If Taupy was disabled, but pstart was larger than zero, the and would lead to the function that modifies starttimes not exiting. This resulted in taupy being used even though it was disabled when the p starttime was above 0.
2262 lines
111 KiB
Python
2262 lines
111 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
Function to run automated picking algorithms using AIC,
|
|
HOS and AR prediction. Uses objects CharFuns and Picker and
|
|
function conglomerate utils.
|
|
|
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
|
"""
|
|
import traceback
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from pylot.core.pick.charfuns import CharacteristicFunction
|
|
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
|
|
from pylot.core.pick.picker import AICPicker, PragPicker
|
|
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
|
|
getSNR, fmpicker, checkPonsets, wadaticheck, get_pickparams, get_quality_class
|
|
from pylot.core.util.utils import getPatternLine, gen_Pool,\
|
|
real_Bool, identifyPhaseID, real_None, correct_iplot
|
|
|
|
from obspy.taup import TauPyModel
|
|
from obspy import Trace
|
|
|
|
|
|
def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None, ncores=0, metadata=None, origin=None):
|
|
"""
|
|
:param data: ObsPy stream object containing waveform data of all stations in the event
|
|
:type data: ~obspy.core.stream.Stream
|
|
:param param: PylotParameter object containing parameters used for picking
|
|
:type param: pylot.core.io.inputs.PylotParameter
|
|
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
|
|
:type iplot: int, Boolean or String
|
|
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
|
|
:type fig_dict: dict
|
|
:param fig_dict_wadatijack: dictionary containing Matplotlib figures used for plotting jackknife-, wadati- and
|
|
mediantest results
|
|
:type fig_dict_wadatijack: dict
|
|
:param ncores: number of cores used for parallel processing. Default (0) uses all available cores
|
|
:type ncores: int
|
|
:param metadata: tuple containing metadata type string and Parser object read from inventory file
|
|
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
|
|
:param origin: list containing origin objects representing origins for all events
|
|
:type origin: list(~obspy.core.event.origin)
|
|
:return: dictionary containing picked stations and pick information
|
|
:rtype: dictionary
|
|
"""
|
|
stations = []
|
|
all_onsets = {}
|
|
input_tuples = []
|
|
try:
|
|
iplot = int(iplot)
|
|
except ValueError:
|
|
if iplot is True or iplot == 'True':
|
|
iplot = 2
|
|
else:
|
|
iplot = 0
|
|
|
|
# get some parameters for quality control from
|
|
# parameter input file (usually pylot.in).
|
|
wdttolerance = param.get('wdttolerance')
|
|
mdttolerance = param.get('mdttolerance')
|
|
jackfactor = param.get('jackfactor')
|
|
apverbose = param.get('apverbose')
|
|
for n in range(len(data)):
|
|
station = data[n].stats.station
|
|
if station not in stations:
|
|
stations.append(station)
|
|
else:
|
|
continue
|
|
|
|
for station in stations:
|
|
topick = data.select(station=station)
|
|
input_tuples.append((topick, param, apverbose, iplot, fig_dict, metadata, origin))
|
|
|
|
if iplot > 0:
|
|
print('iPlot Flag active: NO MULTIPROCESSING possible.')
|
|
ncores = 1
|
|
|
|
# rename ncores for string representation in case ncores == 0 (use all cores)
|
|
ncores_str = ncores if ncores != 0 else 'all available'
|
|
print('Autopickstation: Distribute autopicking for {} '
|
|
'stations on {} cores.'.format(len(input_tuples), ncores_str))
|
|
|
|
if ncores == 1:
|
|
results = serial_picking(input_tuples)
|
|
else:
|
|
results = parallel_picking(input_tuples, ncores)
|
|
|
|
for result, station in results:
|
|
if type(result) == dict:
|
|
all_onsets[station] = result
|
|
else:
|
|
if result is None:
|
|
result = 'Picker exited unexpectedly.'
|
|
print('Could not pick a station: {}\nReason: {}'.format(station, result))
|
|
|
|
# no Wadati/JK for single station (also valid for tuning mode)
|
|
if len(stations) == 1:
|
|
return all_onsets
|
|
|
|
# quality control
|
|
# median check and jackknife on P-onset times
|
|
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, jackfactor, iplot, fig_dict_wadatijack)
|
|
# check S-P times (Wadati)
|
|
wadationsets = wadaticheck(jk_checked_onsets, wdttolerance, iplot, fig_dict_wadatijack)
|
|
return wadationsets
|
|
|
|
|
|
def serial_picking(input_tuples):
|
|
result = []
|
|
for input_tuple in input_tuples:
|
|
result.append(call_autopickstation(input_tuple))
|
|
return result
|
|
|
|
|
|
def parallel_picking(input_tuples, ncores):
|
|
pool = gen_Pool(ncores)
|
|
result = pool.imap_unordered(call_autopickstation, input_tuples)
|
|
pool.close()
|
|
return result
|
|
|
|
|
|
def call_autopickstation(input_tuple):
|
|
"""
|
|
helper function used for multiprocessing
|
|
:param input_tuple: contains all parameters used for autopicking
|
|
:type input_tuple: tuple
|
|
:return: dictionary containing P pick, S pick and station name
|
|
:rtype: dict
|
|
"""
|
|
wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin = input_tuple
|
|
if fig_dict:
|
|
print('Running in interactive mode')
|
|
# multiprocessing not possible with interactive plotting
|
|
try:
|
|
return autopickstation(wfstream, pickparam, verbose, fig_dict=fig_dict, iplot=iplot, metadata=metadata,
|
|
origin=origin)
|
|
except Exception as e:
|
|
tbe = traceback.format_exc()
|
|
return tbe, wfstream[0].stats.station
|
|
|
|
|
|
def get_source_coords(parser, station_id):
|
|
"""
|
|
retrieves station coordinates from metadata
|
|
:param parser: Parser object containing metadata read from inventory file
|
|
:type parser: ~obspy.io.xseed.parser.Parser
|
|
:param station_id: station id of which the coordinates should be retrieved, for example 'BW.RJOB..EHZ'. Only
|
|
network and station name is required, channel id (last part) is ignored.
|
|
:type station_id: str
|
|
:return: dictionary containing 'latitude', 'longitude', 'elevation' and 'local_depth' of station
|
|
:rtype: dict
|
|
"""
|
|
station_coords = None
|
|
try:
|
|
station_coords = parser.get_coordinates(station_id)
|
|
except Exception as e:
|
|
print('Could not get source coordinates for station {}: {}'.format(station_id, e))
|
|
return station_coords
|
|
|
|
|
|
class PickingParameters(object):
|
|
"""
|
|
Stores parameters used for picking a single station.
|
|
@DynamicAttrs (mark class so that PyCharm doesnt warn when accessing dynamically added attributes)
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
"""
|
|
Add dictionaries given as positional arguments and the keyword argument dictionary to the instance
|
|
as attributes. Positional arguments with types differing from dict are ignored.
|
|
"""
|
|
# add entries from dictionaries given as positional arguments
|
|
for arg in args:
|
|
if type(arg) == dict:
|
|
self.add_params_from_dict(arg)
|
|
# add values given as keyword arguments
|
|
self.add_params_from_dict(kwargs)
|
|
|
|
def add_params_from_dict(self, d):
|
|
"""
|
|
Add all key-value pairs from dictionary d to the class namespace as attributes.
|
|
:param d:
|
|
:type d: dict
|
|
:rtype: None
|
|
"""
|
|
for key, value in d.items():
|
|
setattr(self, key, value)
|
|
|
|
|
|
class PickingResults(dict):
|
|
"""
|
|
Used to store picking results.
|
|
PickingResults is a dict like class that adds attribute (dot) access to the dictionaries values.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Inits default values of picking results. Called to generate a clean
|
|
PickingResults instance with sensible defaults.
|
|
:return:
|
|
:rtype:
|
|
"""
|
|
# Magnitude parameters
|
|
self.Mo = None
|
|
self.Mw = None
|
|
|
|
# TODO What are those?
|
|
self.w0 = None
|
|
self.fc = None
|
|
self.Ao = None # Wood-Anderson peak-to-peak amplitude
|
|
|
|
# Station information
|
|
self.network = None
|
|
self.channel = None
|
|
|
|
# pick information
|
|
self.picker = 'auto' # type of pick
|
|
self.marked = []
|
|
|
|
# pick results
|
|
self.epp = None # earliest possible pick
|
|
self.mpp = None # most likely onset
|
|
self.lpp = None # latest possible pick
|
|
self.fm = 'N' # first motion polarity, can be set to 'U' (Up) or 'D' (Down)
|
|
self.snr = None # signal-to-noise ratio of onset
|
|
self.snrdb = None # signal-to-noise ratio of onset [dB]
|
|
self.spe = None # symmetrized picking error
|
|
self.weight = 4 # weight of onset
|
|
|
|
# to correctly provide dot access to dictionary attributes, all attribute access of the class is forwarded to the
|
|
# dictionary
|
|
def __getattr__(self, item):
|
|
"""Override getattr to return an AttributeError instead of a KeyError when the instance doesn't have the
|
|
attribute.
|
|
"""
|
|
try:
|
|
attr = dict.__getitem__(self, item)
|
|
except KeyError:
|
|
raise AttributeError('{classname} has no attribute {attrname}'.format(classname=self.__class__.__name__,
|
|
attrname=item))
|
|
return attr
|
|
|
|
__setattr__ = dict.__setitem__
|
|
__delattr__ = dict.__delitem__
|
|
|
|
|
|
class PickingContainer:
|
|
"""
|
|
Keeps intermediary results and values during picking
|
|
"""
|
|
|
|
def __init__(self):
|
|
# flags for plotting
|
|
self.p_aic_plot_flag = 0
|
|
self.aicSflag = 0
|
|
self.Pflag = 0
|
|
self.Sflag = 0
|
|
|
|
|
|
class MissingTraceException(ValueError):
|
|
"""
|
|
Used to indicate missing traces in a obspy.core.stream.Stream object
|
|
"""
|
|
pass
|
|
|
|
|
|
class PickingFailedException(Exception):
|
|
"""
|
|
Raised when picking fails due to missing values etc.
|
|
"""
|
|
pass
|
|
|
|
|
|
class AutopickStation(object):
|
|
|
|
def __init__(self, wfstream, pickparam, verbose, iplot=0, fig_dict=None, metadata=None, origin=None):
|
|
"""
|
|
:param wfstream: stream object containing waveform of all traces
|
|
:type wfstream: ~obspy.core.stream.Stream
|
|
:param pickparam: container of picking parameters from input file, usually pylot.in
|
|
:type pickparam: pylot.core.io.inputs.PylotParameter
|
|
:param verbose: used to control output to log during picking. True = more information printed
|
|
:type verbose: bool
|
|
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
|
|
:type iplot: int, (Boolean or String)
|
|
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
|
|
:type fig_dict: dict
|
|
:param metadata: tuple containing metadata type string and Parser object read from inventory file
|
|
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
|
|
:param origin: list containing origin objects representing origins for all events
|
|
:type origin: list(~obspy.core.event.origin)
|
|
:return: dictionary-like object containing P pick, S pick and station name
|
|
:rtype:
|
|
"""
|
|
# save given parameters
|
|
self.wfstream = wfstream
|
|
self.pickparam = pickparam
|
|
self.verbose = verbose
|
|
self.iplot = correct_iplot(iplot)
|
|
self.fig_dict = real_None(fig_dict)
|
|
self.metadata = metadata
|
|
self.origin = origin
|
|
|
|
# initialize picking results
|
|
self.p_results = PickingResults()
|
|
self.s_results = PickingResults()
|
|
|
|
# intialize containers that keep intermediary values between picking P- and S phase and plotting
|
|
self.p_data = PickingContainer()
|
|
self.s_data = PickingContainer()
|
|
|
|
# extract additional information
|
|
pickparams = self.extract_pickparams(pickparam)
|
|
self.p_params, self.s_params, self.first_motion_params, self.signal_length_params = pickparams
|
|
# TODO get channelorder from the pylot preferences
|
|
self.channelorder = {'Z': 3, 'N': 1, 'E': 2}
|
|
self.station_name = wfstream[0].stats.station
|
|
self.network_name = wfstream[0].stats.network
|
|
self.station_id = '{}.{}'.format(self.network_name, self.station_name)
|
|
|
|
# save streams and traces
|
|
self.zstream, self.nstream, self.estream = self.get_components_from_waveformstream()
|
|
self.ztrace, self.ntrace, self.etrace = self.get_traces_from_streams()
|
|
|
|
# default values used in old autopickstation function
|
|
# #TODO way for user to set those
|
|
self.detrend_type = 'demean'
|
|
self.filter_type = 'bandpass'
|
|
self.zerophase = False
|
|
self.taper_max_percentage = 0.05
|
|
self.taper_type = 'hann'
|
|
|
|
# Used during picking to plot results
|
|
self.current_figure = None
|
|
self.current_linecolor = None
|
|
|
|
def horizontal_traces_exist(self):
|
|
"""
|
|
Return true when at least one horizontal trace exists
|
|
:rtype: bool
|
|
"""
|
|
if len(self.nstream) == len(self.estream) == 0:
|
|
return False
|
|
return True
|
|
|
|
def vprint(self, s):
|
|
"""Only print statement if verbose picking is set to true."""
