pylot/pylot/core/pick/autopick.py
Darius Arnold b7d3568498 [bugfix] Taupy used even if disabled when p start time > 0
If Taupy was disabled, but pstart was larger than zero, the and would lead to the function that modifies starttimes not exiting. This resulted in taupy being used even though it was disabled when the p starttime was above 0.
2018-08-09 10:03:25 +02:00

2262 lines
111 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Function to run automated picking algorithms using AIC,
HOS and AR prediction. Uses objects CharFuns and Picker and
function conglomerate utils.
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import traceback
import matplotlib.pyplot as plt
import numpy as np
from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
from pylot.core.pick.picker import AICPicker, PragPicker
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
getSNR, fmpicker, checkPonsets, wadaticheck, get_pickparams, get_quality_class
from pylot.core.util.utils import getPatternLine, gen_Pool,\
real_Bool, identifyPhaseID, real_None, correct_iplot
from obspy.taup import TauPyModel
from obspy import Trace
def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None, ncores=0, metadata=None, origin=None):
"""
:param data: ObsPy stream object containing waveform data of all stations in the event
:type data: ~obspy.core.stream.Stream
:param param: PylotParameter object containing parameters used for picking
:type param: pylot.core.io.inputs.PylotParameter
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, Boolean or String
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param fig_dict_wadatijack: dictionary containing Matplotlib figures used for plotting jackknife-, wadati- and
mediantest results
:type fig_dict_wadatijack: dict
:param ncores: number of cores used for parallel processing. Default (0) uses all available cores
:type ncores: int
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary containing picked stations and pick information
:rtype: dictionary
"""
stations = []
all_onsets = {}
input_tuples = []
try:
iplot = int(iplot)
except ValueError:
if iplot is True or iplot == 'True':
iplot = 2
else:
iplot = 0
# get some parameters for quality control from
# parameter input file (usually pylot.in).
wdttolerance = param.get('wdttolerance')
mdttolerance = param.get('mdttolerance')
jackfactor = param.get('jackfactor')
apverbose = param.get('apverbose')
for n in range(len(data)):
station = data[n].stats.station
if station not in stations:
stations.append(station)
else:
continue
for station in stations:
topick = data.select(station=station)
input_tuples.append((topick, param, apverbose, iplot, fig_dict, metadata, origin))
if iplot > 0:
print('iPlot Flag active: NO MULTIPROCESSING possible.')
ncores = 1
# rename ncores for string representation in case ncores == 0 (use all cores)
ncores_str = ncores if ncores != 0 else 'all available'
print('Autopickstation: Distribute autopicking for {} '
'stations on {} cores.'.format(len(input_tuples), ncores_str))
if ncores == 1:
results = serial_picking(input_tuples)
else:
results = parallel_picking(input_tuples, ncores)
for result, station in results:
if type(result) == dict:
all_onsets[station] = result
else:
if result is None:
result = 'Picker exited unexpectedly.'
print('Could not pick a station: {}\nReason: {}'.format(station, result))
# no Wadati/JK for single station (also valid for tuning mode)
if len(stations) == 1:
return all_onsets
# quality control
# median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, jackfactor, iplot, fig_dict_wadatijack)
# check S-P times (Wadati)
wadationsets = wadaticheck(jk_checked_onsets, wdttolerance, iplot, fig_dict_wadatijack)
return wadationsets
def serial_picking(input_tuples):
result = []
for input_tuple in input_tuples:
result.append(call_autopickstation(input_tuple))
return result
def parallel_picking(input_tuples, ncores):
pool = gen_Pool(ncores)
result = pool.imap_unordered(call_autopickstation, input_tuples)
pool.close()
return result
def call_autopickstation(input_tuple):
"""
helper function used for multiprocessing
:param input_tuple: contains all parameters used for autopicking
:type input_tuple: tuple
:return: dictionary containing P pick, S pick and station name
:rtype: dict
"""
wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin = input_tuple
if fig_dict:
print('Running in interactive mode')
# multiprocessing not possible with interactive plotting
try:
return autopickstation(wfstream, pickparam, verbose, fig_dict=fig_dict, iplot=iplot, metadata=metadata,
origin=origin)
except Exception as e:
tbe = traceback.format_exc()
return tbe, wfstream[0].stats.station
def get_source_coords(parser, station_id):
"""
retrieves station coordinates from metadata
:param parser: Parser object containing metadata read from inventory file
:type parser: ~obspy.io.xseed.parser.Parser
:param station_id: station id of which the coordinates should be retrieved, for example 'BW.RJOB..EHZ'. Only
network and station name is required, channel id (last part) is ignored.
:type station_id: str
:return: dictionary containing 'latitude', 'longitude', 'elevation' and 'local_depth' of station
:rtype: dict
"""
station_coords = None
try:
station_coords = parser.get_coordinates(station_id)
except Exception as e:
print('Could not get source coordinates for station {}: {}'.format(station_id, e))
return station_coords
class PickingParameters(object):
"""
Stores parameters used for picking a single station.
@DynamicAttrs (mark class so that PyCharm doesnt warn when accessing dynamically added attributes)
"""
def __init__(self, *args, **kwargs):
"""
Add dictionaries given as positional arguments and the keyword argument dictionary to the instance
as attributes. Positional arguments with types differing from dict are ignored.
"""
# add entries from dictionaries given as positional arguments
for arg in args:
if type(arg) == dict:
self.add_params_from_dict(arg)
# add values given as keyword arguments
self.add_params_from_dict(kwargs)
def add_params_from_dict(self, d):
"""
Add all key-value pairs from dictionary d to the class namespace as attributes.
:param d:
:type d: dict
:rtype: None
"""
for key, value in d.items():
setattr(self, key, value)
class PickingResults(dict):
"""
Used to store picking results.
PickingResults is a dict like class that adds attribute (dot) access to the dictionaries values.
"""
def __init__(self):
"""
Inits default values of picking results. Called to generate a clean
PickingResults instance with sensible defaults.
:return:
:rtype:
"""
# Magnitude parameters
self.Mo = None
self.Mw = None
# TODO What are those?
self.w0 = None
self.fc = None
self.Ao = None # Wood-Anderson peak-to-peak amplitude
# Station information
self.network = None
self.channel = None
# pick information
self.picker = 'auto' # type of pick
self.marked = []
# pick results
self.epp = None # earliest possible pick
self.mpp = None # most likely onset
self.lpp = None # latest possible pick
self.fm = 'N' # first motion polarity, can be set to 'U' (Up) or 'D' (Down)
self.snr = None # signal-to-noise ratio of onset
self.snrdb = None # signal-to-noise ratio of onset [dB]
self.spe = None # symmetrized picking error
self.weight = 4 # weight of onset
# to correctly provide dot access to dictionary attributes, all attribute access of the class is forwarded to the
# dictionary
def __getattr__(self, item):
"""Override getattr to return an AttributeError instead of a KeyError when the instance doesn't have the
attribute.
"""
try:
attr = dict.__getitem__(self, item)
except KeyError:
raise AttributeError('{classname} has no attribute {attrname}'.format(classname=self.__class__.__name__,
attrname=item))
return attr
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class PickingContainer:
"""
Keeps intermediary results and values during picking
"""
def __init__(self):
# flags for plotting
self.p_aic_plot_flag = 0
self.aicSflag = 0
self.Pflag = 0
self.Sflag = 0
class MissingTraceException(ValueError):
"""
Used to indicate missing traces in a obspy.core.stream.Stream object
"""
pass
class PickingFailedException(Exception):
"""
Raised when picking fails due to missing values etc.
"""
pass
class AutopickStation(object):
def __init__(self, wfstream, pickparam, verbose, iplot=0, fig_dict=None, metadata=None, origin=None):
"""
:param wfstream: stream object containing waveform of all traces
:type wfstream: ~obspy.core.stream.Stream
:param pickparam: container of picking parameters from input file, usually pylot.in
:type pickparam: pylot.core.io.inputs.PylotParameter
:param verbose: used to control output to log during picking. True = more information printed
:type verbose: bool
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, (Boolean or String)
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary-like object containing P pick, S pick and station name
:rtype:
"""
# save given parameters
self.wfstream = wfstream
self.pickparam = pickparam
self.verbose = verbose
self.iplot = correct_iplot(iplot)
self.fig_dict = real_None(fig_dict)
self.metadata = metadata
self.origin = origin
# initialize picking results
self.p_results = PickingResults()
self.s_results = PickingResults()
# intialize containers that keep intermediary values between picking P- and S phase and plotting
self.p_data = PickingContainer()
self.s_data = PickingContainer()
# extract additional information
pickparams = self.extract_pickparams(pickparam)
self.p_params, self.s_params, self.first_motion_params, self.signal_length_params = pickparams
# TODO get channelorder from the pylot preferences
self.channelorder = {'Z': 3, 'N': 1, 'E': 2}
self.station_name = wfstream[0].stats.station
self.network_name = wfstream[0].stats.network
self.station_id = '{}.{}'.format(self.network_name, self.station_name)
# save streams and traces
self.zstream, self.nstream, self.estream = self.get_components_from_waveformstream()
self.ztrace, self.ntrace, self.etrace = self.get_traces_from_streams()
# default values used in old autopickstation function
# #TODO way for user to set those
self.detrend_type = 'demean'
self.filter_type = 'bandpass'
self.zerophase = False
self.taper_max_percentage = 0.05
self.taper_type = 'hann'
# Used during picking to plot results
self.current_figure = None
self.current_linecolor = None
def horizontal_traces_exist(self):
"""
Return true when at least one horizontal trace exists
:rtype: bool
"""
if len(self.nstream) == len(self.estream) == 0:
return False
return True
def vprint(self, s):
"""Only print statement if verbose picking is set to true."""
if self.verbose:
print(s)
def extract_pickparams(self, pickparam):
"""
Get parameter names out of pickparam dictionary into PickingParameters objects and return them.
