append(i)
|
|
if len(zc2) == 3:
|
|
break
|
|
|
|
# if time difference betweeen 1st and 2cnd zero crossing
|
|
# is too short, get time difference between 1st and 3rd
|
|
# to derive maximum
|
|
if zc2[1] - zc2[0] <= Xfilt[0].stats.delta:
|
|
li2 = index2[1]
|
|
else:
|
|
li2 = index2[0]
|
|
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
|
|
print ("fmpicker: Onset on filtered trace too emergent for first motion determination!")
|
|
P2 = None
|
|
else:
|
|
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
|
if imax2 == 0:
|
|
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
|
|
if imax2 == 0:
|
|
print ("fmpicker: Zero crossings too close!")
|
|
print ("Skip first motion determination!")
|
|
return FM
|
|
|
|
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
|
# calculate slope as polynomal fit of order 1
|
|
xslope2 = np.arange(0, len(xfilt[islope2]), 1)
|
|
P2 = np.polyfit(xslope2, xfilt[islope2], 1)
|
|
datafit2 = np.polyval(P2, xslope2)
|
|
|
|
# compare results
|
|
if P1 is not None and P2 is not None:
|
|
if P1[0] < 0 and P2[0] < 0:
|
|
FM = 'D'
|
|
elif P1[0] >= 0 > P2[0]:
|
|
FM = '-'
|
|
elif P1[0] < 0 <= P2[0]:
|
|
FM = '-'
|
|
elif P1[0] > 0 and P2[0] > 0:
|
|
FM = 'U'
|
|
elif P1[0] <= 0 < P2[0]:
|
|
FM = '+'
|
|
elif P1[0] > 0 >= P2[0]:
|
|
FM = '+'
|
|
|
|
print ("fmpicker: Found polarity %s" % FM)
|
|
|
|
if iplot > 1:
|
|
plt.figure(iplot)
|
|
plt.subplot(2, 1, 1)
|
|
plt.plot(t, xraw, 'k')
|
|
p1, = plt.plot([Pick, Pick], [max(xraw), -max(xraw)], 'b', linewidth=2)
|
|
if P1 is not None:
|
|
p2, = plt.plot(t[islope1], xraw[islope1])
|
|
p3, = plt.plot(zc1, np.zeros(len(zc1)), '*g', markersize=14)
|
|
p4, = plt.plot(t[islope1], datafit1, '--g', linewidth=2)
|
|
plt.legend([p1, p2, p3, p4],
|
|
['Pick', 'Slope Window', 'Zero Crossings', 'Slope'],
|
|
loc='best')
|
|
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
|
|
ax = plt.gca()
|
|
plt.yticks([])
|
|
plt.title('First-Motion Determination, %s, Unfiltered Data' % Xraw[
|
|
0].stats.station)
|
|
|
|
plt.subplot(2, 1, 2)
|
|
plt.title('First-Motion Determination, Filtered Data')
|
|
plt.plot(t, xfilt, 'k')
|
|
p1, = plt.plot([Pick, Pick], [max(xfilt), -max(xfilt)], 'b',
|
|
linewidth=2)
|
|
if P2 is not None:
|
|
p2, = plt.plot(t[islope2], xfilt[islope2])
|
|
p3, = plt.plot(zc2, np.zeros(len(zc2)), '*g', markersize=14)
|
|
p4, = plt.plot(t[islope2], datafit2, '--g', linewidth=2)
|
|
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
|
|
ax = plt.gca()
|
|
plt.xlabel('Time [s] since %s' % Xraw[0].stats.starttime)
|
|
plt.yticks([])
|
|
plt.show()
|
|
raw_input()
|
|
plt.close(iplot)
|
|
|
|
return FM
|
|
|
|
|
|
def crossings_nonzero_all(data):
|
|
pos = data > 0
|
|
npos = ~pos
|
|
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
|
|
|
|
|
def symmetrize_error(dte, dtl):
|
|
"""
|
|
takes earliest and latest possible pick and returns the symmetrized pick
|
|
uncertainty value
|
|
:param dte: relative lower uncertainty
|
|
:param dtl: relative upper uncertainty
|
|
:return: symmetrized error
|
|
"""
|
|
return (dte + 2 * dtl) / 3
|
|
|
|
|
|
def getSNR(X, TSNR, t1, tracenum=0):
|
|
'''
|
|
Function to calculate SNR of certain part of seismogram relative to
|
|
given time (onset) out of given noise and signal windows. A safety gap
|
|
between noise and signal part can be set. Returns SNR and SNR [dB] and
|
|
noiselevel.