|
|
if self.verbose:
|
|
print(s)
|
|
|
|
def extract_pickparams(self, pickparam):
|
|
"""
|
|
Get parameter names out of pickparam dictionary into PickingParameters objects and return them.
|
|
:return: PickingParameters objects containing 1. p pick parameters, 2. s pick parameters, 3. first motion determinatiion
|
|
parameters, 4. signal length parameters
|
|
:rtype: (PickingParameters, PickingParameters, PickingParameters, PickingParameters)
|
|
"""
|
|
# Define names of all parameters in different groups
|
|
p_parameter_names = 'algoP pstart pstop use_taup taup_model tlta tsnrz hosorder bpz1 bpz2 pickwinP aictsmooth tsmoothP ausP nfacP tpred1z tdet1z Parorder addnoise Precalcwin minAICPslope minAICPSNR timeerrorsP'.split(
|
|
' ')
|
|
s_parameter_names = 'algoS sstart sstop bph1 bph2 tsnrh pickwinS tpred1h tdet1h tpred2h tdet2h Sarorder aictsmoothS tsmoothS ausS minAICSslope minAICSSNR Srecalcwin nfacS timeerrorsS zfac'.split(
|
|
' ')
|
|
first_motion_names = 'minFMSNR fmpickwin minfmweight'.split(' ')
|
|
signal_length_names = 'minsiglength minpercent noisefactor'.split(' ')
|
|
# Get list of values from pickparam by name
|
|
p_parameter_values = map(pickparam.get, p_parameter_names)
|
|
s_parameter_values = map(pickparam.get, s_parameter_names)
|
|
fm_parameter_values = map(pickparam.get, first_motion_names)
|
|
sl_parameter_values = map(pickparam.get, signal_length_names)
|
|
# construct dicts from names and values
|
|
p_params = dict(zip(p_parameter_names, p_parameter_values))
|
|
s_params = dict(zip(s_parameter_names, s_parameter_values))
|
|
first_motion_params = dict(zip(first_motion_names, fm_parameter_values))
|
|
signal_length_params = dict(zip(signal_length_names, sl_parameter_values))
|
|
|
|
p_params['use_taup'] = real_Bool(p_params['use_taup'])
|
|
|
|
return PickingParameters(p_params), PickingParameters(s_params), PickingParameters(first_motion_params), PickingParameters(signal_length_params)
|
|
|
|
def get_components_from_waveformstream(self):
|
|
"""
|
|
Splits waveformstream into multiple components zdat, ndat, edat. For traditional orientation (ZNE) these contain
|
|
the vertical, north-south or east-west component. Otherwise they contain components numbered 123 with
|
|
orientation diverging from the traditional orientation.
|
|
:param waveformstream: Stream containing all three components for one station either by ZNE or 123 channel code
|
|
(mixture of both options is handled as well)
|
|
:type waveformstream: obspy.core.stream.Stream
|
|
:return: Tuple containing (z waveform, n waveform, e waveform) selected by the given channels. If no waveform
|
|
could be found for a given channel, an empty obspy Stream will be returned for that channel
|
|
:rtype: (obspy.core.stream.Stream, obspy.core.stream.Stream, obspy.core.stream.Stream)
|
|
"""
|
|
waveform_data = {}
|
|
for key in self.channelorder:
|
|
waveform_data[key] = self.wfstream.select(component=key) # try ZNE first
|
|
if len(waveform_data[key]) == 0:
|
|
waveform_data[key] = self.wfstream.select(component=str(self.channelorder[key])) # use 123 as second option
|
|
return waveform_data['Z'], waveform_data['N'], waveform_data['E']
|
|
|
|
def get_traces_from_streams(self):
|
|
"""
|
|
Extract Trace from Stream. If a component has no data, an empty trace will be returned
|
|
:return: Tuple of obspy.Trace instances in order ZNE
|
|
:rtype: (obspy.Trace)
|
|
"""
|
|
if len(self.zstream) == 0:
|
|
msg = 'No Z-component found for station {}. STOP'.format(self.wfstream[0].stats.station)
|
|
raise MissingTraceException(msg)
|
|
if not self.horizontal_traces_exist():
|
|
# Both horizontal traces missing, only P pick can be determined
|
|
msg = 'No horizontal traces found for station {}'.format(self.wfstream[0].stats.station)
|
|
self.vprint(msg)
|
|
return self.zstream[0], Trace(), Trace()
|
|
|
|
ztrace = self.zstream[0]
|
|
try:
|
|
ntrace = self.nstream[0]
|
|
except IndexError:
|
|
# if N trace is missing, copy E trace
|
|
self.nstream = self.estream
|
|
ntrace = self.nstream[0]
|
|
try:
|
|
# if E trace is missing, copy N trace
|
|
etrace = self.estream[0]
|
|
except IndexError:
|
|
self.estream = self.nstream
|
|
etrace = self.estream[0]
|
|
return ztrace, ntrace, etrace
|
|
|
|
def prepare_wfstream(self, wfstream, freqmin=None, freqmax=None):
|
|
"""
|
|
Prepare a waveformstream for picking by applying detrending, filtering and tapering. Creates a copy of the
|
|
waveform the leave the original unchanged.
|
|
:param wfstream: waveform stream
|
|
:type wfstream: obspy.core.stream.Stream
|
|
:param freqmin: Lower frequency of bandpass or highpass
|
|
:type freqmin: float
|
|
:param freqmax: Upper frequency of bandpass or lowpass
|
|
:type freqmax: float
|
|
:return: Tuple containing the changed waveform stream and the changed first trace of the stream
|
|
:rtype: (obspy.core.trace.Trace, obspy.core.stream.Stream)
|
|
"""
|
|
wfstream_copy = wfstream.copy()
|
|
trace_copy = wfstream[0].copy()
|
|
trace_copy.detrend(type=self.detrend_type)
|
|
trace_copy.filter(self.filter_type, freqmin=freqmin, freqmax=freqmax, zerophase=self.zerophase)
|
|
trace_copy.taper(max_percentage=self.taper_max_percentage, type=self.taper_type)
|
|
wfstream_copy[0].data = trace_copy.data
|
|
return trace_copy, wfstream_copy
|
|
|
|
def modify_starttimes_taupy(self):
|
|
"""
|
|
Calculate theoretical arrival times for a source at self.origin and a station at self.metadata. Modify
|
|
self.pstart and self.pstop so they are based on a time window around these theoretical arrival times.
|
|
:rtype: None
|
|
"""
|
|
|
|
def get_seed_id():
|
|
"""
|
|
Returns seed id of ztrace
|
|
:return: Seed id with format Network.Station.Location.Channel
|
|
:rtype: str
|
|
"""
|
|
stats = self.ztrace.stats
|
|
id = "{network}.{station}.{location}.{channel}"
|
|
id = id.format(network=stats.network, station=stats.station, location=stats.location, channel=stats.channel)
|
|
return id
|
|
|
|
def create_arrivals(metadata, origin, station_id, taup_model):
|
|
"""
|
|
Create List of arrival times for all phases for a given origin and station
|
|
:param metadata: tuple containing metadata type string and Parser object read from inventory file
|
|
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
|
|
:param origin: list containing origin objects representing origins for all events
|
|
:type origin: list(~obspy.core.event.origin)
|
|
:param station_id: Station id with format NETWORKNAME.STATIONNAME
|
|
:type station_id: str
|
|
:param taup_model: Model name to use. See obspy.taup.tau.TauPyModel for options
|
|
:type taup_model: str
|
|
:return: List of Arrival objects
|
|
:rtype: obspy.taup.tau.Arrivals
|
|
:raises:
|
|
AttributeError when no metadata or source origins is given
|
|
"""
|
|
id = get_seed_id()
|
|
station_coords = metadata.get_coordinates(id)
|
|
source_origin = origin[0]
|
|
model = TauPyModel(taup_model)
|
|
arrivals = model.get_travel_times_geo(source_depth_in_km=source_origin.depth,
|
|
source_latitude_in_deg=source_origin.latitude,
|
|
source_longitude_in_deg=source_origin.longitude,
|
|
receiver_latitude_in_deg=station_coords['latitude'],
|
|
receiver_longitude_in_deg=station_coords['longitude'])
|
|
return arrivals
|
|
|
|
def first_PS_onsets(arrivals):
|
|
"""
|
|
Get first P and S onsets from arrivals list
|
|
:param arrivals: List of Arrival objects
|
|
:type arrivals: obspy.taup.tau.Arrivals
|
|
:return:
|
|
:rtype:
|
|
"""
|
|
phases = {'P': [], 'S': []}
|
|
# sort phases in P and S phases
|
|
for arr in arrivals:
|
|
phases[identifyPhaseID(arr.phase.name)].append(arr)
|
|
# get first P and S onsets from arrivals list
|
|
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
|
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
|
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
|
|
' origin time using TauPy'.format(estFirstP, estFirstS))
|
|
return estFirstP, estFirstS
|
|
|
|
if self.p_params.use_taup is False or not self.origin or not self.metadata:
|
|
# correct user mistake where a relative cuttime is selected (pstart < 0) but use of taupy is disabled/ has
|
|
# not the required parameters
|
|
if self.p_params.pstart < 0:
|
|
self.p_params.pstart = 0
|
|
return
|
|
|
|
print('autopickstation: use_taup flag active.')
|
|
# catch missing metadata or origin information. Onset calculation is stopped, given cuttimes are then used.
|
|
if not self.metadata:
|
|
raise AttributeError('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
|
|
if not self.origin:
|
|
raise AttributeError('No source origins given!')
|
|
|
|
arrivals = create_arrivals(self.metadata, self.origin, self.station_id, self.p_params.taup_model)
|
|
estFirstP, estFirstS = first_PS_onsets(arrivals)
|
|
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
|
|
self.p_params.pstart += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
|
self.p_params.pstop += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
|
print('autopick: CF calculation times respectively:'
|
|
' pstart: {} s, pstop: {} s'.format(self.p_params.pstart, self.p_params.pstop))
|
|
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
|
|
self.p_params.pstart = max(self.p_params.pstart, 0)
|
|
self.p_params.pstop = min(self.p_params.pstop, len(self.ztrace) * self.ztrace.stats.delta)
|
|
|
|
def autopickstation(self):
|
|
"""
|
|
Main function of autopickstation, which calculates P and S picks and returns them in a dictionary.
|
|
:return: dict with keys 'P', 'S', and 'station'.
|
|
P's value is a PickingResults instance containing P results.
|
|
S's value is a PickingResults instance containing S results.
|
|
station's value is the station name on which the picks were calculated.