:return: PickingParameters objects containing 1. p pick parameters, 2. s pick parameters, 3. first motion determinatiion
parameters, 4. signal length parameters
:rtype: (PickingParameters, PickingParameters, PickingParameters, PickingParameters)
"""
# Define names of all parameters in different groups
p_parameter_names = 'algoP pstart pstop use_taup taup_model tlta tsnrz hosorder bpz1 bpz2 pickwinP aictsmooth tsmoothP ausP nfacP tpred1z tdet1z Parorder addnoise Precalcwin minAICPslope minAICPSNR timeerrorsP'.split(
' ')
s_parameter_names = 'algoS sstart sstop bph1 bph2 tsnrh pickwinS tpred1h tdet1h tpred2h tdet2h Sarorder aictsmoothS tsmoothS ausS minAICSslope minAICSSNR Srecalcwin nfacS timeerrorsS zfac'.split(
' ')
first_motion_names = 'minFMSNR fmpickwin minfmweight'.split(' ')
signal_length_names = 'minsiglength minpercent noisefactor'.split(' ')
# Get list of values from pickparam by name
p_parameter_values = map(pickparam.get, p_parameter_names)
s_parameter_values = map(pickparam.get, s_parameter_names)
fm_parameter_values = map(pickparam.get, first_motion_names)
sl_parameter_values = map(pickparam.get, signal_length_names)
# construct dicts from names and values
p_params = dict(zip(p_parameter_names, p_parameter_values))
s_params = dict(zip(s_parameter_names, s_parameter_values))
first_motion_params = dict(zip(first_motion_names, fm_parameter_values))
signal_length_params = dict(zip(signal_length_names, sl_parameter_values))
p_params['use_taup'] = real_Bool(p_params['use_taup'])
return PickingParameters(p_params), PickingParameters(s_params), PickingParameters(first_motion_params), PickingParameters(signal_length_params)
def get_components_from_waveformstream(self):
"""
Splits waveformstream into multiple components zdat, ndat, edat. For traditional orientation (ZNE) these contain
the vertical, north-south or east-west component. Otherwise they contain components numbered 123 with
orientation diverging from the traditional orientation.
:param waveformstream: Stream containing all three components for one station either by ZNE or 123 channel code
(mixture of both options is handled as well)
:type waveformstream: obspy.core.stream.Stream
:return: Tuple containing (z waveform, n waveform, e waveform) selected by the given channels. If no waveform
could be found for a given channel, an empty obspy Stream will be returned for that channel
:rtype: (obspy.core.stream.Stream, obspy.core.stream.Stream, obspy.core.stream.Stream)
"""
waveform_data = {}
for key in self.channelorder:
waveform_data[key] = self.wfstream.select(component=key) # try ZNE first
if len(waveform_data[key]) == 0:
waveform_data[key] = self.wfstream.select(component=str(self.channelorder[key])) # use 123 as second option
return waveform_data['Z'], waveform_data['N'], waveform_data['E']
def get_traces_from_streams(self):
"""
Extract Trace from Stream. If a component has no data, an empty trace will be returned
:return: Tuple of obspy.Trace instances in order ZNE
:rtype: (obspy.Trace)
"""
if len(self.zstream) == 0:
msg = 'No Z-component found for station {}. STOP'.format(self.wfstream[0].stats.station)
raise MissingTraceException(msg)
if not self.horizontal_traces_exist():
# Both horizontal traces missing, only P pick can be determined
msg = 'No horizontal traces found for station {}'.format(self.wfstream[0].stats.station)
self.vprint(msg)
return self.zstream[0], Trace(), Trace()
ztrace = self.zstream[0]
try:
ntrace = self.nstream[0]
except IndexError:
# if N trace is missing, copy E trace
self.nstream = self.estream
ntrace = self.nstream[0]
try:
# if E trace is missing, copy N trace
etrace = self.estream[0]
except IndexError:
self.estream = self.nstream
etrace = self.estream[0]
return ztrace, ntrace, etrace
def prepare_wfstream(self, wfstream, freqmin=None, freqmax=None):
"""
Prepare a waveformstream for picking by applying detrending, filtering and tapering. Creates a copy of the
waveform the leave the original unchanged.
:param wfstream: waveform stream
:type wfstream: obspy.core.stream.Stream
:param freqmin: Lower frequency of bandpass or highpass
:type freqmin: float
:param freqmax: Upper frequency of bandpass or lowpass
:type freqmax: float
:return: Tuple containing the changed waveform stream and the changed first trace of the stream
:rtype: (obspy.core.trace.Trace, obspy.core.stream.Stream)
"""
wfstream_copy = wfstream.copy()
trace_copy = wfstream[0].copy()
trace_copy.detrend(type=self.detrend_type)
trace_copy.filter(self.filter_type, freqmin=freqmin, freqmax=freqmax, zerophase=self.zerophase)
trace_copy.taper(max_percentage=self.taper_max_percentage, type=self.taper_type)
wfstream_copy[0].data = trace_copy.data
return trace_copy, wfstream_copy
def modify_starttimes_taupy(self):
"""
Calculate theoretical arrival times for a source at self.origin and a station at self.metadata. Modify
self.pstart and self.pstop so they are based on a time window around these theoretical arrival times.
:rtype: None
"""
def get_seed_id():
"""
Returns seed id of ztrace
:return: Seed id with format Network.Station.Location.Channel
:rtype: str
"""
stats = self.ztrace.stats
id = "{network}.{station}.{location}.{channel}"
id = id.format(network=stats.network, station=stats.station, location=stats.location, channel=stats.channel)
return id
def create_arrivals(metadata, origin, station_id, taup_model):
"""
Create List of arrival times for all phases for a given origin and station
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:param station_id: Station id with format NETWORKNAME.STATIONNAME
:type station_id: str
:param taup_model: Model name to use. See obspy.taup.tau.TauPyModel for options
:type taup_model: str
:return: List of Arrival objects
:rtype: obspy.taup.tau.Arrivals
:raises:
AttributeError when no metadata or source origins is given
"""
id = get_seed_id()
station_coords = metadata.get_coordinates(id)
source_origin = origin[0]
model = TauPyModel(taup_model)
arrivals = model.get_travel_times_geo(source_depth_in_km=source_origin.depth,
source_latitude_in_deg=source_origin.latitude,
source_longitude_in_deg=source_origin.longitude,
receiver_latitude_in_deg=station_coords['latitude'],
receiver_longitude_in_deg=station_coords['longitude'])
return arrivals
def first_PS_onsets(arrivals):
"""
Get first P and S onsets from arrivals list
:param arrivals: List of Arrival objects
:type arrivals: obspy.taup.tau.Arrivals
:return:
:rtype:
"""
phases = {'P': [], 'S': []}
# sort phases in P and S phases
for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS))
return estFirstP, estFirstS
if self.p_params.use_taup is False or not self.origin or not self.metadata:
# correct user mistake where a relative cuttime is selected (pstart < 0) but use of taupy is disabled/ has
# not the required parameters
if self.p_params.pstart < 0:
self.p_params.pstart = 0
return
print('autopickstation: use_taup flag active.')
# catch missing metadata or origin information. Onset calculation is stopped, given cuttimes are then used.
if not self.metadata:
raise AttributeError('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
if not self.origin:
raise AttributeError('No source origins given!')
arrivals = create_arrivals(self.metadata, self.origin, self.station_id, self.p_params.taup_model)
estFirstP, estFirstS = first_PS_onsets(arrivals)
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
self.p_params.pstart += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
self.p_params.pstop += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(self.p_params.pstart, self.p_params.pstop))
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
self.p_params.pstart = max(self.p_params.pstart, 0)
self.p_params.pstop = min(self.p_params.pstop, len(self.ztrace) * self.ztrace.stats.delta)
def autopickstation(self):
"""
Main function of autopickstation, which calculates P and S picks and returns them in a dictionary.
:return: dict with keys 'P', 'S', and 'station'.
P's value is a PickingResults instance containing P results.
S's value is a PickingResults instance containing S results.
station's value is the station name on which the picks were calculated.