|
|
|
|
:param: X, time series (seismogram)
|
|
:type: `~obspy.core.stream.Stream`
|
|
|
|
:param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR
|
|
:type: tuple (T_noise, T_gap, T_signal)
|
|
|
|
:param: t1, initial time (onset) from which noise and signal windows are calculated
|
|
:type: float
|
|
'''
|
|
|
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
|
|
|
x = X[tracenum].data
|
|
npts = X[tracenum].stats.npts
|
|
sr = X[tracenum].stats.sampling_rate
|
|
dt = X[tracenum].stats.delta
|
|
t = np.arange(0, npts / sr, dt)
|
|
|
|
# get noise window
|
|
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
|
|
|
|
# get signal window
|
|
isignal = getsignalwin(t, t1, TSNR[2])
|
|
if np.size(inoise) < 1:
|
|
print ("getSNR: Empty array inoise, check noise window!")
|
|
return
|
|
elif np.size(isignal) < 1:
|
|
print ("getSNR: Empty array isignal, check signal window!")
|
|
return
|
|
|
|
# demean over entire waveform
|
|
x = x - np.mean(x[inoise])
|
|
|
|
# calculate ratios
|
|
# noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
|
# signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
|
|
|
noiselevel = np.abs(x[inoise]).max()
|
|
signallevel = np.abs(x[isignal]).max()
|
|
|
|
SNR = signallevel / noiselevel
|
|
SNRdB = 10 * np.log10(SNR)
|
|
|
|
return SNR, SNRdB, noiselevel
|
|
|
|
|
|
def getnoisewin(t, t1, tnoise, tgap):
|
|
'''
|
|
Function to extract indeces of data out of time series for noise calculation.
|
|
Returns an array of indeces.
|
|
|
|
:param: t, array of time stamps
|
|
:type: numpy array
|
|
|
|
:param: t1, time from which relativ to it noise window is extracted
|
|
:type: float
|
|
|
|
:param: tnoise, length of time window [s] for noise part extraction
|
|
:type: float
|
|
|
|
:param: tgap, safety gap between t1 (onset) and noise window to
|
|
ensure, that noise window contains no signal
|
|
:type: float
|
|
'''
|
|
|
|
# get noise window
|
|
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
|
& (t >= max([t1 - tnoise - tgap, 0])))
|
|
if np.size(inoise) < 1:
|
|
print ("getnoisewin: Empty array inoise, check noise window!")
|
|
|
|
return inoise
|
|
|
|
|
|
def getsignalwin(t, t1, tsignal):
|
|
'''
|
|
Function to extract data out of time series for signal level calculation.
|
|
Returns an array of indeces.
|
|
|
|
:param: t, array of time stamps
|
|
:type: numpy array
|
|
|
|
:param: t1, time from which relativ to it signal window is extracted
|
|
:type: float
|
|
|
|
:param: tsignal, length of time window [s] for signal level calculation
|
|
:type: float
|
|
'''
|
|
|
|
# get signal window
|
|
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
|
& (t >= t1))
|
|
if np.size(isignal) < 1:
|
|
print ("getsignalwin: Empty array isignal, check signal window!")