|
|
:rtype: dict
|
|
"""
|
|
try:
|
|
self.pick_p_phase()
|
|
except MissingTraceException as mte:
|
|
print(mte)
|
|
except PickingFailedException as pfe:
|
|
print(pfe)
|
|
|
|
if self.horizontal_traces_exist() and self.p_results.weight is not None and self.p_results.weight < 4:
|
|
try:
|
|
self.pick_s_phase()
|
|
except MissingTraceException as mte:
|
|
print(mte)
|
|
except PickingFailedException as pfe:
|
|
print(pfe)
|
|
|
|
self.plot_pick_results()
|
|
self.finish_picking()
|
|
return [{'P': self.p_results, 'S':self.s_results}, self.ztrace.stats.station]
|
|
|
|
def finish_picking(self):
|
|
|
|
# calculate "real" onset times, save them in PickingResults
|
|
if self.p_results.lpp is not None and self.p_results.lpp == self.p_results.mpp:
|
|
self.p_results.lpp += self.ztrace.stats.delta
|
|
if self.p_results.epp is not None and self.p_results.epp == self.p_results.mpp:
|
|
self.p_results.epp -= self.ztrace.stats.delta
|
|
if self.p_results.mpp is not None and self.p_results.epp is not None and self.p_results.lpp is not None:
|
|
self.p_results.lpp = self.ztrace.stats.starttime + self.p_results.lpp
|
|
self.p_results.epp = self.ztrace.stats.starttime + self.p_results.epp
|
|
self.p_results.mpp = self.ztrace.stats.starttime + self.p_results.mpp
|
|
else:
|
|
# dummy values (start of seismic trace) in order to derive
|
|
# theoretical onset times for iterative picking
|
|
self.p_results.lpp = self.ztrace.stats.starttime + self.p_params.timeerrorsP[3]
|
|
self.p_results.epp = self.ztrace.stats.starttime - self.p_params.timeerrorsP[3]
|
|
self.p_results.mpp = self.ztrace.stats.starttime
|
|
|
|
self.p_results.channel = self.ztrace.stats.channel
|
|
self.p_results.network = self.ztrace.stats.network
|
|
#
|
|
# S results
|
|
#
|
|
if not self.horizontal_traces_exist():
|
|
# no horizontal components means there is no S pick to be finished
|
|
return
|
|
if self.etrace:
|
|
hdat = self.etrace
|
|
elif self.ntrace:
|
|
hdat = self.ntrace
|
|
|
|
if self.s_results.lpp is not None and self.s_results.lpp == self.s_results.mpp:
|
|
self.s_results.lpp += hdat.stats.delta
|
|
if self.s_results.epp is not None and self.s_results.epp == self.s_results.mpp:
|
|
self.s_results.epp -= hdat.stats.delta
|
|
if self.s_results.mpp is not None and self.s_results.epp is not None and self.s_results.lpp is not None:
|
|
self.s_results.lpp = hdat.stats.starttime + self.s_results.lpp
|
|
self.s_results.epp = hdat.stats.starttime + self.s_results.epp
|
|
self.s_results.mpp = hdat.stats.starttime + self.s_results.mpp
|
|
else:
|
|
# dummy values (start of seismic trace) in order to derive
|
|
# theoretical onset times for iteratve picking
|
|
self.s_results.lpp = hdat.stats.starttime + self.s_params.timeerrorsS[3]
|
|
self.s_results.epp = hdat.stats.starttime - self.s_params.timeerrorsS[3]
|
|
self.s_results.mpp = hdat.stats.starttime
|
|
|
|
self.s_results.channel = self.etrace.stats.channel
|
|
self.s_results.network = self.etrace.stats.network
|
|
self.s_results.fm = None # override default value 'N'
|
|
|
|
def plot_pick_results(self):
|
|
if self.iplot > 0:
|
|
# plot vertical trace
|
|
if self.fig_dict is None:
|
|
fig = plt.figure()
|
|
plt_flag = 1
|
|
linecolor = 'k'
|
|
else:
|
|
fig = self.fig_dict['mainFig']
|
|
linecolor = self.fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
plt_flag = 0
|
|
fig._tight = True
|
|
ax1 = fig.add_subplot(311)
|
|
tdata = np.linspace(start=0, stop=self.ztrace.stats.npts*self.ztrace.stats.delta, num=self.ztrace.stats.npts)
|
|
# plot tapered trace filtered with bpz2 filter settings
|
|
ax1.plot(tdata, self.tr_filt_z_bpz2.data/max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7, label='Data')
|
|
if self.p_results.weight < 4:
|
|
# plot CF of initial onset (HOScf or ARZcf)
|
|
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF()/max(self.cf1.getCF()), 'b', label='CF1')
|
|
if self.p_data.p_aic_plot_flag == 1:
|
|
aicpick = self.p_data.aicpick
|
|
refPpick = self.p_data.refPpick
|
|
# plot CF of precise pick (HOScf or ARZcf)
|
|
ax1.plot(self.cf2.getTimeArray(), self.cf2.getCF() / max(self.cf2.getCF()), 'm', label='CF2')
|
|
# plot inital P pick
|
|
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r', label='Initial P Onset')
|
|
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [1, 1], 'r')
|
|
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], [-1, -1], 'r')
|
|
# plot precise P pick
|
|
ax1.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
|
|
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [1.3, 1.3], 'r', linewidth=2)
|
|
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], [-1.3, -1.3], 'r', linewidth=2)
|
|
# plot latest possible P pick
|
|
ax1.plot([self.p_results.lpp, self.p_results.lpp], [-1.1, 1.1], 'r--', label='lpp')
|
|
# plot earliest possible P pick
|
|
ax1.plot([self.p_results.epp, self.p_results.epp], [-1.1, 1.1], 'r--', label='epp')
|
|
# add title to plot
|
|
title = '{station}, {channel}, P weight={pweight:d}, SNR={snr:7.2}, SNR[dB]={snrdb:7.2}, Polarity: {polarity}'
|
|
ax1.set_title(title.format(station=self.ztrace.stats.station,
|
|
channel=self.ztrace.stats.channel,
|
|
pweight=self.p_results.weight,
|
|
snr=self.p_results.snr,
|
|
snrdb=self.p_results.snrdb,
|
|
polarity=self.p_results.fm))
|
|
else:
|
|
title = '{channel}, P weight={pweight}, SNR=None, SNR[dB]=None'
|
|
ax1.set_title(title.format(channel=self.ztrace.stats.channel, pweight=self.p_results.weight))
|
|
|
|
ax1.legend(loc=1)
|
|
ax1.set_yticks([])
|
|
ax1.set_ylim([-1.5, 1.5])
|
|
ax1.set_ylabel('Normalized Counts')
|
|
|
|
if self.horizontal_traces_exist() and self.s_data.Sflag == 1:
|
|
# plot E trace
|
|
ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
|
|
th1data = np.linspace(0, self.etrace.stats.npts*self.etrace.stats.delta, self.etrace.stats.npts)
|
|
# plot filtered and tapered waveform
|
|
ax2.plot(th1data, self.etrace.data / max(self.etrace.data), color=linecolor, linewidth=0.7, label='Data')
|
|
if self.p_results.weight < 4:
|
|
# plot initial CF (ARHcf or AR3Ccf)
|
|
ax2.plot(self.arhcf1.getTimeArray(), self.arhcf1.getCF() / max(self.arhcf1.getCF()), 'b', label='CF1')
|
|
if self.s_data.aicSflag == 1 and self.s_results.weight <= 4:
|
|
aicarhpick = self.aicarhpick
|
|
refSpick = self.refSpick
|
|
# plot second cf, used for determing precise onset (ARHcf or AR3Ccf)
|
|
ax2.plot(self.arhcf2.getTimeArray(), self.arhcf2.getCF() / max(self.arhcf2.getCF()), 'm', label='CF2')
|
|
# plot preliminary onset time, calculated from CF1
|
|
ax2.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g', label='Initial S Onset')
|
|
ax2.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
|
|
ax2.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
|
|
# plot precise onset time, calculated from CF2
|
|
ax2.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
|
|
ax2.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
|
|
ax2.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
|
ax2.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
|
|
ax2.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
|
|
title = '{channel}, S weight={sweight}, SNR={snr:7.2}, SNR[dB]={snrdb:7.2}'
|
|
ax2.set_title(title.format(channel=self.etrace.stats.channel,
|
|
sweight=self.s_results.weight,
|
|
snr=self.s_results.snr,
|
|
snrdb=self.s_results.snrdb))
|
|
else:
|
|
title = '{channel}, S weight={sweight}, SNR=None, SNR[dB]=None'
|
|
ax2.set_title(title.format(channel=self.etrace.stats.channel, sweight=self.s_results.weight))
|
|
ax2.legend(loc=1)
|
|
ax2.set_yticks([])
|
|
ax2.set_ylim([-1.5, 1.5])
|
|
ax2.set_ylabel('Normalized Counts')
|
|
|
|
# plot N trace
|
|
ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
|
|
th2data= np.linspace(0, self.ntrace.stats.npts*self.ntrace.stats.delta, self.ntrace.stats.npts)
|
|
# plot trace
|
|
ax3.plot(th2data, self.ntrace.data / max(self.ntrace.data), color=linecolor, linewidth=0.7, label='Data')
|
|
if self.p_results.weight < 4:
|
|
p22, = ax3.plot(self.arhcf1.getTimeArray(), self.arhcf1.getCF() / max(self.arhcf1.getCF()), 'b', label='CF1')
|
|
if self.s_data.aicSflag == 1:
|
|
aicarhpick = self.aicarhpick
|
|
refSpick = self.refSpick
|
|
ax3.plot(self.arhcf2.getTimeArray(), self.arhcf2.getCF() / max(self.arhcf2.getCF()), 'm', label='CF2')
|
|
ax3.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g', label='Initial S Onset')
|
|
ax3.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
|
|
ax3.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
|
|
ax3.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2,
|
|
label='Final S Pick')
|
|
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
|
|
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
|
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
|
|
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
|
|
ax3.legend(loc=1)
|
|
ax3.set_yticks([])
|
|
ax3.set_ylim([-1.5, 1.5])
|
|
ax3.set_xlabel('Time [s] after %s' % self.ntrace.stats.starttime)
|
|
ax3.set_ylabel('Normalized Counts')
|
|
ax3.set_title(self.ntrace.stats.channel)
|
|
if plt_flag == 1:
|
|
fig.show()
|
|
try:
|
|
input()
|
|
except SyntaxError:
|
|
pass
|
|
plt.close(fig)
|
|
|
|
def _pick_p_quality_control(self, aicpick, z_copy, tr_filt):
|
|
"""
|
|
Quality control of first pick using minseglength and checkZ4S.
|
|
:param aicpick: Instance of AICPicker to run quality control on
|
|
:type aicpick: AICPicker
|
|
:param z_copy: Stream if vertical trace, data replaced with values from from initial CF (HOScf or ARHcf)
|
|
:type z_copy: obspy.core.stream.Stream
|
|
:param tr_filt: Filtered and tapered trace of vertical component
|
|
:type tr_filt: obspy.core.trace.trace
|
|
:return: Flag if P onset passed quality control, 1 if passed, 0 if failed.
|
|
:rtype: int
|
|
"""
|
|
|
|
self.set_current_figure('slength')
|
|
if aicpick.getpick() is None:
|
|
msg = "Bad initial (AIC) P-pick, skipping this onset!\nAIC-SNR={0}, AIC-Slope={1}counts/s\n " \
|
|
"(min. AIC-SNR={2}, min. AIC-Slope={3}counts/s)"
|
|
msg = msg.format(aicpick.getSNR(), aicpick.getSlope(), self.p_params.minAICPSNR, self.p_params.minAICPslope)
|
|
self.vprint(msg)
|
|
return 0
|
|
# Quality check initial pick with minimum signal length
|
|
z_copy[0].data = tr_filt.data # save filtered, tapered trace in z_copy stream object
|
|
zne = z_copy
|
|
if len(self.nstream) == 0 or len(self.estream) == 0:
|
|
msg = 'One or more horizontal component(s) missing!\n' \
|
|
'Signal length only checked on vertical component!\n' \
|
|
'Decreasing minsiglengh from {0} to {1}'\
|
|
.format(self.signal_length_params.minsiglength, self.signal_length_params.minsiglength / 2)
|
|
self.vprint(msg)
|
|
minsiglength = self.signal_length_params.minsiglength / 2
|
|
else:
|
|
# filter, taper other traces as well since signal length is compared on all traces
|
|
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
zne += trH1_filt
|
|
zne += trH2_filt
|
|
minsiglength = self.signal_length_params.minsiglength
|
|
Pflag = checksignallength(zne, aicpick.getpick(), self.p_params.tsnrz, minsiglength,
|
|
self.signal_length_params.noisefactor, self.signal_length_params.minpercent,
|
|
self.iplot, self.current_figure, self.current_linecolor)
|
|
if Pflag == 0:
|
|
self.p_results.marked = 'shortsignallength'
|
|
self.p_results.weight = 9
|
|
return 0
|
|
|
|
if self.nstream == self.estream:
|
|
# todo: old implementation skipped this test if one component was missing, why not use one component?
|
|
msg = 'One or more horizontal components missing!\n Skipping control function checkZ4S.'
|
|
self.vprint(msg)
|
|
return 1
|
|
|
|
if self.iplot > 1: self.set_current_figure('checkZ4s')
|
|
Pflag = checkZ4S(zne, aicpick.getpick(), self.s_params.zfac, self.p_params.tsnrz[2], self.iplot,
|
|
self.current_figure, self.current_linecolor)
|
|
if Pflag == 0:
|
|
self.p_results.marked = 'SinsteadP'
|
|
self.p_results.weight = 9
|
|
return 0
|
|
return 1
|
|
|
|
def pick_p_phase(self):
|
|
"""
|
|
Pick p phase, store results in self.p_results
|
|
:return: None
|
|
:raises:
|
|
MissingTraceException: If vertical trace is missing.