:rtype: dict
"""
try:
self.pick_p_phase()
except MissingTraceException as mte:
print(mte)
except PickingFailedException as pfe:
print(pfe)
if self.horizontal_traces_exist() and self.p_results.weight is not None and self.p_results.weight < 4:
try:
self.pick_s_phase()
except MissingTraceException as mte:
print(mte)
except PickingFailedException as pfe:
print(pfe)
self.plot_pick_results()
self.finish_picking()
return [{'P': self.p_results, 'S':self.s_results}, self.ztrace.stats.station]
def finish_picking(self):
# calculate "real" onset times, save them in PickingResults
if self.p_results.lpp is not None and self.p_results.lpp == self.p_results.mpp:
self.p_results.lpp += self.ztrace.stats.delta
if self.p_results.epp is not None and self.p_results.epp == self.p_results.mpp:
self.p_results.epp -= self.ztrace.stats.delta
if self.p_results.mpp is not None and self.p_results.epp is not None and self.p_results.lpp is not None:
self.p_results.lpp = self.ztrace.stats.starttime + self.p_results.lpp
self.p_results.epp = self.ztrace.stats.starttime + self.p_results.epp
self.p_results.mpp = self.ztrace.stats.starttime + self.p_results.mpp
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iterative picking
self.p_results.lpp = self.ztrace.stats.starttime + self.p_params.timeerrorsP[3]
self.p_results.epp = self.ztrace.stats.starttime - self.p_params.timeerrorsP[3]
self.p_results.mpp = self.ztrace.stats.starttime
self.p_results.channel = self.ztrace.stats.channel
self.p_results.network = self.ztrace.stats.network
#
# S results
#
if not self.horizontal_traces_exist():
# no horizontal components means there is no S pick to be finished
return
if self.etrace:
hdat = self.etrace
elif self.ntrace:
hdat = self.ntrace
if self.s_results.lpp is not None and self.s_results.lpp == self.s_results.mpp:
self.s_results.lpp += hdat.stats.delta
if self.s_results.epp is not None and self.s_results.epp == self.s_results.mpp:
self.s_results.epp -= hdat.stats.delta
if self.s_results.mpp is not None and self.s_results.epp is not None and self.s_results.lpp is not None:
self.s_results.lpp = hdat.stats.starttime + self.s_results.lpp
self.s_results.epp = hdat.stats.starttime + self.s_results.epp
self.s_results.mpp = hdat.stats.starttime + self.s_results.mpp
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
self.s_results.lpp = hdat.stats.starttime + self.s_params.timeerrorsS[3]
self.s_results.epp = hdat.stats.starttime - self.s_params.timeerrorsS[3]
self.s_results.mpp = hdat.stats.starttime
self.s_results.channel = self.etrace.stats.channel
self.s_results.network = self.etrace.stats.network
self.s_results.fm = None # override default value 'N'
def plot_pick_results(self):
if self.iplot > 0:
# plot vertical trace
if self.fig_dict is None:
fig = plt.figure()
plt_flag = 1
linecolor = 'k'
else:
fig = self.fig_dict['mainFig']
linecolor = self.fig_dict['plot_style']['linecolor']['rgba_mpl']
plt_flag = 0
fig._tight = True
ax1 = fig.add_subplot(311)
tdata = np.linspace(start=0, stop=self.ztrace.stats.npts*self.ztrace.stats.delta, num=self.ztrace.stats.npts)
# plot tapered trace filtered with bpz2 filter settings
ax1.plot(tdata, self.tr_filt_z_bpz2.data/max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7, label='Data')
if self.p_results.weight < 4:
# plot CF of initial onset (HOScf or ARZcf)
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF()/max(self.cf1.getCF()), 'b', label='CF1')
if self.p_data.p_aic_plot_flag == 1:
aicpick = self.p_data.aicpick
refPpick = self.p_data.refPpick
# plot CF of precise pick (HOScf or ARZcf)
ax1.plot(self.cf2.getTimeArray(), self.cf2.getCF() / max(self.cf2.getCF()), 'm', label='CF2')
# plot inital P pick
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r', label='Initial P Onset')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [1, 1], 'r')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [-1, -1], 'r')
# plot precise P pick
ax1.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [1.3, 1.3], 'r', linewidth=2)
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [-1.3, -1.3], 'r', linewidth=2)
# plot latest possible P pick
ax1.plot([self.p_results.lpp, self.p_results.lpp], [-1.1, 1.1], 'r--', label='lpp')
# plot earliest possible P pick
ax1.plot([self.p_results.epp, self.p_results.epp], [-1.1, 1.1], 'r--', label='epp')
# add title to plot
title = '{station}, {channel}, P weight={pweight:d}, SNR={snr:7.2}, SNR[dB]={snrdb:7.2}, Polarity: {polarity}'
ax1.set_title(title.format(station=self.ztrace.stats.station,
channel=self.ztrace.stats.channel,
pweight=self.p_results.weight,
snr=self.p_results.snr,
snrdb=self.p_results.snrdb,
polarity=self.p_results.fm))
else:
title = '{channel}, P weight={pweight}, SNR=None, SNR[dB]=None'
ax1.set_title(title.format(channel=self.ztrace.stats.channel, pweight=self.p_results.weight))
ax1.legend(loc=1)
ax1.set_yticks([])
ax1.set_ylim([-1.5, 1.5])
ax1.set_ylabel('Normalized Counts')
if self.horizontal_traces_exist() and self.s_data.Sflag == 1:
# plot E trace
ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
th1data = np.linspace(0, self.etrace.stats.npts*self.etrace.stats.delta, self.etrace.stats.npts)
# plot filtered and tapered waveform
ax2.plot(th1data, self.etrace.data / max(self.etrace.data), color=linecolor, linewidth=0.7, label='Data')
if self.p_results.weight < 4:
# plot initial CF (ARHcf or AR3Ccf)
ax2.plot(self.arhcf1.getTimeArray(), self.arhcf1.getCF() / max(self.arhcf1.getCF()), 'b', label='CF1')
if self.s_data.aicSflag == 1 and self.s_results.weight <= 4:
aicarhpick = self.aicarhpick
refSpick = self.refSpick
# plot second cf, used for determing precise onset (ARHcf or AR3Ccf)
ax2.plot(self.arhcf2.getTimeArray(), self.arhcf2.getCF() / max(self.arhcf2.getCF()), 'm', label='CF2')
# plot preliminary onset time, calculated from CF1
ax2.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g', label='Initial S Onset')
ax2.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
ax2.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
# plot precise onset time, calculated from CF2
ax2.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax2.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
ax2.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
ax2.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
ax2.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
title = '{channel}, S weight={sweight}, SNR={snr:7.2}, SNR[dB]={snrdb:7.2}'
ax2.set_title(title.format(channel=self.etrace.stats.channel,
sweight=self.s_results.weight,
snr=self.s_results.snr,
snrdb=self.s_results.snrdb))
else:
title = '{channel}, S weight={sweight}, SNR=None, SNR[dB]=None'
ax2.set_title(title.format(channel=self.etrace.stats.channel, sweight=self.s_results.weight))
ax2.legend(loc=1)
ax2.set_yticks([])
ax2.set_ylim([-1.5, 1.5])
ax2.set_ylabel('Normalized Counts')
# plot N trace
ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
th2data= np.linspace(0, self.ntrace.stats.npts*self.ntrace.stats.delta, self.ntrace.stats.npts)
# plot trace
ax3.plot(th2data, self.ntrace.data / max(self.ntrace.data), color=linecolor, linewidth=0.7, label='Data')
if self.p_results.weight < 4:
p22, = ax3.plot(self.arhcf1.getTimeArray(), self.arhcf1.getCF() / max(self.arhcf1.getCF()), 'b', label='CF1')
if self.s_data.aicSflag == 1:
aicarhpick = self.aicarhpick
refSpick = self.refSpick
ax3.plot(self.arhcf2.getTimeArray(), self.arhcf2.getCF() / max(self.arhcf2.getCF()), 'm', label='CF2')
ax3.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g', label='Initial S Onset')
ax3.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
ax3.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
ax3.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2,
label='Final S Pick')
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
ax3.legend(loc=1)
ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5])
ax3.set_xlabel('Time [s] after %s' % self.ntrace.stats.starttime)
ax3.set_ylabel('Normalized Counts')
ax3.set_title(self.ntrace.stats.channel)
if plt_flag == 1:
fig.show()
try:
input()
except SyntaxError:
pass
plt.close(fig)
def _pick_p_quality_control(self, aicpick, z_copy, tr_filt):
"""
Quality control of first pick using minseglength and checkZ4S.
:param aicpick: Instance of AICPicker to run quality control on
:type aicpick: AICPicker
:param z_copy: Stream if vertical trace, data replaced with values from from initial CF (HOScf or ARHcf)
:type z_copy: obspy.core.stream.Stream
:param tr_filt: Filtered and tapered trace of vertical component
:type tr_filt: obspy.core.trace.trace
:return: Flag if P onset passed quality control, 1 if passed, 0 if failed.
:rtype: int
"""
self.set_current_figure('slength')
if aicpick.getpick() is None:
msg = "Bad initial (AIC) P-pick, skipping this onset!\nAIC-SNR={0}, AIC-Slope={1}counts/s\n " \
"(min. AIC-SNR={2}, min. AIC-Slope={3}counts/s)"
msg = msg.format(aicpick.getSNR(), aicpick.getSlope(), self.p_params.minAICPSNR, self.p_params.minAICPslope)
self.vprint(msg)
return 0
# Quality check initial pick with minimum signal length
z_copy[0].data = tr_filt.data # save filtered, tapered trace in z_copy stream object
zne = z_copy
if len(self.nstream) == 0 or len(self.estream) == 0:
msg = 'One or more horizontal component(s) missing!\n' \
'Signal length only checked on vertical component!\n' \
'Decreasing minsiglengh from {0} to {1}'\
.format(self.signal_length_params.minsiglength, self.signal_length_params.minsiglength / 2)
self.vprint(msg)
minsiglength = self.signal_length_params.minsiglength / 2
else:
# filter, taper other traces as well since signal length is compared on all traces
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
zne += trH1_filt
zne += trH2_filt
minsiglength = self.signal_length_params.minsiglength
Pflag = checksignallength(zne, aicpick.getpick(), self.p_params.tsnrz, minsiglength,
self.signal_length_params.noisefactor, self.signal_length_params.minpercent,
self.iplot, self.current_figure, self.current_linecolor)
if Pflag == 0:
self.p_results.marked = 'shortsignallength'
self.p_results.weight = 9
return 0
if self.nstream == self.estream:
# todo: old implementation skipped this test if one component was missing, why not use one component?
msg = 'One or more horizontal components missing!\n Skipping control function checkZ4S.'
self.vprint(msg)
return 1
if self.iplot > 1: self.set_current_figure('checkZ4s')
Pflag = checkZ4S(zne, aicpick.getpick(), self.s_params.zfac, self.p_params.tsnrz[2], self.iplot,
self.current_figure, self.current_linecolor)
if Pflag == 0:
self.p_results.marked = 'SinsteadP'
self.p_results.weight = 9
return 0
return 1
def pick_p_phase(self):
"""
Pick p phase, store results in self.p_results
:return: None
:raises:
MissingTraceException: If vertical trace is missing.