|
|
|
|
return isignal
|
|
|
|
|
|
def getResolutionWindow(snr):
|
|
"""
|
|
Number -> Float
|
|
produce the half of the time resolution window width from given SNR
|
|
value
|
|
SNR >= 3 -> 2 sec HRW
|
|
3 > SNR >= 2 -> 5 sec MRW
|
|
2 > SNR >= 1.5 -> 10 sec LRW
|
|
1.5 > SNR -> 15 sec VLRW
|
|
see also Diehl et al. 2009
|
|
|
|
>>> getResolutionWindow(0.5)
|
|
7.5
|
|
>>> getResolutionWindow(1.8)
|
|
5.0
|
|
>>> getResolutionWindow(2.3)
|
|
2.5
|
|
>>> getResolutionWindow(4)
|
|
1.0
|
|
>>> getResolutionWindow(2)
|
|
2.5
|
|
"""
|
|
|
|
res_wins = {'HRW': 2., 'MRW': 5., 'LRW': 10., 'VLRW': 15.}
|
|
|
|
if snr < 1.5:
|
|
time_resolution = res_wins['VLRW']
|
|
elif snr < 2.:
|
|
time_resolution = res_wins['LRW']
|
|
elif snr < 3.:
|
|
time_resolution = res_wins['MRW']
|
|
else:
|
|
time_resolution = res_wins['HRW']
|
|
|
|
return time_resolution / 2
|
|
|
|
|
|
def select_for_phase(st, phase):
|
|
'''
|
|
takes a STream object and a phase name and returns that particular component
|
|
which presumably shows the chosen PHASE best
|
|
|
|
:param st: stream object containing one or more component[s]
|
|
:type st: `~obspy.core.stream.Stream`
|
|
:param phase: label of the phase for which the stream selection is carried
|
|
out; 'P' or 'S'
|
|
:type phase: str
|
|
:return:
|
|
'''
|
|
from pylot.core.util.defaults import COMPNAME_MAP
|
|
|
|
sel_st = Stream()
|
|
if phase.upper() == 'P':
|
|
comp = 'Z'
|
|
alter_comp = COMPNAME_MAP[comp]
|
|
sel_st += st.select(component=comp)
|
|
sel_st += st.select(component=alter_comp)
|
|
elif phase.upper() == 'S':
|
|
comps = 'NE'
|
|
for comp in comps:
|
|
alter_comp = COMPNAME_MAP[comp]
|
|
sel_st += st.select(component=comp)
|
|
sel_st += st.select(component=alter_comp)
|
|
else:
|
|
raise TypeError('Unknown phase label: {0}'.format(phase))
|
|
return sel_st
|
|
|
|
|
|
def wadaticheck(pickdic, dttolerance, iplot):
|
|
'''
|
|
Function to calculate Wadati-diagram from given P and S onsets in order
|
|
to detect S pick outliers. If a certain S-P time deviates by dttolerance
|
|
from regression of S-P time the S pick is marked and down graded.