|
|
"""
|
|
msg = '##################################################\nautopickstation:' \
|
|
' Working on P onset of station {station}\nFiltering vertical ' \
|
|
'trace ...\n{data}'.format(station=self.station_name, data=str(self.zstream))
|
|
self.vprint(msg)
|
|
|
|
tr_filt, z_copy = self.prepare_wfstream(self.zstream, self.p_params.bpz1[0], self.p_params.bpz1[1])
|
|
# save filtered trace in instance for later plotting
|
|
self.tr_filt_z_bpz2 = tr_filt
|
|
try:
|
|
# modify pstart, pstop to be around theoretical onset if taupy should be used, else does nothing
|
|
self.modify_starttimes_taupy()
|
|
except AttributeError as ae:
|
|
print(ae)
|
|
except MissingTraceException as mte:
|
|
print(mte)
|
|
cuttimes = self._calculate_cuttimes('P', 1)
|
|
|
|
# calculate first CF
|
|
if self.p_params.algoP == 'HOS':
|
|
self.cf1 = HOScf(z_copy, cuttimes, self.p_params.tlta, self.p_params.hosorder)
|
|
elif self.p_params.algoP == 'ARZ':
|
|
self.cf1 = ARZcf(z_copy, cuttimes, self.p_params.tpred1z, self.p_params.Parorder, self.p_params.tdet1z,
|
|
self.p_params.addnoise)
|
|
else:
|
|
self.cf1 = None
|
|
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
|
|
' is corrupted'.format(self.p_params.algoP)
|
|
# calculate AIC cf from first cf (either HOS or ARZ)
|
|
z_copy[0].data = self.cf1.getCF()
|
|
aiccf = AICcf(z_copy, cuttimes)
|
|
# get preliminary onset time from AIC-CF
|
|
self.set_current_figure('aicFig')
|
|
aicpick = AICPicker(aiccf, self.p_params.tsnrz, self.p_params.pickwinP, self.iplot,
|
|
Tsmooth=self.p_params.aictsmooth, fig=self.current_figure, linecolor=self.current_linecolor)
|
|
# save aicpick for plotting later
|
|
self.p_data.aicpick = aicpick
|
|
# add pstart and pstop to aic plot
|
|
if self.current_figure:
|
|
# TODO remove plotting from picking, make own plot function
|
|
for ax in self.current_figure.axes:
|
|
ax.vlines(self.p_params.pstart, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P start')
|
|
ax.vlines(self.p_params.pstop, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P stop')
|
|
ax.legend(loc=1)
|
|
|
|
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
|
|
# go on with processing if AIC onset passes quality control
|
|
slope = aicpick.getSlope()
|
|
if not slope: slope = 0
|
|
# todo why did picking fail was saved in the pick dictionary, should this be reimplemented?
|
|
if Pflag != 1:
|
|
raise PickingFailedException('AIC P onset quality control failed')
|
|
if slope <= self.p_params.minAICPslope:
|
|
error_msg = 'AIC P onset slope to small: got {}, min {}'.format(slope, self.p_params.minAICPslope)
|
|
raise PickingFailedException(error_msg)
|
|
if aicpick.getSNR() < self.p_params.minAICPSNR:
|
|
error_msg = 'AIC P onset SNR to small: got {}, min {}'.format(aicpick.getSNR(), self.p_params.minAICPSNR)
|
|
raise PickingFailedException(error_msg)
|
|
|
|
self.p_data.p_aic_plot_flag = 1
|
|
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, SNR: {1}\nGo on with refined picking ...\n' \
|
|
'autopickstation: re-filtering vertical trace...'.format(aicpick.getSlope(), aicpick.getSNR())
|
|
self.vprint(msg)
|
|
# refilter waveform with larger bandpass
|
|
tr_filt, z_copy = self.prepare_wfstream(self.zstream, freqmin=self.p_params.bpz2[0], freqmax=self.p_params.bpz2[1])
|
|
# save filtered trace in instance for later plotting
|
|
self.tr_filt_z_bpz2 = tr_filt
|
|
# determine new times around initial onset
|
|
cuttimes2 = self._calculate_cuttimes('P', 2)
|
|
if self.p_params.algoP == 'HOS':
|
|
self.cf2 = HOScf(z_copy, cuttimes2, self.p_params.tlta, self.p_params.hosorder)
|
|
elif self.p_params.algoP == 'ARZ':
|
|
self.cf2 = ARZcf(z_copy, cuttimes2, self.p_params.tpred2z, self.p_params.Parorder, self.p_params.tdet2z, self.p_params.addnoise)
|
|
else:
|
|
self.cf2 = None
|
|
assert isinstance(self.cf2, CharacteristicFunction), 'cf2 is not set correctly: maybe the algorithm name () is ' \
|
|
'corrupted'.format(self.p_params.algoP)
|
|
self.set_current_figure('refPpick')
|
|
# get refined onset time from CF2
|
|
refPpick = PragPicker(self.cf2, self.p_params.tsnrz, self.p_params.pickwinP, self.iplot, self.p_params.ausP,
|
|
self.p_params.tsmoothP, aicpick.getpick(), self.current_figure, self.current_linecolor)
|
|
# save PragPicker result for plotting
|
|
self.p_data.refPpick = refPpick
|
|
self.p_results.mpp = refPpick.getpick()
|
|
if self.p_results.mpp is None:
|
|
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n AIC-SNR={}, AIC-Slope={}counts/s\n' \
|
|
'(min. AIC-SNR={}, min. AIC-Slope={}counts/s)'
|
|
msg.format(aicpick.getSNR(), aicpick.getSlope(), self.p_params.minAICPSNR, self.p_params.minAICPslope)
|
|
self.vprint(msg)
|
|
self.s_data.Sflag = 0
|
|
raise PickingFailedException(msg)
|
|
# quality assessment, get earliest/latest pick and symmetrized uncertainty
|
|
#todo quality assessment in own function
|
|
self.set_current_figure('el_Ppick')
|
|
elpicker_results = earllatepicker(z_copy, self.p_params.nfacP, self.p_params.tsnrz, self.p_results.mpp,
|
|
self.iplot, fig=self.current_figure, linecolor=self.current_linecolor)
|
|
self.p_results.epp, self.p_results.lpp, self.p_results.spe = elpicker_results
|
|
snr_results = getSNR(z_copy, self.p_params.tsnrz, self.p_results.mpp)
|
|
self.p_results.snr, self.p_results.snrdb, _ = snr_results
|
|
|
|
# weight P-onset using symmetric error
|
|
self.p_results.weight = get_quality_class(self.p_results.spe, self.p_params.timeerrorsP)
|
|
if self.p_results.weight <= self.first_motion_params.minfmweight and self.p_results.snr >= self.first_motion_params.minFMSNR:
|
|
# if SNR is low enough, try to determine first motion of onset
|
|
self.set_current_figure('fm_picker')
|
|
self.p_results.fm = fmpicker(self.zstream, z_copy, self.first_motion_params.fmpickwin,
|
|
self.p_results.mpp, self.iplot, self.current_figure, self.current_linecolor)
|
|
msg = "autopickstation: P-weight: {}, SNR: {}, SNR[dB]: {}, Polarity: {}"
|
|
msg = msg.format(self.p_results.weight, self.p_results.snr, self.p_results.snrdb, self.p_results.fm)
|
|
print(msg)
|
|
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'
|
|
msg = msg.format(self.p_results.mpp, self.p_results.spe)
|
|
print(msg)
|
|
self.s_data.Sflag = 1
|
|
|
|
def _calculate_cuttimes(self, type, iteration):
|
|
"""
|
|
Calculate cuttimes for a trace
|
|
:param type: 'P' or 'S', denoting the pick for which cuttime should be calculated
|
|
:type type: str
|
|
:param iteration: Calculate cut times for initial pick or for the smaller window of the precise pick around
|
|
the initial pick
|
|
:type iteration: int
|
|
:return: tuple of (starttime, endtime) in seconds
|
|
:rtype: (int, int)
|
|
"""
|
|
if type.upper() == 'P':
|
|
if iteration == 1:
|
|
return [self.p_params.pstart, self.p_params.pstop]
|
|
if iteration == 2:
|
|
starttime2 = round(max(self.p_data.aicpick.getpick() - self.p_params.Precalcwin, 0))
|
|
endtime2 = round(
|
|
min(len(self.ztrace.data) * self.ztrace.stats.delta, self.p_data.aicpick.getpick() + self.p_params.Precalcwin))
|
|
return [starttime2, endtime2]
|
|
elif type.upper() == 'S':
|
|
if iteration == 1:
|
|
# Calculate start times for preliminary S onset
|
|
start = round(max(self.p_results.mpp + self.s_params.sstart, 0)) # limit start time to >0 seconds
|
|
stop = round(min([
|
|
self.p_results.mpp + self.s_params.sstop,
|
|
self.etrace.stats.endtime - self.etrace.stats.starttime,
|
|
self.ntrace.stats.endtime - self.ntrace.stats.starttime
|
|
]))
|
|
cuttimesh = (start, stop)
|
|
if cuttimesh[1] <= cuttimesh[0]:
|
|
raise PickingFailedException('Cut window for horizontal phases too small! Will not pick S onsets.')
|
|
return cuttimesh
|
|
if iteration == 2:
|
|
# recalculate cf from refiltered trace in vicinity of initial onset
|
|
start = round(self.aicarhpick.getpick() - self.s_params.Srecalcwin)
|
|
stop = round(self.aicarhpick.getpick() + self.s_params.Srecalcwin)
|
|
return (start, stop)
|
|
else:
|
|
raise ValueError('Wrong type given, can only be P or S')
|
|
|
|
def _calculate_autoregressive_cf_s_pick(self, cuttimesh):
|
|
# prepare traces for picking by filtering, taper
|
|
if self.s_params.algoS == 'ARH':
|
|
self.hdat = self.nstream.copy() + self.estream.copy()
|
|
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
h_copy = self.hdat.copy()
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
if self.s_params.algoS == 'AR3':
|
|
self.hdat = self.zstream.copy() + self.estream.copy() + self.nstream.copy()
|
|
trH1_filt, _ = self.prepare_wfstream(self.zstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
trH2_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
trH3_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph1[0], freqmax=self.s_params.bph1[1])
|
|
h_copy =self. hdat.copy()
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
h_copy[2].data = trH3_filt.data
|
|
|
|
self.trH1_filt = trH1_filt
|
|
self.h_copy = h_copy
|
|
|
|
# calculate initial CF based on autoregression
|
|
if self.s_params.algoS == 'ARH':
|
|
arhcf1 = ARHcf(h_copy, cuttimesh, self.s_params.tpred1h, self.s_params.Sarorder, self.s_params.tdet1h, self.p_params.addnoise)
|
|
elif self.s_params.algoS == 'AR3':
|
|
arhcf1 = AR3Ccf(h_copy, cuttimesh, self.s_params.tpred1h, self.s_params.Sarorder, self.s_params.tdet1h, self.p_params.addnoise)
|
|
return arhcf1
|
|
|
|
def _calculate_aic_cf_s_pick(self, cuttimesh):
|
|
stream = self.estream.copy()
|
|
stream[0].data = self.arhcf1.getCF()
|
|
haiccf = AICcf(stream, cuttimesh)
|
|
return haiccf
|
|
|
|
def _pick_s_quality_control(self):
|
|
"""
|
|
Check quality of pick. Function will raise a PickingFailedException if the S pick does not fullfill all quality
|
|
criteria. Else nothing happens and picking can continue.
|
|
"""
|
|
# go on with processing if AIC onset passes quality control
|
|
slope = self.aicarhpick.getSlope()
|
|
|
|
if not slope:
|
|
slope = 0
|
|
|
|
if slope < self.s_params.minAICSslope:
|
|
error_msg = error_msg = 'AIC S onset slope to small: got {}, min {}'.format(slope,
|
|
self.s_params.minAICSslope)
|
|
raise PickingFailedException(error_msg)
|
|
if self.aicarhpick.getSNR() < self.s_params.minAICSSNR:
|
|
error_msg = 'AIC S onset SNR to small: got {}, min {}'.format(self.aicarhpick.getSNR(), self.s_params.minAICSSNR)
|
|
raise PickingFailedException(error_msg)
|
|
if self.aicarhpick.getpick() is None:
|
|
error_msg = 'Invalid AIC S pick!'