"""
msg = '##################################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=self.station_name, data=str(self.zstream))
self.vprint(msg)
tr_filt, z_copy = self.prepare_wfstream(self.zstream, self.p_params.bpz1[0], self.p_params.bpz1[1])
# save filtered trace in instance for later plotting
self.tr_filt_z_bpz2 = tr_filt
try:
# modify pstart, pstop to be around theoretical onset if taupy should be used, else does nothing
self.modify_starttimes_taupy()
except AttributeError as ae:
print(ae)
except MissingTraceException as mte:
print(mte)
cuttimes = self._calculate_cuttimes('P', 1)
# calculate first CF
if self.p_params.algoP == 'HOS':
self.cf1 = HOScf(z_copy, cuttimes, self.p_params.tlta, self.p_params.hosorder)
elif self.p_params.algoP == 'ARZ':
self.cf1 = ARZcf(z_copy, cuttimes, self.p_params.tpred1z, self.p_params.Parorder, self.p_params.tdet1z,
self.p_params.addnoise)
else:
self.cf1 = None
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
' is corrupted'.format(self.p_params.algoP)
# calculate AIC cf from first cf (either HOS or ARZ)
z_copy[0].data = self.cf1.getCF()
aiccf = AICcf(z_copy, cuttimes)
# get preliminary onset time from AIC-CF
self.set_current_figure('aicFig')
aicpick = AICPicker(aiccf, self.p_params.tsnrz, self.p_params.pickwinP, self.iplot,
Tsmooth=self.p_params.aictsmooth, fig=self.current_figure, linecolor=self.current_linecolor)
# save aicpick for plotting later
self.p_data.aicpick = aicpick
# add pstart and pstop to aic plot
if self.current_figure:
# TODO remove plotting from picking, make own plot function
for ax in self.current_figure.axes:
ax.vlines(self.p_params.pstart, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P start')
ax.vlines(self.p_params.pstop, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P stop')
ax.legend(loc=1)
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
# go on with processing if AIC onset passes quality control
slope = aicpick.getSlope()
if not slope: slope = 0
# todo why did picking fail was saved in the pick dictionary, should this be reimplemented?
if Pflag != 1:
raise PickingFailedException('AIC P onset quality control failed')
if slope <= self.p_params.minAICPslope:
error_msg = 'AIC P onset slope to small: got {}, min {}'.format(slope, self.p_params.minAICPslope)
raise PickingFailedException(error_msg)
if aicpick.getSNR() < self.p_params.minAICPSNR:
error_msg = 'AIC P onset SNR to small: got {}, min {}'.format(aicpick.getSNR(), self.p_params.minAICPSNR)
raise PickingFailedException(error_msg)
self.p_data.p_aic_plot_flag = 1
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering vertical trace...'.format(aicpick.getSlope(), aicpick.getSNR())
self.vprint(msg)
# refilter waveform with larger bandpass
tr_filt, z_copy = self.prepare_wfstream(self.zstream, freqmin=self.p_params.bpz2[0], freqmax=self.p_params.bpz2[1])
# save filtered trace in instance for later plotting
self.tr_filt_z_bpz2 = tr_filt
# determine new times around initial onset
cuttimes2 = self._calculate_cuttimes('P', 2)
if self.p_params.algoP == 'HOS':
self.cf2 = HOScf(z_copy, cuttimes2, self.p_params.tlta, self.p_params.hosorder)
elif self.p_params.algoP == 'ARZ':
self.cf2 = ARZcf(z_copy, cuttimes2, self.p_params.tpred2z, self.p_params.Parorder, self.p_params.tdet2z, self.p_params.addnoise)
else:
self.cf2 = None
assert isinstance(self.cf2, CharacteristicFunction), 'cf2 is not set correctly: maybe the algorithm name () is ' \
'corrupted'.format(self.p_params.algoP)
self.set_current_figure('refPpick')
# get refined onset time from CF2
refPpick = PragPicker(self.cf2, self.p_params.tsnrz, self.p_params.pickwinP, self.iplot, self.p_params.ausP,
self.p_params.tsmoothP, aicpick.getpick(), self.current_figure, self.current_linecolor)
# save PragPicker result for plotting
self.p_data.refPpick = refPpick
self.p_results.mpp = refPpick.getpick()
if self.p_results.mpp is None:
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n AIC-SNR={}, AIC-Slope={}counts/s\n' \
'(min. AIC-SNR={}, min. AIC-Slope={}counts/s)'
msg.format(aicpick.getSNR(), aicpick.getSlope(), self.p_params.minAICPSNR, self.p_params.minAICPslope)
self.vprint(msg)
self.s_data.Sflag = 0
raise PickingFailedException(msg)
# quality assessment, get earliest/latest pick and symmetrized uncertainty
#todo quality assessment in own function
self.set_current_figure('el_Ppick')
elpicker_results = earllatepicker(z_copy, self.p_params.nfacP, self.p_params.tsnrz, self.p_results.mpp,
self.iplot, fig=self.current_figure, linecolor=self.current_linecolor)
self.p_results.epp, self.p_results.lpp, self.p_results.spe = elpicker_results
snr_results = getSNR(z_copy, self.p_params.tsnrz, self.p_results.mpp)
self.p_results.snr, self.p_results.snrdb, _ = snr_results
# weight P-onset using symmetric error
self.p_results.weight = get_quality_class(self.p_results.spe, self.p_params.timeerrorsP)
if self.p_results.weight <= self.first_motion_params.minfmweight and self.p_results.snr >= self.first_motion_params.minFMSNR:
# if SNR is low enough, try to determine first motion of onset
self.set_current_figure('fm_picker')
self.p_results.fm = fmpicker(self.zstream, z_copy, self.first_motion_params.fmpickwin,
self.p_results.mpp, self.iplot, self.current_figure, self.current_linecolor)
msg = "autopickstation: P-weight: {}, SNR: {}, SNR[dB]: {}, Polarity: {}"
msg = msg.format(self.p_results.weight, self.p_results.snr, self.p_results.snrdb, self.p_results.fm)
print(msg)
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'
msg = msg.format(self.p_results.mpp, self.p_results.spe)
print(msg)
self.s_data.Sflag = 1
def _calculate_cuttimes(self, type, iteration):
"""
Calculate cuttimes for a trace
:param type: 'P' or 'S', denoting the pick for which cuttime should be calculated
:type type: str
:param iteration: Calculate cut times for initial pick or for the smaller window of the precise pick around
the initial pick
:type iteration: int
:return: tuple of (starttime, endtime) in seconds
:rtype: (int, int)
"""
if type.upper() == 'P':
if iteration == 1:
return [self.p_params.pstart, self.p_params.pstop]
if iteration == 2:
starttime2 = round(max(self.p_data.aicpick.getpick() - self.p_params.Precalcwin, 0))
endtime2 = round(
min(len(self.ztrace.data) * self.ztrace.stats.delta, self.p_data.aicpick.getpick() + self.p_params.Precalcwin))
return [starttime2, endtime2]
elif type.upper() == 'S':
if iteration == 1:
# Calculate start times for preliminary S onset
start = round(max(self.p_results.mpp + self.s_params.sstart, 0)) # limit start time to >0 seconds
stop = round(min([
self.p_results.mpp + self.s_params.sstop,
self.etrace.stats.endtime - self.etrace.stats.starttime,
self.ntrace.stats.endtime - self.ntrace.stats.starttime
]))
cuttimesh = (start, stop)
if cuttimesh[1] <= cuttimesh[0]:
raise PickingFailedException('Cut window for horizontal phases too small! Will not pick S onsets.')
return cuttimesh
if iteration == 2:
# recalculate cf from refiltered trace in vicinity of initial onset
start = round(self.aicarhpick.getpick() - self.s_params.Srecalcwin)
stop = round(self.aicarhpick.getpick() + self.s_params.Srecalcwin)
return (start, stop)
else:
raise ValueError('Wrong type given, can only be P or S')
def _calculate_autoregressive_cf_s_pick(self, cuttimesh):
# prepare traces for picking by filtering, taper
if self.s_params.algoS == 'ARH':
self.hdat = self.nstream.copy() + self.estream.copy()
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
h_copy = self.hdat.copy()
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
if self.s_params.algoS == 'AR3':
self.hdat = self.zstream.copy() + self.estream.copy() + self.nstream.copy()
trH1_filt, _ = self.prepare_wfstream(self.zstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
trH2_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
trH3_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
h_copy =self. hdat.copy()
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
self.trH1_filt = trH1_filt
self.h_copy = h_copy
# calculate initial CF based on autoregression
if self.s_params.algoS == 'ARH':
arhcf1 = ARHcf(h_copy, cuttimesh, self.s_params.tpred1h, self.s_params.Sarorder, self.s_params.tdet1h, self.p_params.addnoise)
elif self.s_params.algoS == 'AR3':
arhcf1 = AR3Ccf(h_copy, cuttimesh, self.s_params.tpred1h, self.s_params.Sarorder, self.s_params.tdet1h, self.p_params.addnoise)
return arhcf1
def _calculate_aic_cf_s_pick(self, cuttimesh):
stream = self.estream.copy()
stream[0].data = self.arhcf1.getCF()
haiccf = AICcf(stream, cuttimesh)
return haiccf
def _pick_s_quality_control(self):
"""
Check quality of pick. Function will raise a PickingFailedException if the S pick does not fullfill all quality
criteria. Else nothing happens and picking can continue.