|
|
|
|
: param: pickdic, dictionary containing picks and quality parameters
|
|
: type: dictionary
|
|
|
|
: param: dttolerance, maximum adjusted deviation of S-P time from
|
|
S-P time regression
|
|
: type: float
|
|
|
|
: param: iplot, if iplot > 1, Wadati diagram is shown
|
|
: type: int
|
|
'''
|
|
|
|
checkedonsets = pickdic
|
|
|
|
# search for good quality picks and calculate S-P time
|
|
Ppicks = []
|
|
Spicks = []
|
|
SPtimes = []
|
|
for key in pickdic:
|
|
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
|
# calculate S-P time
|
|
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
|
# add S-P time to dictionary
|
|
pickdic[key]['SPt'] = spt
|
|
# add P onsets and corresponding S-P times to list
|
|
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
|
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
|
Ppicks.append(UTCPpick.timestamp)
|
|
Spicks.append(UTCSpick.timestamp)
|
|
SPtimes.append(spt)
|
|
|
|
if len(SPtimes) >= 3:
|
|
# calculate slope
|
|
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
|
wdfit = np.polyval(p1, Ppicks)
|
|
wfitflag = 0
|
|
|
|
# calculate vp/vs ratio before check
|
|
vpvsr = p1[0] + 1
|
|
print ("###############################################")
|
|
print ("wadaticheck: Average Vp/Vs ratio before check: %f" % vpvsr)
|
|
|
|
checkedPpicks = []
|
|
checkedSpicks = []
|
|
checkedSPtimes = []
|
|
# calculate deviations from Wadati regression
|
|
ii = 0
|
|
ibad = 0
|
|
for key in pickdic:
|
|
if pickdic[key].has_key('SPt'):
|
|
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
|
ii += 1
|
|
# check, if deviation is larger than adjusted
|
|
if wddiff > dttolerance:
|
|
# mark onset and downgrade S-weight to 9
|
|
# (not used anymore)
|
|
marker = 'badWadatiCheck'
|
|
pickdic[key]['S']['weight'] = 9
|
|
ibad += 1
|
|
else:
|
|
marker = 'goodWadatiCheck'
|
|
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
|
checkedPpicks.append(checkedPpick.timestamp)
|
|
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
|
checkedSpicks.append(checkedSpick.timestamp)
|
|
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
|
checkedSPtimes.append(checkedSPtime)
|
|
|
|
pickdic[key]['S']['marked'] = marker
|
|
|
|
if len(checkedPpicks) >= 3:
|
|
# calculate new slope
|
|
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
|
wdfit2 = np.polyval(p2, checkedPpicks)
|
|
|
|
# calculate vp/vs ratio after check
|
|
cvpvsr = p2[0] + 1
|
|
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
|
|
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
|
|
else:
|
|
print ("###############################################")
|
|
print ("wadatacheck: Not enough checked S-P times available!")
|
|
print ("Skip Wadati check!")
|
|
|
|
checkedonsets = pickdic
|
|
|
|
else:
|
|
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
|
print ("Skip wadati check!")
|
|
wfitflag = 1
|
|
|
|
# plot results
|
|
if iplot > 1:
|
|
plt.figure(iplot)
|
|
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
|
if wfitflag == 0:
|
|
f2, = plt.plot(Ppicks, wdfit, 'k')
|
|
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
|
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
|
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
|
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
|
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1',
|
|
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
|
else:
|
|
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
|
|
|
plt.ylabel('S-P Times [s]')
|
|
plt.xlabel('P Times [s]')
|
|
plt.show()
|
|
raw_input()
|
|
plt.close(iplot)
|
|
|
|
return checkedonsets
|
|
|
|
|
|
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
|
'''
|
|
Function to detect spuriously picked noise peaks.
|
|
Uses RMS trace of all 3 components (if available) to determine,
|
|
how many samples [per cent] after P onset are below certain
|
|
threshold, calculated from noise level times noise factor.
|
|
|
|
: param: X, time series (seismogram)
|
|
: type: `~obspy.core.stream.Stream`
|
|
|
|
: param: pick, initial (AIC) P onset time
|
|
: type: float
|
|
|
|
: param: TSNR, length of time windows around initial pick [s]
|
|
: type: tuple (T_noise, T_gap, T_signal)
|
|
|
|
: param: minsiglength, minium required signal length [s] to
|
|
declare pick as P onset
|
|
: type: float
|
|
|
|
: param: nfac, noise factor (nfac * noise level = threshold)
|
|
: type: float
|
|
|
|
: param: minpercent, minimum required percentage of samples
|
|
above calculated threshold
|
|
: type: float
|
|
|
|
: param: iplot, if iplot > 1, results are shown in figure
|
|
: type: int
|
|
'''
|
|
|
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
|
|
|
print ("Checking signal length ...")