|
|
raise PickingFailedException(error_msg)
|
|
self.s_data.aicSflag = 1
|
|
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
|
|
'SNR: {1}\nGo on with refined picking ...\n' \
|
|
'autopickstation: re-filtering horizontal traces ' \
|
|
'...'.format(self.aicarhpick.getSlope(), self.aicarhpick.getSNR())
|
|
self.vprint(msg)
|
|
|
|
def _pick_s_calculate_ar_cf_2(self):
|
|
cuttimesh2 = self._calculate_cuttimes('S', 2)
|
|
# refilter waveform with larger bandpass
|
|
trH1_filt, _ = self.prepare_wfstream(self.estream, freqmin=self.s_params.bph2[0], freqmax=self.s_params.bph2[1])
|
|
trH2_filt, _ = self.prepare_wfstream(self.nstream, freqmin=self.s_params.bph2[0], freqmax=self.s_params.bph2[1])
|
|
if self.s_params.algoS == 'ARH':
|
|
h_copy = self.hdat.copy()
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
elif self.s_params.algoS == 'AR3':
|
|
trH3_filt, _ = self.prepare_wfstream(self.zstream, freqmin=self.s_params.bph2[0], freqmax=self.s_params.bph2[1])
|
|
h_copy = self.hdat.copy()
|
|
h_copy[0].data = trH3_filt.data
|
|
h_copy[1].data = trH1_filt.data
|
|
h_copy[2].data = trH2_filt.data
|
|
|
|
# save filtered traces for plotting
|
|
self.estream_bph2 = trH1_filt
|
|
self.nstream_bph2 = trH2_filt
|
|
|
|
# calculate second cf
|
|
if self.s_params.algoS == 'ARH':
|
|
arhcf2 = ARHcf(h_copy, cuttimesh2, self.s_params.tpred2h, self.s_params.Sarorder, self.s_params.tdet2h, self.p_params.addnoise)
|
|
elif self.s_params.algoS == 'AR3':
|
|
arhcf2 = AR3Ccf(h_copy, cuttimesh2, self.s_params.tpred2h, self.s_params.Sarorder, self.s_params.tdet2h, self.p_params.addnoise)
|
|
# save cf for later plotting
|
|
self.arhcf2 = arhcf2
|
|
|
|
self.h_copy = h_copy
|
|
return arhcf2
|
|
|
|
def _pick_s_quality_assessment(self, h_copy):
|
|
"""
|
|
quality assessment: get earliest/latest possible pick and symmetrized uncertainty
|
|
"""
|
|
h_copy[0].data = self.estream_bph2.data
|
|
if self.iplot:
|
|
self.set_current_figure('el_S1pick')
|
|
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, self.s_params.nfacS, self.s_params.tsnrh,
|
|
self.s_results.mpp, self.iplot, fig=self.current_figure,
|
|
linecolor=self.current_linecolor)
|
|
|
|
h_copy[0].data = self.nstream_bph2.data
|
|
if self.iplot:
|
|
self.set_current_figure('el_S2pick')
|
|
else:
|
|
# why is it set to empty here? DA
|
|
linecolor = ''
|
|
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, self.s_params.nfacS, self.s_params.tsnrh,
|
|
self.s_results.mpp, self.iplot, fig=self.current_figure,
|
|
linecolor=self.current_linecolor)
|
|
|
|
if epickS1 is not None and epickS2 is not None:
|
|
if self.s_params.algoS == 'ARH':
|
|
# get earliest pick of both earliest possible picks
|
|
epick = [epickS1, epickS2]
|
|
lpick = [lpickS1, lpickS2]
|
|
pickerr = [Serror1, Serror2]
|
|
ipick = np.argmin(epick)
|
|
if self.s_params.algoS == 'AR3':
|
|
epickS3, lpickS3, Serror3 = earllatepicker(h_copy, self.s_params.nfacS, self.s_params.tsnrh,
|
|
self.s_results.mpp, self.iplot)
|
|
# get earliest of all three picks
|
|
epick = [epickS1, epickS2, epickS3]
|
|
lpick = [lpickS1, lpickS2, lpickS3]
|
|
pickerr = [Serror1, Serror2, Serror3]
|
|
|
|
if epickS3 is not None:
|
|
ipick = np.argmin(epick)
|
|
else:
|
|
ipick = np.argmin([epickS1, epickS2])
|
|
self.s_results.epp = epick[ipick]
|
|
self.s_results.lpp = lpick[ipick]
|
|
self.s_results.spe = pickerr[ipick]
|
|
|
|
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(self.s_results.mpp,
|
|
self.s_results.spe)
|
|
print(msg)
|
|
|
|
# get SNR
|
|
self.s_results.snr, self.s_results.snrdb, _ = getSNR(h_copy, self.s_params.tsnrh, self.s_results.mpp)
|
|
|
|
self.s_results.weight = get_quality_class(self.s_results.spe, self.s_params.timeerrorsS)
|
|
|
|
print('autopickstation: S-weight: {0}, SNR: {1}, '
|
|
'SNR[dB]: {2}\n'
|
|
'##################################################'
|
|
''.format(self.s_results.weight, self.s_results.snr, self.s_results.snrdb))
|
|
|
|
def pick_s_phase(self):
|
|
|
|
# determine time window for calculating CF after P onset
|
|
cuttimesh = self._calculate_cuttimes(type='S', iteration=1)
|
|
|
|
# calculate autoregressive CF
|
|
self.arhcf1 = self._calculate_autoregressive_cf_s_pick(cuttimesh)
|
|
|
|
# calculate AIC cf
|
|
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
|
|
|
|
# get preliminary onset time from AIC cf
|
|
self.set_current_figure('aicARHfig')
|
|
aicarhpick = AICPicker(haiccf, self.s_params.tsnrh, self.s_params.pickwinS, self.iplot,
|
|
Tsmooth=self.s_params.aictsmoothS, fig=self.current_figure, linecolor=self.current_linecolor)
|
|
# save pick for later plotting
|
|
self.aicarhpick = aicarhpick
|
|
|
|
# check quality of pick
|
|
self._pick_s_quality_control()
|
|
|
|
arhcf2 = self._pick_s_calculate_ar_cf_2()
|
|
|
|
# get refined onset time from CF2
|
|
self.set_current_figure('refSpick')
|
|
refSpick = PragPicker(arhcf2, self.s_params.tsnrh, self.s_params.pickwinS, self.iplot, self.s_params.ausS,
|
|
self.s_params.tsmoothS, aicarhpick.getpick(), self.current_figure, self.current_linecolor)
|
|
# save refSpick for later plotitng
|
|
self.refSpick = refSpick
|
|
self.s_results.mpp = refSpick.getpick()
|
|
|
|
if self.s_results.mpp is not None:
|
|
self._pick_s_quality_assessment(self.h_copy)
|
|
|
|
def set_current_figure(self, figkey):
|
|
"""
|
|
Extracts a figure by name from dictionary and set it as the currently active figure.
|
|
All functions that create plots during picking will use the currently active figure to plot them.
|
|
:param figkey:
|
|
:type figkey:
|
|
:return:
|
|
:rtype:
|
|
"""
|
|
if self.fig_dict is None:
|
|
return None, None
|
|
self.current_figure = self.fig_dict.get(figkey, None)
|
|
plot_style = self.fig_dict.get('plot_style', 'k')
|
|
self.current_linecolor = plot_style['linecolor']['rgba_mpl']
|
|
|
|
|
|
|
|
def autopickstation(wfstream, pickparam, verbose=False, iplot=0, fig_dict=None, metadata=None, origin=None):
|
|
"""
|
|
Main function to calculate picks for the station.
|
|
:return:
|
|
:rtype: dict
|
|
"""
|
|
try:
|
|
station = AutopickStation(wfstream, pickparam, verbose, iplot, fig_dict, metadata, origin)
|
|
return station.autopickstation()
|
|
except MissingTraceException as e:
|
|
# Either vertical or both horizontal traces are missing
|
|
print(e)
|
|
try:
|
|
station_name = wfstream[0].stats.station
|
|
except IndexError:
|
|
station_name = 'None'
|
|
return None, station_name
|
|
|
|
|
|
def nautopickstation(wfstream, pickparam, verbose=False,
|
|
iplot=0, fig_dict=None, metadata=None, origin=None):
|
|
"""
|
|
picks a single station
|
|
:param wfstream: stream object containing waveform of all traces
|
|
:type wfstream: ~obspy.core.stream.Stream
|
|
:param pickparam: container of picking parameters from input file, usually pylot.in
|
|
:type pickparam: pylot.core.io.inputs.PylotParameter
|
|
:param verbose: used to control output to log during picking. True = more information printed
|
|
:type verbose: bool
|
|
:param iplot: logical variable for plotting: 0=none, 1=partial, 2=all
|
|
:type iplot: int, (Boolean or String)
|
|
:param fig_dict: dictionary containing Matplotlib figures used for plotting picking results during tuning
|
|
:type fig_dict: dict
|
|
:param metadata: tuple containing metadata type string and Parser object read from inventory file
|
|
:type metadata: tuple (str, ~obspy.io.xseed.parser.Parser)
|
|
:param origin: list containing origin objects representing origins for all events
|
|
:type origin: list(~obspy.core.event.origin)
|
|
:return: dictionary containing P pick, S pick and station name
|
|
:rtype: dict
|
|
"""
|
|
|
|
# declaring pickparam variables (only for convenience)
|
|
# read your pylot.in for details!
|
|
plt_flag = 0
|
|
|
|
# special parameters for P picking
|
|
algoP = pickparam.get('algoP')
|
|
pstart = pickparam.get('pstart')
|
|
pstop = pickparam.get('pstop')
|
|
thosmw = pickparam.get('tlta')
|
|
tsnrz = pickparam.get('tsnrz')
|
|
hosorder = pickparam.get('hosorder')
|
|
bpz1 = pickparam.get('bpz1')
|
|
bpz2 = pickparam.get('bpz2')
|
|
pickwinP = pickparam.get('pickwinP')
|
|
aictsmoothP = pickparam.get('aictsmooth')
|
|
tsmoothP = pickparam.get('tsmoothP')
|
|
ausP = pickparam.get('ausP')
|
|
nfacP = pickparam.get('nfacP')
|
|
tpred1z = pickparam.get('tpred1z')
|
|
tdet1z = pickparam.get('tdet1z')
|
|
tpred2z = pickparam.get('tpred2z')
|
|
tdet2z = pickparam.get('tdet2z')
|
|
Parorder = pickparam.get('Parorder')
|
|
addnoise = pickparam.get('addnoise')
|
|
Precalcwin = pickparam.get('Precalcwin')
|
|
minAICPslope = pickparam.get('minAICPslope')
|
|
minAICPSNR = pickparam.get('minAICPSNR')
|
|
timeerrorsP = pickparam.get('timeerrorsP')
|
|
# special parameters for S picking
|
|
algoS = pickparam.get('algoS')
|
|
sstart = pickparam.get('sstart')
|
|
sstop = pickparam.get('sstop')
|
|
use_taup = real_Bool(pickparam.get('use_taup'))
|
|
taup_model = pickparam.get('taup_model')
|
|
bph1 = pickparam.get('bph1')
|
|
bph2 = pickparam.get('bph2')
|
|
tsnrh = pickparam.get('tsnrh')
|
|
pickwinS = pickparam.get('pickwinS')
|
|
tpred1h = pickparam.get('tpred1h')
|
|
tdet1h = pickparam.get('tdet1h')
|
|
tpred2h = pickparam.get('tpred2h')
|
|
tdet2h = pickparam.get('tdet2h')
|
|
Sarorder = pickparam.get('Sarorder')
|
|
aictsmoothS = pickparam.get('aictsmoothS')
|
|
tsmoothS = pickparam.get('tsmoothS')
|
|
ausS = pickparam.get('ausS')
|
|
minAICSslope = pickparam.get('minAICSslope')
|
|
minAICSSNR = pickparam.get('minAICSSNR')
|
|
Srecalcwin = pickparam.get('Srecalcwin')
|
|
nfacS = pickparam.get('nfacS')
|
|
timeerrorsS = pickparam.get('timeerrorsS')
|
|
# parameters for first-motion determination
|
|
minFMSNR = pickparam.get('minFMSNR')
|
|
fmpickwin = pickparam.get('fmpickwin')
|
|
minfmweight = pickparam.get('minfmweight')
|
|
# parameters for checking signal length
|
|
minsiglength = pickparam.get('minsiglength')
|
|
minpercent = pickparam.get('minpercent')
|
|
nfacsl = pickparam.get('noisefactor')
|
|
# parameter to check for spuriously picked S onset
|
|
zfac = pickparam.get('zfac')
|
|
# path to inventory-, dataless- or resp-files
|
|
|
|
# initialize output
|
|
Pweight = 4 # weight for P onset
|
|
Sweight = 4 # weight for S onset
|
|
FM = 'N' # first motion (polarity)
|
|
SNRP = None # signal-to-noise ratio of P onset
|
|
SNRPdB = None # signal-to-noise ratio of P onset [dB]
|
|
SNRS = None # signal-to-noise ratio of S onset
|
|
SNRSdB = None # signal-to-noise ratio of S onset [dB]
|
|
mpickP = None # most likely P onset
|
|
lpickP = None # latest possible P onset
|
|
epickP = None # earliest possible P onset
|
|
mpickS = None # most likely S onset
|
|
lpickS = None # latest possible S onset
|
|
epickS = None # earliest possible S onset
|
|
Perror = None # symmetrized picking error P onset
|
|
Serror = None # symmetrized picking error S onset
|
|
|
|
aicSflag = 0
|
|
aicPflag = 0
|
|
Pflag = 0
|
|
Sflag = 0
|
|
Pmarker = []
|
|
Ao = None # Wood-Anderson peak-to-peak amplitude
|
|
picker = 'auto' # type of picks
|
|
|
|
def get_components_from_waveformstream(waveformstream):
|
|
"""
|
|
Splits waveformstream into multiple components zdat, ndat, edat. For traditional orientation (ZNE) these contain
|
|
the vertical, north-south or east-west component. Otherwise they contain components numbered 123 with
|
|
orientation diverging from the traditional orientation.
|
|
:param waveformstream: Stream containing all three components for one station either by ZNE or 123 channel code
|
|
(mixture of both options is handled as well)
|
|
:type waveformstream: obspy.core.stream.Stream
|
|
:return: Tuple containing (z waveform, n waveform, e waveform) selected by the given channels
|
|
:rtype: (obspy.core.stream.Stream, obspy.core.stream.Stream, obspy.core.stream.Stream)
|
|
"""
|
|
|
|
#TODO: get this order from the pylot preferences
|
|
channelorder_default = {'Z': 3, 'N': 1, 'E': 2}
|
|
waveform_data = {}
|
|
for key in channelorder_default:
|
|
waveform_data[key] = waveformstream.select(component=key) # try ZNE first
|
|
if len(waveform_data[key]) == 0:
|
|
waveform_data[key] = waveformstream.select(component=str(channelorder_default[key])) # use 123 as second option
|
|
return waveform_data['Z'], waveform_data['N'], waveform_data['E']
|
|
|
|
|
|
def prepare_wfstream_component(wfstream, detrend_type='demean', filter_type='bandpass', freqmin=None, freqmax=None, zerophase=False, taper_max_percentage=0.05, taper_type='hann'):
|
|
"""
|
|
Prepare a waveformstream for picking by applying detrending, filtering and tapering. Creates a copy of the
|
|
waveform the leave the original unchanged.