"""
# go on with processing if AIC onset passes quality control
slope = self.aicarhpick.getSlope()
if not slope:
slope = 0
if slope < self.s_params.minAICSslope:
error_msg = error_msg = 'AIC S onset slope to small: got {}, min {}'.format(slope,
self.s_params.minAICSslope)
raise PickingFailedException(error_msg)
if self.aicarhpick.getSNR() < self.s_params.minAICSSNR:
error_msg = 'AIC S onset SNR to small: got {}, min {}'.format(self.aicarhpick.getSNR(), self.s_params.minAICSSNR)
raise PickingFailedException(error_msg)
if self.aicarhpick.getpick() is None:
error_msg = 'Invalid AIC S pick!'
raise PickingFailedException(error_msg)
self.s_data.aicSflag = 1
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering horizontal traces ' \
'...'.format(self.aicarhpick.getSlope(), self.aicarhpick.getSNR())
self.vprint(msg)
def _pick_s_calculate_ar_cf_2(self):
cuttimesh2 = self._calculate_cuttimes('S', 2)
# refilter waveform with larger bandpass
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph2[0], freqmax=self.s_params.bph2[1])
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph2[0], freqmax=self.s_params.bph2[1])
if self.s_params.algoS == 'ARH':
h_copy = self.hdat.copy()
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
elif self.s_params.algoS == 'AR3':
trH3_filt, _ = self.prepare_wfstream(self.zstream, freqmin=self.s_params.bph2[0], freqmax=self.s_params.bph2[1])
h_copy = self.hdat.copy()
h_copy[0].data = trH3_filt.data
h_copy[1].data = trH1_filt.data
h_copy[2].data = trH2_filt.data
# save filtered traces for plotting
self.estream_bph2 = trH1_filt
self.nstream_bph2 = trH2_filt
# calculate second cf
if self.s_params.algoS == 'ARH':
arhcf2 = ARHcf(h_copy, cuttimesh2, self.s_params.tpred2h, self.s_params.Sarorder, self.s_params.tdet2h, self.p_params.addnoise)
elif self.s_params.algoS == 'AR3':
arhcf2 = AR3Ccf(h_copy, cuttimesh2, self.s_params.tpred2h, self.s_params.Sarorder, self.s_params.tdet2h, self.p_params.addnoise)
# save cf for later plotting
self.arhcf2 = arhcf2
self.h_copy = h_copy
return arhcf2
def _pick_s_quality_assessment(self, h_copy):
"""
quality assessment: get earliest/latest possible pick and symmetrized uncertainty
"""
h_copy[0].data = self.estream_bph2.data
if self.iplot:
self.set_current_figure('el_S1pick')
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, self.s_params.nfacS, self.s_params.tsnrh,
self.s_results.mpp, self.iplot, fig=self.current_figure,
linecolor=self.current_linecolor)
h_copy[0].data = self.nstream_bph2.data
if self.iplot:
self.set_current_figure('el_S2pick')
else:
# why is it set to empty here? DA
linecolor = ''
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, self.s_params.nfacS, self.s_params.tsnrh,
self.s_results.mpp, self.iplot, fig=self.current_figure,
linecolor=self.current_linecolor)
if epickS1 is not None and epickS2 is not None:
if self.s_params.algoS == 'ARH':
# get earliest pick of both earliest possible picks
epick = [epickS1, epickS2]
lpick = [lpickS1, lpickS2]
pickerr = [Serror1, Serror2]
ipick = np.argmin(epick)
if self.s_params.algoS == 'AR3':
epickS3, lpickS3, Serror3 = earllatepicker(h_copy, self.s_params.nfacS, self.s_params.tsnrh,
self.s_results.mpp, self.iplot)
# get earliest of all three picks
epick = [epickS1, epickS2, epickS3]
lpick = [lpickS1, lpickS2, lpickS3]
pickerr = [Serror1, Serror2, Serror3]
if epickS3 is not None:
ipick = np.argmin(epick)
else:
ipick = np.argmin([epickS1, epickS2])
self.s_results.epp = epick[ipick]
self.s_results.lpp = lpick[ipick]
self.s_results.spe = pickerr[ipick]
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(self.s_results.mpp,
self.s_results.spe)
print(msg)
# get SNR
self.s_results.snr, self.s_results.snrdb, _ = getSNR(h_copy, self.s_params.tsnrh, self.s_results.mpp)
self.s_results.weight = get_quality_class(self.s_results.spe, self.s_params.timeerrorsS)
print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n'
'##################################################'
''.format(self.s_results.weight, self.s_results.snr, self.s_results.snrdb))
def pick_s_phase(self):
# determine time window for calculating CF after P onset
cuttimesh = self._calculate_cuttimes(type='S', iteration=1)
# calculate autoregressive CF
self.arhcf1 = self._calculate_autoregressive_cf_s_pick(cuttimesh)
# calculate AIC cf
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
# get preliminary onset time from AIC cf
self.set_current_figure('aicARHfig')
aicarhpick = AICPicker(haiccf, self.s_params.tsnrh, self.s_params.pickwinS, self.iplot,
Tsmooth=self.s_params.aictsmoothS, fig=self.current_figure, linecolor=self.current_linecolor)
# save pick for later plotting
self.aicarhpick = aicarhpick
# check quality of pick
self._pick_s_quality_control()
arhcf2 = self._pick_s_calculate_ar_cf_2()
# get refined onset time from CF2
self.set_current_figure('refSpick')
refSpick = PragPicker(arhcf2, self.s_params.tsnrh, self.s_params.pickwinS, self.iplot, self.s_params.ausS,
self.s_params.tsmoothS, aicarhpick.getpick(), self.current_figure, self.current_linecolor)
# save refSpick for later plotitng
self.refSpick = refSpick
self.s_results.mpp = refSpick.getpick()
if self.s_results.mpp is not None:
self._pick_s_quality_assessment(self.h_copy)
def set_current_figure(self, figkey):
"""
Extracts a figure by name from dictionary and set it as the currently active figure.
All functions that create plots during picking will use the currently active figure to plot them.
:param figkey:
:type figkey:
:return:
:rtype:
"""
if self.fig_dict is None:
return None, None
self.current_figure = self.fig_dict.get(figkey, None)
plot_style = self.fig_dict.get('plot_style', 'k')
self.current_linecolor = plot_style['linecolor']['rgba_mpl']
def autopickstation(wfstream, pickparam, verbose=False, iplot=0, fig_dict=None, metadata=None, origin=None):
"""
Main function to calculate picks for the station.
:return:
:rtype: dict
"""
try:
station = AutopickStation(wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin)
return station.autopickstation()
except MissingTraceException as e:
# Either vertical or both horizontal traces are missing
print(e)
try:
station_name = wfstream[0].stats.station
except IndexError:
station_name = 'None'
return None, station_name
def nautopickstation(wfstream, pickparam, verbose=False,
iplot=0, fig_dict=None, metadata=None, origin=None):
"""
picks a single station
:param wfstream: stream object containing waveform of all traces
:type wfstream: ~obspy.core.stream.Stream
:param pickparam: container of picking parameters from input file, usually pylot.in
:type pickparam: pylot.core.io.inputs.PylotParameter
:param verbose: used to control output to log during picking. True = more information printed
:type verbose: bool
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
:type iplot: int, (Boolean or String)
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
:type fig_dict: dict
:param metadata: tuple containing metadata type string and Parser object read from inventory file
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
:param origin: list containing origin objects representing origins for all events
:type origin: list(~obspy.core.event.origin)
:return: dictionary containing P pick, S pick and station name
:rtype: dict
"""
# declaring pickparam variables (only for convenience)
# read your pylot.in for details!
plt_flag = 0
# special parameters for P picking
algoP = pickparam.get('algoP')
pstart = pickparam.get('pstart')
pstop = pickparam.get('pstop')
thosmw = pickparam.get('tlta')
tsnrz = pickparam.get('tsnrz')
hosorder = pickparam.get('hosorder')
bpz1 = pickparam.get('bpz1')
bpz2 = pickparam.get('bpz2')
pickwinP = pickparam.get('pickwinP')
aictsmoothP = pickparam.get('aictsmooth')
tsmoothP = pickparam.get('tsmoothP')
ausP = pickparam.get('ausP')
nfacP = pickparam.get('nfacP')
tpred1z = pickparam.get('tpred1z')
tdet1z = pickparam.get('tdet1z')
tpred2z = pickparam.get('tpred2z')
tdet2z = pickparam.get('tdet2z')
Parorder = pickparam.get('Parorder')
addnoise = pickparam.get('addnoise')
Precalcwin = pickparam.get('Precalcwin')
minAICPslope = pickparam.get('minAICPslope')
minAICPSNR = pickparam.get('minAICPSNR')
timeerrorsP = pickparam.get('timeerrorsP')
# special parameters for S picking
algoS = pickparam.get('algoS')
sstart = pickparam.get('sstart')
sstop = pickparam.get('sstop')
use_taup = real_Bool(pickparam.get('use_taup'))
taup_model = pickparam.get('taup_model')
bph1 = pickparam.get('bph1')
bph2 = pickparam.get('bph2')
tsnrh = pickparam.get('tsnrh')
pickwinS = pickparam.get('pickwinS')
tpred1h = pickparam.get('tpred1h')
tdet1h = pickparam.get('tdet1h')
tpred2h = pickparam.get('tpred2h')
tdet2h = pickparam.get('tdet2h')
Sarorder = pickparam.get('Sarorder')
aictsmoothS = pickparam.get('aictsmoothS')
tsmoothS = pickparam.get('tsmoothS')
ausS = pickparam.get('ausS')
minAICSslope = pickparam.get('minAICSslope')
minAICSSNR = pickparam.get('minAICSSNR')
Srecalcwin = pickparam.get('Srecalcwin')
nfacS = pickparam.get('nfacS')
timeerrorsS = pickparam.get('timeerrorsS')
# parameters for first-motion determination
minFMSNR = pickparam.get('minFMSNR')
fmpickwin = pickparam.get('fmpickwin')
minfmweight = pickparam.get('minfmweight')
# parameters for checking signal length
minsiglength = pickparam.get('minsiglength')
minpercent = pickparam.get('minpercent')
nfacsl = pickparam.get('noisefactor')
# parameter to check for spuriously picked S onset
zfac = pickparam.get('zfac')
# path to inventory-, dataless- or resp-files
# initialize output
Pweight = 4 # weight for P onset
Sweight = 4 # weight for S onset
FM = 'N' # first motion (polarity)
SNRP = None # signal-to-noise ratio of P onset
SNRPdB = None # signal-to-noise ratio of P onset [dB]
SNRS = None # signal-to-noise ratio of S onset
SNRSdB = None # signal-to-noise ratio of S onset [dB]
mpickP = None # most likely P onset
lpickP = None # latest possible P onset
epickP = None # earliest possible P onset
mpickS = None # most likely S onset
lpickS = None # latest possible S onset
epickS = None # earliest possible S onset
Perror = None # symmetrized picking error P onset
Serror = None # symmetrized picking error S onset
aicSflag = 0
aicPflag = 0
Pflag = 0
Sflag = 0
Pmarker = []
Ao = None # Wood-Anderson peak-to-peak amplitude
picker = 'auto' # type of picks
def get_components_from_waveformstream(waveformstream):
"""
Splits waveformstream into multiple components zdat, ndat, edat. For traditional orientation (ZNE) these contain
the vertical, north-south or east-west component. Otherwise they contain components numbered 123 with
orientation diverging from the traditional orientation.