|
|
|
|
if len(X) > 1:
|
|
# all three components available
|
|
# make sure, all components have equal lengths
|
|
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
|
x1 = X[0][0:ilen]
|
|
x2 = X[1][0:ilen]
|
|
x3 = X[2][0:ilen]
|
|
# get RMS trace
|
|
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
|
|
else:
|
|
x1 = X[0].data
|
|
rms = np.sqrt(np.power(2, x1))
|
|
|
|
t = np.arange(0, ilen / X[0].stats.sampling_rate,
|
|
X[0].stats.delta)
|
|
|
|
# get noise window in front of pick plus saftey gap
|
|
inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1])
|
|
# get signal window
|
|
isignal = getsignalwin(t, pick, minsiglength)
|
|
# calculate minimum adjusted signal level
|
|
minsiglevel = max(rms[inoise]) * nfac
|
|
# minimum adjusted number of samples over minimum signal level
|
|
minnum = len(isignal) * minpercent / 100
|
|
# get number of samples above minimum adjusted signal level
|
|
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
|
|
|
|
if numoverthr >= minnum:
|
|
print ("checksignallength: Signal reached required length.")
|
|
returnflag = 1
|
|
else:
|
|
print ("checksignallength: Signal shorter than required minimum signal length!")
|
|
print ("Presumably picked noise peak, pick is rejected!")
|
|
print ("(min. signal length required: %s s)" % minsiglength)
|
|
returnflag = 0
|
|
|
|
if iplot == 2:
|
|
plt.figure(iplot)
|
|
p1, = plt.plot(t, rms, 'k')
|
|
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
|
p3, = plt.plot(t[isignal], rms[isignal], 'r')
|
|
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
|
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
|
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
|
|
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window',
|
|
'RMS Signal Window', 'Minimum Signal Level',
|
|
'Onset'], loc='best')
|
|
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
|
plt.ylabel('Counts')
|
|
plt.title('Check for Signal Length, Station %s' % X[0].stats.station)
|
|
plt.yticks([])
|
|
plt.show()
|
|
raw_input()
|
|
plt.close(iplot)
|
|
|
|
return returnflag
|
|
|
|
|
|
def checkPonsets(pickdic, dttolerance, iplot):
|
|
'''
|
|
Function to check statistics of P-onset times: Control deviation from
|
|
median (maximum adjusted deviation = dttolerance) and apply pseudo-
|
|
bootstrapping jackknife.
|
|
|
|
: param: pickdic, dictionary containing picks and quality parameters
|
|
: type: dictionary
|
|
|
|
: param: dttolerance, maximum adjusted deviation of P-onset time from
|
|
median of all P onsets
|
|
: type: float
|
|
|
|
: param: iplot, if iplot > 1, Wadati diagram is shown
|
|
: type: int
|
|
'''
|
|
|
|
checkedonsets = pickdic
|
|
|
|
# search for good quality P picks
|
|
Ppicks = []
|
|
stations = []
|
|
for key in pickdic:
|
|
if pickdic[key]['P']['weight'] < 4:
|
|
# add P onsets to list
|
|
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
|
Ppicks.append(UTCPpick.timestamp)
|
|
stations.append(key)
|
|
|
|
# apply jackknife bootstrapping on variance of P onsets
|
|
print ("###############################################")
|
|
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
|
|
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
|
# get pseudo variances smaller than average variances
|
|
# (times safety factor), these picks passed jackknife test
|
|
ij = np.where(PHI_pseudo <= 2 * xjack)
|
|
# these picks did not pass jackknife test
|
|
badjk = np.where(PHI_pseudo > 2 * xjack)
|
|
badjkstations = np.array(stations)[badjk]
|
|
print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
|
|
|
|
# calculate median from these picks
|
|
pmedian = np.median(np.array(Ppicks)[ij])
|
|
# find picks that deviate less than dttolerance from median
|
|