|
|
:param wfstream:
|
|
:type wfstream:
|
|
:param detrend_type:
|
|
:type detrend_type:
|
|
:param filter_type:
|
|
:type filter_type:
|
|
:param freqmin:
|
|
:type freqmin:
|
|
:param freqmax:
|
|
:type freqmax:
|
|
:param zerophase:
|
|
:type zerophase:
|
|
:param taper_max_percentage:
|
|
:type taper_max_percentage:
|
|
:param taper_type:
|
|
:type taper_type:
|
|
:return: Tuple containing the changed waveform stream and the first trace of the stream
|
|
:rtype: (obspy.core.stream.Stream, obspy.core.trace.Trace)
|
|
"""
|
|
wfstream_copy = wfstream.copy()
|
|
trace_copy = wfstream[0].copy()
|
|
trace_copy.detrend(type=detrend_type)
|
|
trace_copy.filter(filter_type, freqmin=freqmin, freqmax=freqmax, zerophase=zerophase)
|
|
trace_copy.taper(max_percentage=taper_max_percentage, type=taper_type)
|
|
wfstream_copy[0].data = trace_copy.data
|
|
return wfstream_copy, trace_copy
|
|
|
|
# split components
|
|
zdat, ndat, edat = get_components_from_waveformstream(wfstream)
|
|
|
|
picks = {}
|
|
station = wfstream[0].stats.station
|
|
|
|
if not zdat:
|
|
print('No z-component found for station {}. STOP'.format(station))
|
|
return picks, station
|
|
|
|
if p_params['algoP'] == 'HOS' or p_params['algoP'] == 'ARZ' and zdat is not None:
|
|
msg = '##################################################\nautopickstation:' \
|
|
' Working on P onset of station {station}\nFiltering vertical ' \
|
|
'trace ...\n{data}'.format(station=wfstream[0].stats.station, data=str(zdat))
|
|
if verbose: print(msg)
|
|
z_copy, tr_filt = prepare_wfstream_component(zdat, freqmin=p_params['bpz1'][0], freqmax=p_params['bpz1'][1])
|
|
##############################################################
|
|
# check length of waveform and compare with cut times
|
|
|
|
# for global seismology: use tau-p method for estimating travel times (needs source and station coords.)
|
|
# if not given: sets Lc to infinity to use full stream
|
|
if p_params['use_taup'] is True:
|
|
Lc = np.inf
|
|
print('autopickstation: use_taup flag active.')
|
|
if not metadata:
|
|
print('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
|
|
else:
|
|
station_id = wfstream[0].get_id()
|
|
station_coords = metadata.get_coordinates(station_id, time=wfstream[0].stats.starttime)
|
|
if station_coords and origin:
|
|
source_origin = origin[0]
|
|
model = TauPyModel(p_params['taup_model'])
|
|
arrivals = model.get_travel_times_geo(
|
|
source_origin.depth,
|
|
source_origin.latitude,
|
|
source_origin.longitude,
|
|
station_coords['latitude'],
|
|
station_coords['longitude']
|
|
)
|
|
phases = {'P': [],
|
|
'S': []}
|
|
for arr in arrivals:
|
|
phases[identifyPhaseID(arr.phase.name)].append(arr)
|
|
|
|
# get first P and S onsets from arrivals list
|
|
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
|
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
|
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
|
|
' origin time using TauPy'.format(estFirstP, estFirstS))
|
|
|
|
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
|
|
p_params['pstart'] += (source_origin.time + estFirstP) - zdat[0].stats.starttime
|
|
p_params['pstop']+= (source_origin.time + estFirstP) - zdat[0].stats.starttime
|
|
print('autopick: CF calculation times respectively:'
|
|
' pstart: {} s, pstop: {} s'.format(p_params['pstart'], p_params['pstop']))
|
|
elif not origin:
|
|
print('No source origins given!')
|
|
|
|
# make sure pstart and pstop are inside zdat[0]
|
|
pstart = max(p_params['pstart'], 0)
|
|
pstop = min(p_params['pstop'], len(zdat[0])*zdat[0].stats.delta)
|
|
|
|
if p_params['use_taup'] is False or origin:
|
|
Lc = p_params['pstop'] - p_params['pstart']
|
|
|
|
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
|
|
if not Lwf > 0:
|
|
print('autopickstation: empty trace! Return!')
|
|
return picks, station
|
|
|
|
Ldiff = Lwf - abs(Lc)
|
|
if Ldiff <= 0 or pstop <= pstart or pstop - pstart <= thosmw:
|
|
msg = 'autopickstation: Cutting times are too large for actual ' \
|
|
'waveform!\nUsing entire waveform instead!'
|
|
if verbose: print(msg)
|
|
pstart = 0
|
|
pstop = len(zdat[0].data) * zdat[0].stats.delta
|
|
cuttimes = [pstart, pstop]
|
|
cf1 = None
|
|
if p_params['algoP'] == 'HOS':
|
|
# calculate HOS-CF using subclass HOScf of class
|
|
# CharacteristicFunction
|
|
cf1 = HOScf(z_copy, cuttimes, p_params['tlta'], p_params['hosorder']) # instance of HOScf
|
|
elif p_params['algoP'] == 'ARZ':
|
|
# calculate ARZ-CF using subclass ARZcf of class
|
|
# CharcteristicFunction
|
|
cf1 = ARZcf(z_copy, cuttimes, p_params['tpred1z'], p_params['Parorder'], p_params['tdet1z'],
|
|
p_params['addnoise']) # instance of ARZcf
|
|
##############################################################
|
|
# calculate AIC-HOS-CF using subclass AICcf of class
|
|
# CharacteristicFunction
|
|
# class needs stream object => build it
|
|
assert isinstance(cf1, CharacteristicFunction), 'cf2 is not set ' \
|
|
'correctly: maybe the algorithm name ({algoP}) is ' \
|
|
'corrupted'.format(algoP=p_params['algoP'])
|
|
tr_aic = tr_filt.copy()
|
|
tr_aic.data = cf1.getCF()
|
|
z_copy[0].data = tr_aic.data
|
|
aiccf = AICcf(z_copy, cuttimes) # instance of AICcf
|
|
##############################################################
|
|
# get preliminary onset time from AIC-HOS-CF using subclass AICPicker
|
|
# of class AutoPicking
|
|
key = 'aicFig'
|
|
if fig_dict:
|
|
fig = fig_dict[key]
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
aicpick = AICPicker(aiccf, p_params['tsnrz'], p_params['pickwinP'], iplot, Tsmooth=p_params['aictsmooth'],
|
|
fig=fig, linecolor=linecolor)
|
|
# add pstart and pstop to aic plot
|
|
if fig:
|
|
for ax in fig.axes:
|
|
ax.vlines(pstart, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P start')
|
|
ax.vlines(pstop, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P stop')
|
|
ax.legend(loc=1)
|
|
##############################################################
|
|
if aicpick.getpick() is not None:
|
|
# check signal length to detect spuriously picked noise peaks
|
|
# use all available components to avoid skipping correct picks
|
|
# on vertical traces with weak P coda
|
|
z_copy[0].data = tr_filt.data
|
|
zne = z_copy
|
|
if len(ndat) == 0 or len(edat) == 0:
|
|
msg = 'One or more horizontal component(s) missing!\n' \
|
|
'Signal length only checked on vertical component!\n' \
|
|
'Decreasing minsiglengh from {0} to {1}' \
|
|
.format(signal_length_params['minsiglength'], signal_length_params['minsiglength'] / 2)
|
|
if verbose: print(msg)
|
|
key = 'slength'
|
|
if fig_dict:
|
|
fig = fig_dict[key]
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
Pflag = checksignallength(zne, aicpick.getpick(), p_params['tsnrz'],
|
|
signal_length_params['minsiglength'] / 2,
|
|
signal_length_params['noisefactor'], signal_length_params['minpercent'], iplot,
|
|
fig, linecolor)
|
|
else:
|
|
trH1_filt, _ = prepare_wfstream_component(edat, freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1])
|
|
trH2_filt, _ = prepare_wfstream_component(ndat, freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1])
|
|
zne += trH1_filt
|
|
zne += trH2_filt
|
|
if fig_dict:
|
|
fig = fig_dict['slength']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
Pflag = checksignallength(zne, aicpick.getpick(), p_params['tsnrz'],
|
|
signal_length_params['minsiglength'],
|
|
signal_length_params['noisefactor'], signal_length_params['minpercent'], iplot,
|
|
fig, linecolor)
|
|
|
|
if Pflag == 1:
|
|
# check for spuriously picked S onset
|
|
# both horizontal traces needed
|
|
if len(ndat) == 0 or len(edat) == 0:
|
|
msg = 'One or more horizontal components missing!\n' \
|
|
'Skipping control function checkZ4S.'
|
|
if verbose: print(msg)
|
|
else:
|
|
if iplot > 1:
|
|
if fig_dict:
|
|
fig = fig_dict['checkZ4s']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
Pflag = checkZ4S(zne, aicpick.getpick(), s_params['zfac'],
|
|
p_params['tsnrz'][2], iplot, fig, linecolor)
|
|
if Pflag == 0:
|
|
Pmarker = 'SinsteadP'
|
|
Pweight = 9
|
|
else:
|
|
Pmarker = 'shortsignallength'
|
|
Pweight = 9
|
|
##############################################################
|
|
# go on with processing if AIC onset passes quality control
|
|
slope = aicpick.getSlope()
|
|
if not slope:
|
|
slope = 0
|
|
if slope >= p_params['minAICPslope'] and aicpick.getSNR() >= p_params['minAICPSNR'] and Pflag == 1:
|
|
aicPflag = 1
|
|
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
|
|
'SNR: {1}\nGo on with refined picking ...\n' \
|
|
'autopickstation: re-filtering vertical trace ' \
|
|
'...'.format(aicpick.getSlope(), aicpick.getSNR())
|
|
if verbose: print(msg)
|
|
# re-filter waveform with larger bandpass
|
|
z_copy, tr_filt = prepare_wfstream_component(zdat, freqmin=p_params['bpz2'][0], freqmax=p_params['bpz2'][1])
|
|
#############################################################
|
|
# re-calculate CF from re-filtered trace in vicinity of initial
|
|
# onset
|
|
cuttimes2 = [round(max([aicpick.getpick() - p_params['Precalcwin'], 0])),
|
|
round(min([len(zdat[0].data) * zdat[0].stats.delta,
|
|
aicpick.getpick() + p_params['Precalcwin']]))]
|
|
cf2 = None
|
|
if p_params['algoP'] == 'HOS':
|
|
# calculate HOS-CF using subclass HOScf of class
|
|
# CharacteristicFunction
|
|
cf2 = HOScf(z_copy, cuttimes2, p_params['tlta'],
|
|
p_params['hosorder']) # instance of HOScf
|
|
elif p_params['algoP'] == 'ARZ':
|
|
# calculate ARZ-CF using subclass ARZcf of class
|
|
# CharcteristicFunction
|
|
cf2 = ARZcf(z_copy, cuttimes2, tpred2z, Parorder, tdet2z,
|
|
addnoise) # instance of ARZcf
|
|
##############################################################
|
|
# get refined onset time from CF2 using class Picker
|
|
assert isinstance(cf2, CharacteristicFunction), 'cf2 is not set ' \
|
|
'correctly: maybe the algorithm name ({algoP}) is ' \
|
|
'corrupted'.format(algoP=p_params['algoP'])
|
|
if fig_dict:
|
|
fig = fig_dict['refPpick']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
refPpick = PragPicker(cf2, p_params['tsnrz'], p_params['pickwinP'], iplot, p_params['ausP'],
|
|
p_params['tsmoothP'], aicpick.getpick(), fig, linecolor)
|
|
mpickP = refPpick.getpick()
|
|
#############################################################
|
|
if mpickP is not None:
|
|
# quality assessment
|
|
# get earliest/latest possible pick and symmetrized uncertainty
|
|
if iplot:
|
|
if fig_dict:
|
|
fig = fig_dict['el_Ppick']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
epickP, lpickP, Perror = earllatepicker(z_copy, p_params['nfacP'], p_params['tsnrz'],
|
|
mpickP, iplot, fig=fig,
|
|
linecolor=linecolor)
|
|
|
|
# get SNR
|
|
SNRP, SNRPdB, Pnoiselevel = getSNR(z_copy, p_params['tsnrz'], mpickP)
|
|
|
|
# weight P-onset using symmetric error
|
|
Pweight = get_quality_class(Perror, p_params['timeerrorsP'])
|
|
|
|
##############################################################
|
|
# get first motion of P onset
|
|
# certain quality required
|
|
if Pweight <= first_motion_params['minfmweight'] and SNRP >= first_motion_params['minFMSNR']:
|
|
if iplot:
|
|
if fig_dict:
|
|
fig = fig_dict['fm_picker']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
FM = fmpicker(zdat, z_copy, first_motion_params['fmpickwin'], mpickP, iplot, fig, linecolor)
|
|
else:
|
|
FM = fmpicker(zdat, z_copy, first_motion_params['fmpickwin'], mpickP, iplot)
|
|
else:
|
|
FM = 'N'
|
|
|
|
msg = "autopickstation: P-weight: {0}, " \
|
|
"SNR: {1}, SNR[dB]: {2}, Polarity: {3}".format(Pweight, SNRP, SNRPdB, FM)
|
|
print(msg)
|
|
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'.format(zdat[0].stats.starttime \
|
|
+ mpickP, Perror)
|
|
print(msg)
|
|
Sflag = 1
|
|
|
|
else:
|
|
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n' \
|
|
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
|
|
'(min. AIC-SNR={2}, ' \
|
|
'min. AIC-Slope={3}counts/s)'.format(aicpick.getSNR(),
|
|
aicpick.getSlope(),
|
|
p_params['minAICPSNR'],
|
|
p_params['minAICPslope'])
|
|
if verbose: print(msg)
|
|
Sflag = 0
|
|
|
|
else:
|
|
print('autopickstation: No vertical component data available!, '
|
|
'Skipping station!')