:param waveformstream: Stream containing all three components for one station either by ZNE or 123 channel code
(mixture of both options is handled as well)
:type waveformstream: obspy.core.stream.Stream
:return: Tuple containing (z waveform, n waveform, e waveform) selected by the given channels
:rtype: (obspy.core.stream.Stream, obspy.core.stream.Stream, obspy.core.stream.Stream)
"""
#TODO: get this order from the pylot preferences
channelorder_default = {'Z': 3, 'N': 1, 'E': 2}
waveform_data = {}
for key in channelorder_default:
waveform_data[key] = waveformstream.select(component=key) # try ZNE first
if len(waveform_data[key]) == 0:
waveform_data[key] = waveformstream.select(component=str(channelorder_default[key])) # use 123 as second option
return waveform_data['Z'], waveform_data['N'], waveform_data['E']
def prepare_wfstream_component(wfstream, detrend_type='demean', filter_type='bandpass', freqmin=None, freqmax=None, zerophase=False, taper_max_percentage=0.05, taper_type='hann'):
"""
Prepare a waveformstream for picking by applying detrending, filtering and tapering. Creates a copy of the
waveform the leave the original unchanged.
:param wfstream:
:type wfstream:
:param detrend_type:
:type detrend_type:
:param filter_type:
:type filter_type:
:param freqmin:
:type freqmin:
:param freqmax:
:type freqmax:
:param zerophase:
:type zerophase:
:param taper_max_percentage:
:type taper_max_percentage:
:param taper_type:
:type taper_type:
:return: Tuple containing the changed waveform stream and the first trace of the stream
:rtype: (obspy.core.stream.Stream, obspy.core.trace.Trace)
"""
wfstream_copy = wfstream.copy()
trace_copy = wfstream[0].copy()
trace_copy.detrend(type=detrend_type)
trace_copy.filter(filter_type, freqmin=freqmin, freqmax=freqmax, zerophase=zerophase)
trace_copy.taper(max_percentage=taper_max_percentage, type=taper_type)
wfstream_copy[0].data = trace_copy.data
return wfstream_copy, trace_copy
# split components
zdat, ndat, edat = get_components_from_waveformstream(wfstream)
picks = {}
station = wfstream[0].stats.station
if not zdat:
print('No z-component found for station {}. STOP'.format(station))
return picks, station
if p_params['algoP'] == 'HOS' or p_params['algoP'] == 'ARZ' and zdat is not None:
msg = '##################################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=wfstream[0].stats.station, data=str(zdat))
if verbose: print(msg)
z_copy, tr_filt = prepare_wfstream_component(zdat, freqmin=p_params['bpz1'][0], freqmax=p_params['bpz1'][1])
##############################################################
# check length of waveform and compare with cut times
# for global seismology: use tau-p method for estimating travel times (needs source and station coords.)
# if not given: sets Lc to infinity to use full stream
if p_params['use_taup'] is True:
Lc = np.inf
print('autopickstation: use_taup flag active.')
if not metadata:
print('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
else:
station_id = wfstream[0].get_id()
station_coords = metadata.get_coordinates(station_id, time=wfstream[0].stats.starttime)
if station_coords and origin:
source_origin = origin[0]
model = TauPyModel(p_params['taup_model'])
arrivals = model.get_travel_times_geo(
source_origin.depth,
source_origin.latitude,
source_origin.longitude,
station_coords['latitude'],
station_coords['longitude']
)
phases = {'P': [],
'S': []}
for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS))
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
p_params['pstart'] += (source_origin.time + estFirstP) - zdat[0].stats.starttime
p_params['pstop']+= (source_origin.time + estFirstP) - zdat[0].stats.starttime
print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(p_params['pstart'], p_params['pstop']))
elif not origin:
print('No source origins given!')
# make sure pstart and pstop are inside zdat[0]
pstart = max(p_params['pstart'], 0)
pstop = min(p_params['pstop'], len(zdat[0])*zdat[0].stats.delta)
if p_params['use_taup'] is False or origin:
Lc = p_params['pstop'] - p_params['pstart']
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
if not Lwf > 0:
print('autopickstation: empty trace! Return!')
return picks, station
Ldiff = Lwf - abs(Lc)
if Ldiff <= 0 or pstop <= pstart or pstop - pstart <= thosmw:
msg = 'autopickstation: Cutting times are too large for actual ' \
'waveform!\nUsing entire waveform instead!'
if verbose: print(msg)
pstart = 0
pstop = len(zdat[0].data) * zdat[0].stats.delta
cuttimes = [pstart, pstop]
cf1 = None
if p_params['algoP'] == 'HOS':
# calculate HOS-CF using subclass HOScf of class
# CharacteristicFunction
cf1 = HOScf(z_copy, cuttimes, p_params['tlta'], p_params['hosorder']) # instance of HOScf
elif p_params['algoP'] == 'ARZ':
# calculate ARZ-CF using subclass ARZcf of class
# CharcteristicFunction
cf1 = ARZcf(z_copy, cuttimes, p_params['tpred1z'], p_params['Parorder'], p_params['tdet1z'],
p_params['addnoise']) # instance of ARZcf
##############################################################
# calculate AIC-HOS-CF using subclass AICcf of class
# CharacteristicFunction
# class needs stream object => build it
assert isinstance(cf1, CharacteristicFunction), 'cf2 is not set ' \
'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format(algoP=p_params['algoP'])
tr_aic = tr_filt.copy()
tr_aic.data = cf1.getCF()
z_copy[0].data = tr_aic.data
aiccf = AICcf(z_copy, cuttimes) # instance of AICcf
##############################################################
# get preliminary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking
key = 'aicFig'
if fig_dict:
fig = fig_dict[key]
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
aicpick = AICPicker(aiccf, p_params['tsnrz'], p_params['pickwinP'], iplot, Tsmooth=p_params['aictsmooth'],
fig=fig, linecolor=linecolor)
# add pstart and pstop to aic plot
if fig:
for ax in fig.axes:
ax.vlines(pstart, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P start')
ax.vlines(pstop, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P stop')
ax.legend(loc=1)
##############################################################
if aicpick.getpick() is not None:
# check signal length to detect spuriously picked noise peaks
# use all available components to avoid skipping correct picks
# on vertical traces with weak P coda
z_copy[0].data = tr_filt.data
zne = z_copy
if len(ndat) == 0 or len(edat) == 0:
msg = 'One or more horizontal component(s) missing!\n' \
'Signal length only checked on vertical component!\n' \
'Decreasing minsiglengh from {0} to {1}' \
.format(signal_length_params['minsiglength'], signal_length_params['minsiglength'] / 2)
if verbose: print(msg)
key = 'slength'
if fig_dict:
fig = fig_dict[key]
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checksignallength(zne, aicpick.getpick(), p_params['tsnrz'],
signal_length_params['minsiglength'] / 2,
signal_length_params['noisefactor'], signal_length_params['minpercent'], iplot,
fig, linecolor)
else:
trH1_filt, _ = prepare_wfstream_component(edat, freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1])
trH2_filt, _ = prepare_wfstream_component(ndat, freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1])
zne += trH1_filt
zne += trH2_filt
if fig_dict:
fig = fig_dict['slength']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checksignallength(zne, aicpick.getpick(), p_params['tsnrz'],
signal_length_params['minsiglength'],
signal_length_params['noisefactor'], signal_length_params['minpercent'], iplot,
fig, linecolor)
if Pflag == 1:
# check for spuriously picked S onset
# both horizontal traces needed
if len(ndat) == 0 or len(edat) == 0:
msg = 'One or more horizontal components missing!\n' \
'Skipping control function checkZ4S.'