ii = np.where(abs(np.array(Ppicks)[ij] - pmedian) <= dttolerance)
|
|
jj = np.where(abs(np.array(Ppicks)[ij] - pmedian) > dttolerance)
|
|
igood = ij[0][ii]
|
|
ibad = ij[0][jj]
|
|
goodstations = np.array(stations)[igood]
|
|
badstations = np.array(stations)[ibad]
|
|
|
|
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
|
|
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
|
|
+ len(badjkstations), len(stations)))
|
|
|
|
goodmarker = 'goodPonsetcheck'
|
|
badmarker = 'badPonsetcheck'
|
|
badjkmarker = 'badjkcheck'
|
|
for i in range(0, len(goodstations)):
|
|
# mark P onset as checked and keep P weight
|
|
pickdic[goodstations[i]]['P']['marked'] = goodmarker
|
|
for i in range(0, len(badstations)):
|
|
# mark P onset and downgrade P weight to 9
|
|
# (not used anymore)
|
|
pickdic[badstations[i]]['P']['marked'] = badmarker
|
|
pickdic[badstations[i]]['P']['weight'] = 9
|
|
for i in range(0, len(badjkstations)):
|
|
# mark P onset and downgrade P weight to 9
|
|
# (not used anymore)
|
|
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
|
|
pickdic[badjkstations[i]]['P']['weight'] = 9
|
|
|
|
checkedonsets = pickdic
|
|
|
|
if iplot > 1:
|
|
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
|
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
|
|
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g',
|
|
linewidth=2)
|
|
for i in range(0, len(Ppicks)):
|
|
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
|
|
|
plt.xlabel('Number of P Picks')
|
|
plt.ylabel('Onset Time [s] from 1.1.1970')
|
|
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'],
|
|
loc='best')
|
|
plt.title('Check P Onsets')
|
|
plt.show()
|
|
raw_input()
|
|
|
|
return checkedonsets
|
|
|
|
|
|
def jackknife(X, phi, h):
|
|
'''
|
|
Function to calculate the Jackknife Estimator for a given quantity,
|
|
special type of boot strapping. Returns the jackknife estimator PHI_jack
|
|
the pseudo values PHI_pseudo and the subgroup parameters PHI_sub.
|
|
|
|
: param: X, given quantity
|
|
: type: list
|
|
|
|
: param: phi, chosen estimator, choose between:
|
|
"MED" for median
|
|
"MEA" for arithmetic mean
|
|
"VAR" for variance
|
|
: type: string
|
|
|
|
: param: h, size of subgroups, optinal, default = 1
|
|
: type: integer
|
|
'''
|
|
|
|
PHI_jack = None
|
|
PHI_pseudo = None
|
|
PHI_sub = None
|
|
|
|
# determine number of subgroups
|
|
g = len(X) / h
|
|
|
|
if type(g) is not int:
|
|
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
|
print ("Choose another size for subgroups!")
|
|
return PHI_jack, PHI_pseudo, PHI_sub
|
|
else:
|
|
# estimator of undisturbed spot check
|
|
if phi == 'MEA':
|
|
phi_sc = np.mean(X)
|
|
elif phi == 'VAR':
|
|
phi_sc = np.var(X)
|
|
elif phi == 'MED':
|
|
phi_sc = np.median(X)
|
|
|
|
# estimators of subgroups
|
|
PHI_pseudo = []
|
|
PHI_sub = []
|
|
for i in range(0, g - 1):
|
|
# subgroup i, remove i-th sample
|
|
xx = X[:]
|
|
del xx[i]
|
|
# calculate estimators of disturbed spot check
|
|
if phi == 'MEA':
|
|
phi_sub = np.mean(xx)
|
|
elif phi == 'VAR':
|
|
phi_sub = np.var(xx)
|
|
elif phi == 'MED':
|
|
phi_sub = np.median(xx)
|
|
|
|
PHI_sub.append(phi_sub)
|
|
# pseudo values
|
|
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
|
|
PHI_pseudo.append(phi_pseudo)
|
|
# jackknife estimator
|
|
PHI_jack = np.mean(PHI_pseudo)
|
|
|
|
return PHI_jack, PHI_pseudo, PHI_sub
|
|
|
|
|
|
def checkZ4S(X, pick, zfac, checkwin, iplot):
|
|
'''
|
|
Function to compare energy content of vertical trace with
|
|
energy content of horizontal traces to detect spuriously
|
|
picked S onsets instead of P onsets. Usually, P coda shows
|
|
larger longitudal energy on vertical trace than on horizontal
|
|
traces, where the transversal energy is larger within S coda.