|
|
|
|
if ((len(edat) > 0 and len(ndat) == 0) or (len(ndat) > 0 and len(edat) == 0)) and Pweight < 4:
|
|
msg = 'Go on picking S onset ...\n' \
|
|
'##################################################\n' \
|
|
'Only one horizontal component available!\n' \
|
|
'ARH prediction requires at least 2 components!\n' \
|
|
'Copying existing horizontal component ...'
|
|
if verbose: print(msg)
|
|
|
|
# check which component is missing
|
|
if len(edat) == 0:
|
|
edat = ndat
|
|
else:
|
|
ndat = edat
|
|
|
|
pickSonset = (edat is not None and ndat is not None and len(edat) > 0 and len(
|
|
ndat) > 0 and Pweight < 4)
|
|
|
|
if pickSonset:
|
|
# determine time window for calculating CF after P onset
|
|
cuttimesh = [
|
|
round(max([mpickP + s_params['sstart'], 0])), # MP MP relative time axis
|
|
round(min([
|
|
mpickP + s_params['sstop'],
|
|
edat[0].stats.endtime - edat[0].stats.starttime,
|
|
ndat[0].stats.endtime - ndat[0].stats.starttime
|
|
]))
|
|
]
|
|
|
|
if not cuttimesh[1] >= cuttimesh[0]:
|
|
print('Cut window for horizontal phases too small! Will not pick S onsets.')
|
|
pickSonset = False
|
|
|
|
if pickSonset:
|
|
msg = 'Go on picking S onset ...\n' \
|
|
'##################################################\n' \
|
|
'Working on S onset of station {0}\nFiltering horizontal ' \
|
|
'traces ...'.format(edat[0].stats.station)
|
|
if verbose: print(msg)
|
|
|
|
if s_params['algoS'] == 'ARH':
|
|
# re-create stream object including both horizontal components
|
|
hdat = edat.copy()
|
|
hdat += ndat
|
|
h_copy = hdat.copy()
|
|
# filter and taper data
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH1_filt.detrend(type='demean')
|
|
trH2_filt.detrend(type='demean')
|
|
trH1_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
elif s_params['algoS'] == 'AR3':
|
|
# re-create stream object including all components
|
|
hdat = zdat.copy()
|
|
hdat += edat
|
|
hdat += ndat
|
|
h_copy = hdat.copy()
|
|
# filter and taper data
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH3_filt = hdat[2].copy()
|
|
trH1_filt.detrend(type='demean')
|
|
trH2_filt.detrend(type='demean')
|
|
trH3_filt.detrend(type='demean')
|
|
trH1_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
|
|
zerophase=False)
|
|
trH3_filt.filter('bandpass', freqmin=s_params['bph1'][0], freqmax=s_params['bph1'][1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
h_copy[2].data = trH3_filt.data
|
|
##############################################################
|
|
if s_params['algoS'] == 'ARH':
|
|
# calculate ARH-CF using subclass ARHcf of class
|
|
# CharcteristicFunction
|
|
arhcf1 = ARHcf(h_copy, cuttimesh, s_params['tpred1h'], s_params['Sarorder'], s_params['tdet1h'],
|
|
p_params['addnoise']) # instance of ARHcf
|
|
elif s_params['algoS'] == 'AR3':
|
|
# calculate ARH-CF using subclass AR3cf of class
|
|
# CharcteristicFunction
|
|
arhcf1 = AR3Ccf(h_copy, cuttimesh, s_params['tpred1h'], s_params['Sarorder'], s_params['tdet1h'],
|
|
p_params['addnoise']) # instance of ARHcf
|
|
##############################################################
|
|
# calculate AIC-ARH-CF using subclass AICcf of class
|
|
# CharacteristicFunction
|
|
# class needs stream object => build it
|
|
tr_arhaic = trH1_filt.copy()
|
|
tr_arhaic.data = arhcf1.getCF()
|
|
h_copy[0].data = tr_arhaic.data
|
|
# calculate ARH-AIC-CF
|
|
haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf
|
|
##############################################################
|
|
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
|
|
# of class AutoPicking
|
|
if fig_dict:
|
|
fig = fig_dict['aicARHfig']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
aicarhpick = AICPicker(haiccf, s_params['tsnrh'], s_params['pickwinS'], iplot, None,
|
|
s_params['aictsmoothS'], fig=fig, linecolor=linecolor)
|
|
###############################################################
|
|
# go on with processing if AIC onset passes quality control
|
|
slope = aicarhpick.getSlope()
|
|
if not slope:
|
|
slope = 0
|
|
if (slope >= s_params['minAICSslope'] and
|
|
aicarhpick.getSNR() >= s_params['minAICSSNR'] and aicarhpick.getpick() is not None):
|
|
aicSflag = 1
|
|
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
|
|
'SNR: {1}\nGo on with refined picking ...\n' \
|
|
'autopickstation: re-filtering horizontal traces ' \
|
|
'...'.format(aicarhpick.getSlope(), aicarhpick.getSNR())
|
|
if verbose: print(msg)
|
|
# re-calculate CF from re-filtered trace in vicinity of initial
|
|
# onset
|
|
cuttimesh2 = [round(aicarhpick.getpick() - s_params['Srecalcwin']),
|
|
round(aicarhpick.getpick() + s_params['Srecalcwin'])]
|
|
# re-filter waveform with larger bandpass
|
|
h_copy = hdat.copy()
|
|
# filter and taper data
|
|
if s_params['algoS']== 'ARH':
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH1_filt.detrend(type='demean')
|
|
trH2_filt.detrend(type='demean')
|
|
trH1_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
#############################################################
|
|
arhcf2 = ARHcf(h_copy, cuttimesh2, s_params['tpred2h'], s_params['Sarorder'], s_params['tdet2h'],
|
|
p_params['addnoise']) # instance of ARHcf
|
|
elif s_params['algoS'] == 'AR3':
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH3_filt = hdat[2].copy()
|
|
trH1_filt.detrend(type='demean')
|
|
trH2_filt.detrend(type='demean')
|
|
trH3_filt.detrend(type='demean')
|
|
trH1_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
|
|
zerophase=False)
|
|
trH3_filt.filter('bandpass', freqmin=s_params['bph2'][0], freqmax=s_params['bph2'][1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
h_copy[2].data = trH3_filt.data
|
|
#############################################################
|
|
arhcf2 = AR3Ccf(h_copy, cuttimesh2, s_params['tpred2h'], s_params['Sarorder'], s_params['tdet2h'],
|
|
p_params['addnoise']) # instance of ARHcf
|
|
|
|
# get refined onset time from CF2 using class Picker
|
|
if fig_dict:
|
|
fig = fig_dict['refSpick']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
refSpick = PragPicker(arhcf2, s_params['tsnrh'], s_params['pickwinS'], iplot, s_params['ausS'],
|
|
s_params['tsmoothS'], aicarhpick.getpick(), fig, linecolor)
|
|
mpickS = refSpick.getpick()
|
|
#############################################################
|
|
if mpickS is not None:
|
|
# quality assessment
|
|
# get earliest/latest possible pick and symmetrized uncertainty
|
|
h_copy[0].data = trH1_filt.data
|
|
if iplot:
|
|
if fig_dict:
|
|
fig = fig_dict['el_S1pick']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = 'k'
|
|
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS,
|
|
iplot, fig=fig, linecolor=linecolor)
|
|
else:
|
|
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS, iplot)
|
|
|
|
h_copy[0].data = trH2_filt.data
|
|
if iplot:
|
|
if fig_dict:
|
|
fig = fig_dict['el_S2pick']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
else:
|
|
fig = None
|
|
linecolor = ''
|
|
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS,
|
|
iplot, fig=fig, linecolor=linecolor)
|
|
else:
|
|
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'], mpickS, iplot)
|
|
if epickS1 is not None and epickS2 is not None:
|
|
if s_params['algoS'] == 'ARH':
|
|
# get earliest pick of both earliest possible picks
|
|
epick = [epickS1, epickS2]
|
|
lpick = [lpickS1, lpickS2]
|
|
pickerr = [Serror1, Serror2]
|
|
if epickS1 is None and epickS2 is not None:
|
|
ipick = 1
|
|
elif epickS1 is not None and epickS2 is None:
|
|
ipick = 0
|
|
elif epickS1 is not None and epickS2 is not None:
|
|
ipick = np.argmin([epickS1, epickS2])
|
|
elif s_params['algoS'] == 'AR3':
|
|
[epickS3, lpickS3, Serror3] = earllatepicker(h_copy, s_params['nfacS'], s_params['tsnrh'],
|
|
mpickS, iplot)
|
|
# get earliest pick of all three picks
|
|
epick = [epickS1, epickS2, epickS3]
|
|
lpick = [lpickS1, lpickS2, lpickS3]
|
|
pickerr = [Serror1, Serror2, Serror3]
|
|
if epickS1 is None and epickS2 is not None \
|
|
and epickS3 is not None:
|
|
ipick = np.argmin([epickS2, epickS3])
|
|
elif epickS1 is not None and epickS2 is None \
|
|
and epickS3 is not None:
|
|
ipick = np.argmin([epickS2, epickS3])
|
|
elif epickS1 is not None and epickS2 is not None \
|
|
and epickS3 is None:
|
|
ipick = np.argmin([epickS1, epickS2])
|
|
elif epickS1 is not None and epickS2 is not None \
|
|
and epickS3 is not None:
|
|
ipick = np.argmin([epickS1, epickS2, epickS3])
|
|
|
|
epickS = epick[ipick]
|
|
lpickS = lpick[ipick]
|
|
Serror = pickerr[ipick]
|
|
|
|
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(hdat[0].stats.starttime \
|
|
+ mpickS, Serror)
|
|
print(msg)
|
|
|
|
# get SNR
|
|
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, s_params['tsnrh'], mpickS)
|
|
|
|
# weight S-onset using symmetric error
|
|
if Serror <= s_params['timeerrorsS'][0]:
|
|
Sweight = 0
|
|
elif s_params['timeerrorsS'][0] < Serror <= s_params['timeerrorsS'][1]:
|
|
Sweight = 1
|
|
elif Perror > s_params['timeerrorsS'][1] and Serror <= s_params['timeerrorsS'][2]:
|
|
Sweight = 2
|
|
elif s_params['timeerrorsS'][2] < Serror <= s_params['timeerrorsS'][3]:
|
|
Sweight = 3
|
|
elif Serror > s_params['timeerrorsS'][3]:
|
|
Sweight = 4
|
|
|
|
print('autopickstation: S-weight: {0}, SNR: {1}, '
|
|
'SNR[dB]: {2}\n'
|
|
'##################################################'
|
|
''.format(Sweight, SNRS, SNRSdB))
|
|
################################################################
|
|
# get Wood-Anderson peak-to-peak amplitude
|
|
# initialize Data object
|
|
# re-create stream object including both horizontal components
|
|
hdat = edat.copy()
|
|
hdat += ndat
|
|
else:
|
|
msg = 'Bad initial (AIC) S-pick, skipping this onset!\n' \
|
|
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
|
|
'(min. AIC-SNR={2}, ' \
|
|
'min. AIC-Slope={3}counts/s)\n' \
|
|
'##################################################' \
|
|
''.format(aicarhpick.getSNR(), aicarhpick.getSlope(), s_params['minAICSSNR'], s_params['minAICSslope'])
|
|
if verbose: print(msg)
|
|
|
|
############################################################
|
|
# get Wood-Anderson peak-to-peak amplitude
|
|
# initialize Data object
|
|
# re-create stream object including both horizontal components
|
|
hdat = edat.copy()
|
|
hdat += ndat
|
|
|
|
else:
|
|
print('autopickstation: No horizontal component data available or '
|
|
'bad P onset, skipping S picking!')