if verbose: print(msg)
else:
if iplot > 1:
if fig_dict:
fig = fig_dict['checkZ4s']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checkZ4S(zne, aicpick.getpick(), s_params['zfac'],
p_params['tsnrz'][2], iplot, fig, linecolor)
if Pflag == 0:
Pmarker = 'SinsteadP'
Pweight = 9
else:
Pmarker = 'shortsignallength'
Pweight = 9
##############################################################
# go on with processing if AIC onset passes quality control
slope = aicpick.getSlope()
if not slope:
slope = 0
if slope >= p_params['minAICPslope'] and aicpick.getSNR() >= p_params['minAICPSNR'] and Pflag == 1:
aicPflag = 1
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering vertical trace ' \
'...'.format(aicpick.getSlope(), aicpick.getSNR())
if verbose: print(msg)
# re-filter waveform with larger bandpass
z_copy, tr_filt = prepare_wfstream_component(zdat, freqmin=p_params['bpz2'][0], freqmax=p_params['bpz2'][1])
#############################################################
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimes2 = [round(max([aicpick.getpick() - p_params['Precalcwin'], 0])),
round(min([len(zdat[0].data) * zdat[0].stats.delta,
aicpick.getpick() + p_params['Precalcwin']]))]
cf2 = None
if p_params['algoP'] == 'HOS':
# calculate HOS-CF using subclass HOScf of class
# CharacteristicFunction
cf2 = HOScf(z_copy, cuttimes2, p_params['tlta'],
p_params['hosorder']) # instance of HOScf
elif p_params['algoP'] == 'ARZ':
# calculate ARZ-CF using subclass ARZcf of class
# CharcteristicFunction
cf2 = ARZcf(z_copy, cuttimes2, tpred2z, Parorder, tdet2z,
addnoise) # instance of ARZcf
##############################################################
# get refined onset time from CF2 using class Picker
assert isinstance(cf2, CharacteristicFunction), 'cf2 is not set ' \
'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format(algoP=p_params['algoP'])
if fig_dict:
fig = fig_dict['refPpick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
refPpick = PragPicker(cf2, p_params['tsnrz'], p_params['pickwinP'], iplot, p_params['ausP'],
p_params['tsmoothP'], aicpick.getpick(), fig, linecolor)
mpickP = refPpick.getpick()
#############################################################
if mpickP is not None:
# quality assessment
# get earliest/latest possible pick and symmetrized uncertainty
if iplot:
if fig_dict:
fig = fig_dict['el_Ppick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
epickP, lpickP, Perror = earllatepicker(z_copy, p_params['nfacP'], p_params['tsnrz'],
mpickP, iplot, fig=fig,
linecolor=linecolor)
# get SNR
SNRP, SNRPdB, Pnoiselevel = getSNR(z_copy, p_params['tsnrz'], mpickP)
# weight P-onset using symmetric error
Pweight = get_quality_class(Perror, p_params['timeerrorsP'])
##############################################################
# get first motion of P onset
# certain quality required
if Pweight <= first_motion_params['minfmweight'] and SNRP >= first_motion_params['minFMSNR']:
if iplot:
if fig_dict:
fig = fig_dict['fm_picker']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
FM = fmpicker(zdat, z_copy, first_motion_params['fmpickwin'], mpickP, iplot, fig, linecolor)
else:
FM = fmpicker(zdat, z_copy, first_motion_params['fmpickwin'], mpickP, iplot)
else:
FM = 'N'
msg = "autopickstation: P-weight: {0}, " \
"SNR: {1}, SNR[dB]: {2}, Polarity: {3}".format(Pweight, SNRP, SNRPdB, FM)
print(msg)
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'.format(zdat[0].stats.starttime \
+ mpickP, Perror)
print(msg)
Sflag = 1
else:
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)'.format(aicpick.getSNR(),
aicpick.getSlope(),
p_params['minAICPSNR'],
p_params['minAICPslope'])
if verbose: print(msg)
Sflag = 0
else:
print('autopickstation: No vertical component data available!, '
'Skipping station!')
if ((len(edat) > 0 and len(ndat) == 0) or (len(ndat) > 0 and len(edat) == 0)) and Pweight < 4:
msg = 'Go on picking S onset ...\n' \
'##################################################\n' \
'Only one horizontal component available!\n' \
'ARH prediction requires at least 2 components!\n' \
'Copying existing horizontal component ...'
if verbose: print(msg)
# check which component is missing
if len(edat) == 0:
edat = ndat
else:
ndat = edat
pickSonset = (edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4)
if pickSonset:
# determine time window for calculating CF after P onset
cuttimesh = [
round(max([mpickP + s_params['sstart'], 0])), # MP MP relative time axis
round(min([
mpickP + s_params['sstop'],
edat[0].stats.endtime - edat[0].stats.starttime,
ndat[0].stats.endtime - ndat[0].stats.starttime
]))
]
if not cuttimesh[1] >= cuttimesh[0]:
print('Cut window for horizontal phases too small! Will not pick S onsets.')
pickSonset = False
if pickSonset:
msg = 'Go on picking S onset ...\n' \
'##################################################\n' \
'Working on S onset of station {0}\nFiltering horizontal ' \
'traces ...'.format(edat[0].stats.station)
if verbose: print(msg)
if s_params['algoS'] == 'ARH':
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
# filter and taper data
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
elif s_params['algoS'] == 'AR3':
# re-create stream object including all components
hdat = zdat.copy()
hdat += edat
hdat += ndat
h_copy = hdat.copy()
# filter and taper data
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH3_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
zerophase=False)
trH3_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
trH3_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
##############################################################
if s_params['algoS'] == 'ARH':
# calculate ARH-CF using subclass ARHcf of class
# CharcteristicFunction
arhcf1 = ARHcf(h_copy, cuttimesh, s_params['tpred1h'], s_params['Sarorder'], s_params['tdet1h'],
p_params['addnoise']) # instance of ARHcf
elif s_params['algoS'] == 'AR3':
# calculate ARH-CF using subclass AR3cf of class
# CharcteristicFunction
arhcf1 = AR3Ccf(h_copy, cuttimesh, s_params['tpred1h'], s_params['Sarorder'], s_params['tdet1h'],
p_params['addnoise']) # instance of ARHcf
##############################################################
# calculate AIC-ARH-CF using subclass AICcf of class
# CharacteristicFunction
# class needs stream object => build it
tr_arhaic = trH1_filt.copy()
tr_arhaic.data = arhcf1.getCF()
h_copy[0].data = tr_arhaic.data
# calculate ARH-AIC-CF
haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf
##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking
if fig_dict:
fig = fig_dict['aicARHfig']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
aicarhpick = AICPicker(haiccf, s_params['tsnrh'], s_params['pickwinS'], iplot, None,
s_params['aictsmoothS'], fig=fig, linecolor=linecolor)
###############################################################
# go on with processing if AIC onset passes quality control
slope = aicarhpick.getSlope()
if not slope:
slope = 0
if (slope >= s_params['minAICSslope'] and
aicarhpick.getSNR() >= s_params['minAICSSNR'] and aicarhpick.getpick() is not None):
aicSflag = 1
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering horizontal traces ' \
'...'.format(aicarhpick.getSlope(), aicarhpick.getSNR())
if verbose: print(msg)
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimesh2 = [round(aicarhpick.getpick() - s_params['Srecalcwin']),
round(aicarhpick.getpick() + s_params['Srecalcwin'])]
# re-filter waveform with larger bandpass
h_copy = hdat.copy()
# filter and taper data
if s_params['algoS']== 'ARH':
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
#############################################################
arhcf2 = ARHcf(h_copy, cuttimesh2, s_params['tpred2h'], s_params['Sarorder'], s_params['tdet2h'],
p_params['addnoise']) # instance of ARHcf
elif s_params['algoS'] == 'AR3':
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH3_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
zerophase=False)
trH3_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
trH3_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
#############################################################
arhcf2 = AR3Ccf(h_copy, cuttimesh2, s_params['tpred2h'], s_params['Sarorder'], s_params['tdet2h'],
p_params['addnoise']) # instance of ARHcf
# get refined onset time from CF2 using class Picker
if fig_dict:
fig = fig_dict['refSpick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
refSpick = PragPicker(arhcf2, s_params['tsnrh'], s_params['pickwinS'], iplot, s_params['ausS'],
s_params['tsmoothS'], aicarhpick.getpick(), fig, linecolor)
mpickS = refSpick.getpick()
#############################################################
if mpickS is not None:
# quality assessment
# get earliest/latest possible pick and symmetrized uncertainty
h_copy[0].data = trH1_filt.data
if iplot:
if fig_dict:
fig = fig_dict['el_S1pick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS,
iplot, fig=fig, linecolor=linecolor)
else:
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS, iplot)
h_copy[0].data = trH2_filt.data
if iplot:
if fig_dict:
fig = fig_dict['el_S2pick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = ''
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS,
iplot, fig=fig, linecolor=linecolor)
else:
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS, iplot)
if epickS1 is not None and epickS2 is not None:
if s_params['algoS'] == 'ARH':
# get earliest pick of both earliest possible picks
epick = [epickS1, epickS2]
lpick = [lpickS1, lpickS2]
pickerr = [Serror1, Serror2]
if epickS1 is None and epickS2 is not None:
ipick = 1
elif epickS1 is not None and epickS2 is None:
ipick = 0
elif epickS1 is not None and epickS2 is not None:
ipick = np.argmin([epickS1, epickS2])
elif s_params['algoS'] == 'AR3':
[epickS3, lpickS3, Serror3] = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'],
mpickS, iplot)
# get earliest pick of all three picks
epick = [epickS1, epickS2, epickS3]
lpick = [lpickS1, lpickS2, lpickS3]
pickerr = [Serror1, Serror2, Serror3]
if epickS1 is None and epickS2 is not None \
and epickS3 is not None:
ipick = np.argmin([epickS2, epickS3])
elif epickS1 is not None and epickS2 is None \
and epickS3 is not None:
ipick = np.argmin([epickS2, epickS3])
elif epickS1 is not None and epickS2 is not None \
and epickS3 is None:
ipick = np.argmin([epickS1, epickS2])
elif epickS1 is not None and epickS2 is not None \
and epickS3 is not None:
ipick = np.argmin([epickS1, epickS2, epickS3])
epickS = epick[ipick]
lpickS = lpick[ipick]
Serror = pickerr[ipick]
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(hdat[0].stats.starttime \
+ mpickS, Serror)
print(msg)
# get SNR
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, s_params['tsnrh'], mpickS)
# weight S-onset using symmetric error
if Serror <= s_params['timeerrorsS'][0]:
Sweight = 0
elif s_params['timeerrorsS'][0] < Serror <= s_params['timeerrorsS'][1]:
Sweight = 1
elif Perror > s_params['timeerrorsS'][1] and Serror <= s_params['timeerrorsS'][2]:
Sweight = 2
elif s_params['timeerrorsS'][2] < Serror <= s_params['timeerrorsS'][3]:
Sweight = 3
elif Serror > s_params['timeerrorsS'][3]:
Sweight = 4
print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n'
'##################################################'
''.format(Sweight, SNRS, SNRSdB))
################################################################
# get Wood-Anderson peak-to-peak amplitude
# initialize Data object
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
else:
msg = 'Bad initial (AIC) S-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)\n' \
'##################################################' \
''.format(aicarhpick.getSNR(), aicarhpick.getSlope(), s_params['minAICSSNR'], s_params['minAICSslope'])
if verbose: print(msg)
############################################################
# get Wood-Anderson peak-to-peak amplitude
# initialize Data object
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
else:
print('autopickstation: No horizontal component data available or '
'bad P onset, skipping S picking!')