|
|
Be careful: there are special circumstances, where this is not
|
|
the case!
|
|
|
|
: param: X, fitered(!) time series, three traces
|
|
: type: `~obspy.core.stream.Stream`
|
|
|
|
: param: pick, initial (AIC) P onset time
|
|
: type: float
|
|
|
|
: param: zfac, factor for threshold determination,
|
|
vertical energy must exceed coda level times zfac
|
|
to declare a pick as P onset
|
|
: type: float
|
|
|
|
: param: checkwin, window length [s] for calculating P-coda
|
|
energy content
|
|
: type: float
|
|
|
|
: param: iplot, if iplot > 1, energy content and threshold
|
|
are shown
|
|
: type: int
|
|
'''
|
|
|
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
|
|
|
print ("Check for spuriously picked S onset instead of P onset ...")
|
|
|
|
returnflag = 0
|
|
|
|
# split components
|
|
zdat = X.select(component="Z")
|
|
if len(zdat) == 0: # check for other components
|
|
zdat = X.select(component="3")
|
|
edat = X.select(component="E")
|
|
if len(edat) == 0: # check for other components
|
|
edat = X.select(component="2")
|
|
ndat = X.select(component="N")
|
|
if len(ndat) == 0: # check for other components
|
|
ndat = X.select(component="1")
|
|
|
|
z = zdat[0].data
|
|
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
|
|
zdat[0].stats.delta)
|
|
|
|
# calculate RMS trace from vertical component
|
|
absz = np.sqrt(np.power(z, 2))
|
|
# calculate RMS trace from both horizontal traces
|
|
# make sure, both traces have equal lengths
|
|
lene = len(edat[0].data)
|
|
lenn = len(ndat[0].data)
|
|
minlen = min([lene, lenn])
|
|
absen = np.sqrt(np.power(edat[0].data[0:minlen - 1], 2) \
|
|
+ np.power(ndat[0].data[0:minlen - 1], 2))
|
|
|
|
# get signal window
|
|
isignal = getsignalwin(tz, pick, checkwin)
|
|
|
|
# calculate energy levels
|
|
zcodalevel = max(absz[isignal])
|
|
encodalevel = max(absen[isignal])
|
|
|
|
# calculate threshold
|
|
minsiglevel = encodalevel * zfac
|
|
|
|
# vertical P-coda level must exceed horizontal P-coda level
|
|
# zfac times encodalevel
|
|
if zcodalevel < minsiglevel:
|
|
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
|
else:
|
|
print ("checkZ4S: P onset passes checkZ4S test!")
|
|
returnflag = 1
|
|
|
|
if iplot > 1:
|
|
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
|
edat[0].stats.delta)
|
|
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
|
ndat[0].stats.delta)
|
|
plt.plot(tz, z / max(z), 'k')
|
|
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
|
|
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
|
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
|
|
plt.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k')
|
|
plt.plot(tn[isignal], ndat[0].data[isignal] / max(ndat[0].data) + 2, 'r')
|
|
plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]],
|
|
[minsiglevel / max(z), minsiglevel / max(z)], 'g',
|
|
linewidth=2)
|
|
plt.xlabel('Time [s] since %s' % zdat[0].stats.starttime)
|
|
plt.ylabel('Normalized Counts')
|
|
plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel,
|
|
ndat[0].stats.channel])
|
|
plt.title('CheckZ4S, Station %s' % zdat[0].stats.station)
|
|
plt.show()
|
|
raw_input()
|
|
|
|
return returnflag
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import doctest
|
|
|
|
doctest.testmod()
|