|
|
|
|
##############################################################
|
|
try:
|
|
iplot = int(iplot)
|
|
except ValueError:
|
|
if iplot is True or iplot == 'True':
|
|
iplot = 2
|
|
else:
|
|
iplot = 0
|
|
|
|
if iplot > 0:
|
|
# plot vertical trace
|
|
if fig_dict is None or fig_dict == 'None':
|
|
fig = plt.figure()
|
|
plt_flag = 1
|
|
linecolor = 'k'
|
|
else:
|
|
fig = fig_dict['mainFig']
|
|
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
|
|
fig._tight = True
|
|
ax1 = fig.add_subplot(311)
|
|
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
|
|
tr_filt.stats.delta)
|
|
# check equal length of arrays, sometimes they are different!?
|
|
wfldiff = len(tr_filt.data) - len(tdata)
|
|
if wfldiff < 0:
|
|
tdata = tdata[0:len(tdata) - abs(wfldiff)]
|
|
ax1.plot(tdata, tr_filt.data / max(tr_filt.data), color=linecolor, linewidth=0.7, label='Data')
|
|
if Pweight < 4:
|
|
ax1.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
|
|
'b', label='CF1')
|
|
if aicPflag == 1:
|
|
ax1.plot(cf2.getTimeArray(),
|
|
cf2.getCF() / max(cf2.getCF()), 'm', label='CF2')
|
|
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
|
|
'r', label='Initial P Onset')
|
|
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
|
|
[1, 1], 'r')
|
|
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
|
|
[-1, -1], 'r')
|
|
ax1.plot([refPpick.getpick(), refPpick.getpick()],
|
|
[-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
|
|
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
|
|
[1.3, 1.3], 'r', linewidth=2)
|
|
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
|
|
[-1.3, -1.3], 'r', linewidth=2)
|
|
ax1.plot([lpickP, lpickP], [-1.1, 1.1], 'r--', label='lpp')
|
|
ax1.plot([epickP, epickP], [-1.1, 1.1], 'r--', label='epp')
|
|
ax1.set_title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
|
|
'Polarity: %s' % (tr_filt.stats.station,
|
|
tr_filt.stats.channel,
|
|
Pweight,
|
|
SNRP,
|
|
SNRPdB,
|
|
FM))
|
|
else:
|
|
ax1.set_title('%s, P Weight=%d, SNR=None, '
|
|
'SNRdB=None' % (tr_filt.stats.channel, Pweight))
|
|
else:
|
|
ax1.set_title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
|
|
tr_filt.stats.channel,
|
|
Pweight))
|
|
ax1.legend(loc=1)
|
|
ax1.set_yticks([])
|
|
ax1.set_ylim([-1.5, 1.5])
|
|
ax1.set_ylabel('Normalized Counts')
|
|
# fig.suptitle(tr_filt.stats.starttime)
|
|
# only continue if one horizontal stream exists
|
|
if (ndat or edat) and Sflag == 1:
|
|
# mirror components in case one does not exist
|
|
if not edat:
|
|
edat = ndat
|
|
if not ndat:
|
|
ndat = edat
|
|
if len(edat[0]) > 1 and len(ndat[0]) > 1:
|
|
# plot horizontal traces
|
|
ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
|
|
th1data = np.arange(0,
|
|
trH1_filt.stats.npts /
|
|
trH1_filt.stats.sampling_rate,
|
|
trH1_filt.stats.delta)
|
|
# check equal length of arrays, sometimes they are different!?
|
|
wfldiff = len(trH1_filt.data) - len(th1data)
|
|
if wfldiff < 0:
|
|
th1data = th1data[0:len(th1data) - abs(wfldiff)]
|
|
ax2.plot(th1data, trH1_filt.data / max(trH1_filt.data), color=linecolor, linewidth=0.7, label='Data')
|
|
if Pweight < 4:
|
|
ax2.plot(arhcf1.getTimeArray(),
|
|
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
|
|
if aicSflag == 1 and Sweight < 4:
|
|
ax2.plot(arhcf2.getTimeArray(),
|
|
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
|
|
ax2.plot(
|
|
[aicarhpick.getpick(), aicarhpick.getpick()],
|
|
[-1, 1], 'g', label='Initial S Onset')
|
|
ax2.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[1, 1], 'g')
|
|
ax2.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[-1, -1], 'g')
|
|
ax2.plot([refSpick.getpick(), refSpick.getpick()],
|
|
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
|
|
ax2.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[1.3, 1.3], 'g', linewidth=2)
|
|
ax2.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[-1.3, -1.3], 'g', linewidth=2)
|
|
ax2.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
|
|
ax2.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
|
|
ax2.set_title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
|
|
trH1_filt.stats.channel,
|
|
Sweight, SNRS, SNRSdB))
|
|
else:
|
|
ax2.set_title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
|
|
trH1_filt.stats.channel, Sweight))
|
|
ax2.legend(loc=1)
|
|
ax2.set_yticks([])
|
|
ax2.set_ylim([-1.5, 1.5])
|
|
ax2.set_ylabel('Normalized Counts')
|
|
# fig.suptitle(trH1_filt.stats.starttime)
|
|
|
|
ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
|
|
th2data = np.arange(0,
|
|
trH2_filt.stats.npts /
|
|
trH2_filt.stats.sampling_rate,
|
|
trH2_filt.stats.delta)
|
|
# check equal length of arrays, sometimes they are different!?
|
|
wfldiff = len(trH2_filt.data) - len(th2data)
|
|
if wfldiff < 0:
|
|
th2data = th2data[0:len(th2data) - abs(wfldiff)]
|
|
ax3.plot(th2data, trH2_filt.data / max(trH2_filt.data), color=linecolor, linewidth=0.7, label='Data')
|
|
if Pweight < 4:
|
|
p22, = ax3.plot(arhcf1.getTimeArray(),
|
|
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
|
|
if aicSflag == 1:
|
|
ax3.plot(arhcf2.getTimeArray(),
|
|
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
|
|
ax3.plot(
|
|
[aicarhpick.getpick(), aicarhpick.getpick()],
|
|
[-1, 1], 'g', label='Initial S Onset')
|
|
ax3.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[1, 1], 'g')
|
|
ax3.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[-1, -1], 'g')
|
|
ax3.plot([refSpick.getpick(), refSpick.getpick()],
|
|
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
|
|
ax3.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[1.3, 1.3], 'g', linewidth=2)
|
|
ax3.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[-1.3, -1.3], 'g', linewidth=2)
|
|
ax3.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
|
|
ax3.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
|
|
ax3.legend(loc=1)
|
|
ax3.set_yticks([])
|
|
ax3.set_ylim([-1.5, 1.5])
|
|
ax3.set_xlabel('Time [s] after %s' % tr_filt.stats.starttime)
|
|
ax3.set_ylabel('Normalized Counts')
|
|
ax3.set_title(trH2_filt.stats.channel)
|
|
if plt_flag == 1:
|
|
fig.show()
|
|
try:
|
|
input()
|
|
except SyntaxError:
|
|
pass
|
|
plt.close(fig)
|
|
##########################################################################
|
|
# calculate "real" onset times
|
|
if lpickP is not None and lpickP == mpickP:
|
|
lpickP += zdat[0].stats.delta
|
|
if epickP is not None and epickP == mpickP:
|
|
epickP -= zdat[0].stats.delta
|
|
if mpickP is not None and epickP is not None and lpickP is not None:
|
|
lpickP = zdat[0].stats.starttime + lpickP
|
|
epickP = zdat[0].stats.starttime + epickP
|
|
mpickP = zdat[0].stats.starttime + mpickP
|
|
else:
|
|
# dummy values (start of seismic trace) in order to derive
|
|
# theoretical onset times for iteratve picking
|
|
lpickP = zdat[0].stats.starttime + p_params['timeerrorsP'][3]
|
|
epickP = zdat[0].stats.starttime - p_params['timeerrorsP'][3]
|
|
mpickP = zdat[0].stats.starttime
|
|
|
|
# create dictionary
|
|
# for P phase
|
|
ccode = zdat[0].stats.channel
|
|
ncode = zdat[0].stats.network
|
|
ppick = dict(channel=ccode, network=ncode, lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP,
|
|
snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None,
|
|
Mw=None, picker=picker, marked=Pmarker)
|
|
|
|
if edat:
|
|
hdat = edat[0]
|
|
elif ndat:
|
|
hdat = ndat[0]
|
|
else:
|
|
# no horizontal components given
|
|
picks = dict(P=ppick)
|
|
return picks, station
|
|
|
|
if lpickS is not None and lpickS == mpickS:
|
|
lpickS += hdat.stats.delta
|
|
if epickS is not None and epickS == mpickS:
|
|
epickS -= hdat.stats.delta
|
|
if mpickS is not None and epickS is not None and lpickS is not None:
|
|
lpickS = hdat.stats.starttime + lpickS
|
|
epickS = hdat.stats.starttime + epickS
|
|
mpickS = hdat.stats.starttime + mpickS
|
|
else:
|
|
# dummy values (start of seismic trace) in order to derive
|
|
# theoretical onset times for iteratve picking
|
|
lpickS = hdat.stats.starttime + s_params['timeerrorsS'][3]
|
|
epickS = hdat.stats.starttime - s_params['timeerrorsS'][3]
|
|
mpickS = hdat.stats.starttime
|
|
|
|
# add S phase
|
|
ccode = hdat.stats.channel
|
|
ncode = hdat.stats.network
|
|
spick = dict(channel=ccode, network=ncode, lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS,
|
|
snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao)
|
|
# merge picks into returning dictionary
|
|
picks = dict(P=ppick, S=spick)
|
|
return picks, station
|
|
|
|
|
|
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter, fig_dict=None):
|
|
"""
|
|
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
|
|
:param wf: waveform, obspy stream object
|
|
:type wf: ~obspy.core.stream.Stream
|
|
:param NLLocfile: path/name of NLLoc-location file
|
|
:type NLLocfile: str
|
|
:param picks: dictionary of available onset times
|
|
:type picks: dict
|
|
:param badpicks: picks to be repicked
|
|
:type badpicks:
|
|
:param pickparameter: picking parameters from autoPyLoT-input file
|
|
:type pickparameter: pylot.core.io.inputs.PylotParameter
|
|
:param fig_dict: dictionary containing Matplotlib figures used for plotting results
|
|
:type fig_dict: dict
|
|
:return: dictionary containing iterative picks
|
|
:rtype: dict
|
|
"""
|
|
|
|
msg = '##################################################\n' \
|
|
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
|
|
'starting re-picking them ...'.format(len(badpicks), badpicks)
|
|
print(msg)
|
|
|
|
newpicks = {}
|
|
for i in range(0, len(badpicks)):
|
|
if len(badpicks[i][0]) > 4:
|
|
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
|
elif len(badpicks[i][0]) == 4:
|
|
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
|
elif len(badpicks[i][0]) < 4:
|
|
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
|
nllocline = getPatternLine(NLLocfile, Ppattern)
|
|
res = nllocline.split(None)[16]
|
|
# get theoretical P-onset time from residuum
|
|
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
|
|
|
|
# get corresponding waveform stream
|
|
msg = '##################################################\n' \
|
|
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
|
|
print(msg)
|
|
wf2pick = wf.select(station=badpicks[i][0])
|
|
|
|
# modify some picking parameters
|
|
pstart_old = pickparameter.get('pstart')
|
|
pstop_old = pickparameter.get('pstop')
|
|
sstop_old = pickparameter.get('sstop')
|
|
pickwinP_old = pickparameter.get('pickwinP')
|
|
Precalcwin_old = pickparameter.get('Precalcwin')
|
|
noisefactor_old = pickparameter.get('noisefactor')
|
|
zfac_old = pickparameter.get('zfac')
|
|
twindows = pickparameter.get('tsnrz')
|
|
tsafety = twindows[1]
|
|
pstart = max([0, badpicks[i][1] - wf2pick[0].stats.starttime - pickparameter.get('tlta')])
|
|
if abs(float(res)) <= tsafety / 2 or pstart == 0:
|
|
print("iteratepicker: Small residuum, leave parameters unchanged for this phase!")
|
|
else:
|
|
pickparameter.setParam(pstart=pstart)
|
|
pickparameter.setParam(pstop=pickparameter.get('pstart') + (pickparameter.get('Precalcwin')))
|
|
pickparameter.setParam(sstop=pickparameter.get('sstop') / 2)
|
|
pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2)
|
|
pickparameter.setParam(Precalcwin=pickparameter.get('Precalcwin') / 2)
|
|
pickparameter.setParam(noisefactor=1.0)
|
|
pickparameter.setParam(zfac=1.0)
|
|
|
|
print(
|
|
"iteratepicker: The following picking parameters have been modified for iterative picking:")
|
|
print(
|
|
"pstart: %fs => %fs" % (pstart_old, pickparameter.get('pstart')))
|
|
print(
|
|
"pstop: %fs => %fs" % (pstop_old, pickparameter.get('pstop')))
|
|
print(
|
|
"sstop: %fs => %fs" % (sstop_old, pickparameter.get('sstop')))
|
|
print("pickwinP: %fs => %fs" % (
|
|
pickwinP_old, pickparameter.get('pickwinP')))
|
|
print("Precalcwin: %fs => %fs" % (
|
|
Precalcwin_old, pickparameter.get('Precalcwin')))
|
|
print("noisefactor: %f => %f" % (
|
|
noisefactor_old, pickparameter.get('noisefactor')))
|
|
print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac')))
|
|
|
|
# repick station
|
|
newpicks, _ = autopickstation(wf2pick, pickparameter, fig_dict=fig_dict)
|
|
|
|
# replace old dictionary with new one
|
|
picks[badpicks[i][0]] = newpicks
|
|
|
|
# reset temporary change of picking parameters
|
|
print("iteratepicker: Resetting picking parameters ...")
|
|
pickparameter.setParam(pstart=pstart_old)
|
|
pickparameter.setParam(pstop=pstop_old)
|
|
pickparameter.setParam(sstop=sstop_old)
|
|
pickparameter.setParam(pickwinP=pickwinP_old)
|
|
pickparameter.setParam(Precalcwin=Precalcwin_old)
|
|
pickparameter.setParam(noisefactor=noisefactor_old)
|
|
pickparameter.setParam(zfac=zfac_old)
|
|
|
|
return picks
|