comparing pdf represented picks should be easy, thus objects returning everything needed are implemented; histograms and other plots are planned next
137 lines
4.5 KiB
Python
137 lines
4.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import copy
|
|
|
|
from obspy import read_events
|
|
|
|
from pylot.core.read.io import picks_from_evt
|
|
from pylot.core.util.pdf import ProbabilityDensityFunction
|
|
from pylot.core.util.version import get_git_version as _getVersionString
|
|
|
|
__version__ = _getVersionString()
|
|
__author__ = 'sebastianw'
|
|
|
|
|
|
class Comparison(object):
|
|
"""
|
|
A Comparison object contains information on the evaluated picks' probability
|
|
density function and compares these in terms of building the difference of
|
|
compared pick sets. The results can be displayed as histograms showing its
|
|
properties.
|
|
"""
|
|
def __init__(self, **kwargs):
|
|
names = list()
|
|
self._pdfs = dict()
|
|
for name, fn in kwargs:
|
|
self._pdfs[name] = PDFDictionary.from_quakeml(fn)
|
|
names.append(name)
|
|
if len(names) > 2:
|
|
raise ValueError('Comparison is only defined for two '
|
|
'arguments!')
|
|
self._names = names
|
|
|
|
def __nonzero__(self):
|
|
if not len(self.names) == 2 or not self._pdfs:
|
|
return False
|
|
return True
|
|
|
|
def get(self, name):
|
|
return self._pdfs[name]
|
|
|
|
@property
|
|
def names(self):
|
|
return self._names
|
|
|
|
@names.setter
|
|
def names(self, names):
|
|
assert isinstance(names, list) and len(names) == 2, 'variable "names"' \
|
|
' is either not a' \
|
|
' list or its ' \
|
|
'length is not 2:' \
|
|
'names : {names}'.format(names=names)
|
|
self._names = names
|
|
|
|
def compare_picksets(self):
|
|
"""
|
|
Compare two picksets A and B and return a dictionary compiling the results.
|
|
Comparison is carried out with the help of pdf representation of the picks
|
|
and a probabilistic approach to the time difference of two onset
|
|
measurements.
|
|
:param a: filename for pickset A
|
|
:type a: str
|
|
:param b: filename for pickset B
|
|
:type b: str
|
|
:return: dictionary containing the resulting comparison pdfs for all picks
|
|
:rtype: dict
|
|
"""
|
|
compare_pdfs = dict()
|
|
|
|
pdf_a = self.get(self.names[0])
|
|
pdf_b = self.get(self.names[1])
|
|
|
|
for station, phases in pdf_a.items():
|
|
if station in pdf_b.keys():
|
|
compare_pdf = dict()
|
|
for phase in phases:
|
|
if phase in pdf_b[station].keys():
|
|
compare_pdf[phase] = phases[phase] - pdf_b[station][
|
|
phase]
|
|
if compare_pdf is not None:
|
|
compare_pdfs[station] = compare_pdf
|
|
|
|
return compare_pdfs
|
|
|
|
|
|
class PDFDictionary(object):
|
|
"""
|
|
A PDFDictionary is a dictionary like object containing structured data on
|
|
the probability density function of seismic phase onsets.
|
|
"""
|
|
def __init__(self, data):
|
|
self._pickdata = data
|
|
|
|
def __nonzero__(self):
|
|
if len(self.pick_data) < 1:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
@property
|
|
def pick_data(self):
|
|
return self._pickdata
|
|
|
|
@pick_data.setter
|
|
def pick_data(self, data):
|
|
self._pickdata = data
|
|
|
|
@classmethod
|
|
def from_quakeml(self, fn):
|
|
cat = read_events(fn)
|
|
if len(cat) > 1:
|
|
raise NotImplementedError('reading more than one event at the same '
|
|
'time is not implemented yet! Sorry!')
|
|
self.pick_data = picks_from_evt(cat[0])
|
|
|
|
def pdf_data(self, type='exp'):
|
|
"""
|
|
Returns probabiliy density function dictionary containing the
|
|
representation of the actual pick_data.
|
|
:param type: type of the returned
|
|
`~pylot.core.util.pdf.ProbabilityDensityFunction` object
|
|
:type type: str
|
|
:return: a dictionary containing the picks represented as pdfs
|
|
"""
|
|
|
|
pdf_picks = copy.deepcopy(self.pick_data)
|
|
|
|
for station, phases in pdf_picks.items():
|
|
for phase, values in phases.items():
|
|
phases[phase] = ProbabilityDensityFunction.fromPick(values['epp'],
|
|
values['mpp'],
|
|
values['lpp'],
|
|
type=type)
|
|
|
|
return pdf_picks
|
|
|