##############################################################
try:
iplot = int(iplot)
except ValueError:
if iplot is True or iplot == 'True':
iplot = 2
else:
iplot = 0
if iplot > 0:
# plot vertical trace
if fig_dict is None or fig_dict == 'None':
fig = plt.figure()
plt_flag = 1
linecolor = 'k'
else:
fig = fig_dict['mainFig']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
fig._tight = True
ax1 = fig.add_subplot(311)
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
tr_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(tr_filt.data) - len(tdata)
if wfldiff < 0:
tdata = tdata[0:len(tdata) - abs(wfldiff)]
ax1.plot(tdata, tr_filt.data / max(tr_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4:
ax1.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
'b', label='CF1')
if aicPflag == 1:
ax1.plot(cf2.getTimeArray(),
cf2.getCF() / max(cf2.getCF()), 'm', label='CF2')
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
'r', label='Initial P Onset')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[1, 1], 'r')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[-1, -1], 'r')
ax1.plot([refPpick.getpick(), refPpick.getpick()],
[-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[1.3, 1.3], 'r', linewidth=2)
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[-1.3, -1.3], 'r', linewidth=2)
ax1.plot([lpickP, lpickP], [-1.1, 1.1], 'r--', label='lpp')
ax1.plot([epickP, epickP], [-1.1, 1.1], 'r--', label='epp')
ax1.set_title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
'Polarity: %s' % (tr_filt.stats.station,
tr_filt.stats.channel,
Pweight,
SNRP,
SNRPdB,
FM))
else:
ax1.set_title('%s, P Weight=%d, SNR=None, '
'SNRdB=None' % (tr_filt.stats.channel, Pweight))
else:
ax1.set_title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
tr_filt.stats.channel,
Pweight))
ax1.legend(loc=1)
ax1.set_yticks([])
ax1.set_ylim([-1.5, 1.5])
ax1.set_ylabel('Normalized Counts')
# fig.suptitle(tr_filt.stats.starttime)
# only continue if one horizontal stream exists
if (ndat or edat) and Sflag == 1:
# mirror components in case one does not exist
if not edat:
edat = ndat
if not ndat:
ndat = edat
if len(edat[0]) > 1 and len(ndat[0]) > 1:
# plot horizontal traces
ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
th1data = np.arange(0,
trH1_filt.stats.npts /
trH1_filt.stats.sampling_rate,
trH1_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(trH1_filt.data) - len(th1data)
if wfldiff < 0:
th1data = th1data[0:len(th1data) - abs(wfldiff)]
ax2.plot(th1data, trH1_filt.data / max(trH1_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4:
ax2.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1 and Sweight < 4:
ax2.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
ax2.plot(
[aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g', label='Initial S Onset')
ax2.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[1, 1], 'g')
ax2.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[-1, -1], 'g')
ax2.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2)
ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2)
ax2.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
ax2.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
ax2.set_title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
trH1_filt.stats.channel,
Sweight, SNRS, SNRSdB))
else:
ax2.set_title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
trH1_filt.stats.channel, Sweight))
ax2.legend(loc=1)
ax2.set_yticks([])
ax2.set_ylim([-1.5, 1.5])
ax2.set_ylabel('Normalized Counts')
# fig.suptitle(trH1_filt.stats.starttime)
ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
th2data = np.arange(0,
trH2_filt.stats.npts /
trH2_filt.stats.sampling_rate,
trH2_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(trH2_filt.data) - len(th2data)
if wfldiff < 0:
th2data = th2data[0:len(th2data) - abs(wfldiff)]
ax3.plot(th2data, trH2_filt.data / max(trH2_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4:
p22, = ax3.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1:
ax3.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
ax3.plot(
[aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g', label='Initial S Onset')
ax3.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[1, 1], 'g')
ax3.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[-1, -1], 'g')
ax3.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2)
ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2)
ax3.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
ax3.legend(loc=1)
ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5])
ax3.set_xlabel('Time [s] after %s' % tr_filt.stats.starttime)
ax3.set_ylabel('Normalized Counts')
ax3.set_title(trH2_filt.stats.channel)
if plt_flag == 1:
fig.show()
try:
input()
except SyntaxError:
pass
plt.close(fig)
##########################################################################
# calculate "real" onset times
if lpickP is not None and lpickP == mpickP:
lpickP += zdat[0].stats.delta
if epickP is not None and epickP == mpickP:
epickP -= zdat[0].stats.delta
if mpickP is not None and epickP is not None and lpickP is not None:
lpickP = zdat[0].stats.starttime + lpickP
epickP = zdat[0].stats.starttime + epickP
mpickP = zdat[0].stats.starttime + mpickP
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
lpickP = zdat[0].stats.starttime + p_params['timeerrorsP'][3]
epickP = zdat[0].stats.starttime - p_params['timeerrorsP'][3]
mpickP = zdat[0].stats.starttime
# create dictionary
# for P phase
ccode = zdat[0].stats.channel
ncode = zdat[0].stats.network
ppick = dict(channel=ccode, network=ncode, lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP,
snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None,
Mw=None, picker=picker, marked=Pmarker)
if edat:
hdat = edat[0]
elif ndat:
hdat = ndat[0]
else:
# no horizontal components given
picks = dict(P=ppick)
return picks, station
if lpickS is not None and lpickS == mpickS:
lpickS += hdat.stats.delta
if epickS is not None and epickS == mpickS:
epickS -= hdat.stats.delta
if mpickS is not None and epickS is not None and lpickS is not None:
lpickS = hdat.stats.starttime + lpickS
epickS = hdat.stats.starttime + epickS
mpickS = hdat.stats.starttime + mpickS
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
lpickS = hdat.stats.starttime + s_params['timeerrorsS'][3]
epickS = hdat.stats.starttime - s_params['timeerrorsS'][3]
mpickS = hdat.stats.starttime
# add S phase
ccode = hdat.stats.channel
ncode = hdat.stats.network
spick = dict(channel=ccode, network=ncode, lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS,
snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao)
# merge picks into returning dictionary
picks = dict(P=ppick, S=spick)
return picks, station
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter, fig_dict=None):
"""
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
:param wf: waveform, obspy stream object
:type wf: ~obspy.core.stream.Stream
:param NLLocfile: path/name of NLLoc-location file
:type NLLocfile: str
:param picks: dictionary of available onset times
:type picks: dict
:param badpicks: picks to be repicked
:type badpicks:
:param pickparameter: picking parameters from autoPyLoT-input file
:type pickparameter: pylot.core.io.inputs.PylotParameter
:param fig_dict: dictionary containing Matplotlib figures used for plotting results
:type fig_dict: dict
:return: dictionary containing iterative picks
:rtype: dict
"""
msg = '##################################################\n' \
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
'starting re-picking them ...'.format(len(badpicks), badpicks)
print(msg)
newpicks = {}
for i in range(0, len(badpicks)):
if len(badpicks[i][0]) > 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) == 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) < 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
nllocline = getPatternLine(NLLocfile, Ppattern)
res = nllocline.split(None)[16]
# get theoretical P-onset time from residuum
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
# get corresponding waveform stream
msg = '##################################################\n' \
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
print(msg)
wf2pick = wf.select(station=badpicks[i][0])
# modify some picking parameters
pstart_old = pickparameter.get('pstart')
pstop_old = pickparameter.get('pstop')
sstop_old = pickparameter.get('sstop')
pickwinP_old = pickparameter.get('pickwinP')
Precalcwin_old = pickparameter.get('Precalcwin')
noisefactor_old = pickparameter.get('noisefactor')
zfac_old = pickparameter.get('zfac')
twindows = pickparameter.get('tsnrz')
tsafety = twindows[1]
pstart = max([0, badpicks[i][1] - wf2pick[0].stats.starttime - pickparameter.get('tlta')])
if abs(float(res)) <= tsafety / 2 or pstart == 0:
print("iteratepicker: Small residuum, leave parameters unchanged for this phase!")
else:
pickparameter.setParam(pstart=pstart)
pickparameter.setParam(pstop=pickparameter.get('pstart') + (pickparameter.get('Precalcwin')))
pickparameter.setParam(sstop=pickparameter.get('sstop') / 2)
pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2)
pickparameter.setParam(Precalcwin=pickparameter.get('Precalcwin') / 2)
pickparameter.setParam(noisefactor=1.0)
pickparameter.setParam(zfac=1.0)
print(
"iteratepicker: The following picking parameters have been modified for iterative picking:")
print(
"pstart: %fs => %fs" % (pstart_old, pickparameter.get('pstart')))
print(
"pstop: %fs => %fs" % (pstop_old, pickparameter.get('pstop')))
print(
"sstop: %fs => %fs" % (sstop_old, pickparameter.get('sstop')))
print("pickwinP: %fs => %fs" % (
pickwinP_old, pickparameter.get('pickwinP')))
print("Precalcwin: %fs => %fs" % (
Precalcwin_old, pickparameter.get('Precalcwin')))
print("noisefactor: %f => %f" % (
noisefactor_old, pickparameter.get('noisefactor')))
print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac')))
# repick station
newpicks, _ = autopickstation(wf2pick, pickparameter, fig_dict=fig_dict)
# replace old dictionary with new one
picks[badpicks[i][0]] = newpicks
# reset temporary change of picking parameters
print("iteratepicker: Resetting picking parameters ...")
pickparameter.setParam(pstart=pstart_old)
pickparameter.setParam(pstop=pstop_old)
pickparameter.setParam(sstop=sstop_old)
pickparameter.setParam(pickwinP=pickwinP_old)
pickparameter.setParam(Precalcwin=Precalcwin_old)
pickparameter.setParam(noisefactor=noisefactor_old)
pickparameter.setParam(zfac=zfac_old)
return picks