pylot/pylot/tomography/fmtomo_utils.py
2025-04-10 13:58:01 +02:00

1324 lines
46 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#----------------------------------------------------------------------------
# Copyright 2017 Marcel Paffrath (Ruhr-Universitaet Bochum, Germany)
#
# This file is part of ActiveSeismoPick3D
#----------------------------------------------------------------------------
import datetime
import numpy as np
import os
import shutil
import subprocess
import sys
def pol2cart(lat, lon, r):
x = r * np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(lon))
y = r * np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(lon))
z = r * np.sin(np.deg2rad(lat))
return x, y, z
class Tomo3d(object):
def __init__(self, fmtomodir, simuldir='fmtomo_simulation', citer=0, overwrite=False, buildObs=True,
saveRays: bool | list = True):
'''
Class build from FMTOMO script tomo3d. Can be used to run several instances of FMM code in parallel.
:param: citer, current iteration (default = 0: start new model)
:type: integer
:param: fmtomodir, directory containing a clean FMTOMO installation (v. 1.0)
:type: string (path)
:param: simuldir, simulation directory (must contain FMTOMO input grid files)
:type: string (path)
'''
self.simuldir = simuldir
self.setCWD()
self.buildFmtomodir(fmtomodir)
if buildObs:
self.buildObsdata()
self.saveRays=saveRays
self.defParas()
self.copyRef()
self.citer = citer # current iteration
self.sources = self.readSrcFile()
self.traces = self.readTraces()
self.directories = []
self.overwrite = overwrite
def defParas(self):
self.defFMMParas()
self.defInvParas()
def buildFmtomodir(self, directory):
tomo_files = ['fm3d',
'frechgen',
'frechgen.in',
'invert3d',
'invert3d.in',
'mode_set.in',
'obsdata',
'obsdata.in',
'residuals',
'residuals.in',
'tomo3d',
'tomo3d.in']
for name in tomo_files:
filename = os.path.join(directory, name)
linkname = os.path.join(self.cwd, name)
if not os.path.exists(linkname):
os.system('ln -s %s %s' % (filename, linkname))
def buildObsdata(self):
p = subprocess.Popen(os.path.join(self.cwd, 'obsdata'), shell=True)
p.wait()
os.system('mv sources.in sourcesref.in')
def defFMMParas(self):
'''
Initiates parameters for the forward calculation.
'''
# Comments coppied from FMTOMO.
# Name of fast marching program
self.fmm = os.path.join(self.cwd, 'fm3d')
# Name of program calculating Frechet derivatives
self.frechgen = os.path.join(self.cwd, 'frechgen')
# Name of current velocity/inversion grid
self.cvg = 'vgrids.in'
# Name of current interfaces grid
self.cig = 'interfaces.in'
# Name of file containing current source locations
self.csl = 'sources.in'
# Name of file containing propagation grid
self.pg = 'propgrid.in'
# Name of file containing receiver coordinates
self.rec = 'receivers.in'
self.frech = 'frechet.in'
self.frechout = 'frechet.dat'
# Name of file containing measured data
self.ot = 'otimes.dat'
# Name of file containing output velocity information
self.ttim = 'arrivals.dat'
self.mode = 'mode_set.in'
# Name of temporary folders created for each process
self.folder = '.proc_'
def defInvParas(self):
'''
Initiates inversion parameters for FMTOMO.
'''
# Name of program for performing inversion
self.inv = os.path.join(self.cwd, 'invert3d')
# Name of file containing current model traveltimes
self.mtrav = 'mtimes.dat'
# Name of file containing reference model traveltimes
self.rtrav = 'rtimes.dat'
# Name of file containing initial velocity grid
self.ivg = 'vgridsref.in'
# Name of file containing initial interface grid
self.iig = 'interfacesref.in'
# Name of file containing initial source locations
self.isl = 'sourcesref.in'
# Name of program for calculating traveltime residuals
self.resid = os.path.join(self.cwd, 'residuals')
# Name of output file for calculating traveltime residuals
self.resout = 'residuals.dat'
def copyRef(self):
'''
Copies reference grids to used grids (e.g. sourcesref.in to sources.in)
'''
os.system('cp %s %s' % (self.ivg, self.cvg))
os.system('cp %s %s' % (self.iig, self.cig))
os.system('cp %s %s' % (self.isl, self.csl))
def setCWD(self, directory=None):
'''
Set working directory containing all necessary files.
Default: pwd
'''
if directory == None:
directory = self.simuldir
os.chdir(directory)
self.cwd = directory
print('Working directory is: %s' % self.cwd)
def runFrech(self):
os.system(self.frechgen)
def runTOMO3D(self, nproc, iterations):
'''
Starts up the FMTOMO code for the set number of iterations on nproc parallel processes.
:param: nproc, number of parallel processes
:type: integer
:param: iterations, number of iterations
:type: integer
'''
self.nproc = nproc
self.iter = iterations # number of iterations
starttime = datetime.datetime.now()
print('Starting TOMO3D on %s parallel processes for %s iteration(s).'
% (self.nproc, self.iter))
if self.citer == 0:
self.makeInvIterDir()
self.startForward(self.cInvIterDir)
if self.iter == 0:
print('Only 1 iteration requested. Exit after forward run.')
self.clean_up()
return
self.raiseIter()
while self.citer <= self.iter:
self.makeInvIterDir()
self.startInversion()
self.saveVgrid()
self.startForward(self.cInvIterDir)
self.raiseIter()
if self.citer > self.iter:
self.clean_up()
tdelta = datetime.datetime.now() - starttime
print('runTOMO3D: Finished %s iterations after %s.' % (self.iter, tdelta))
print('runTOMO3D: See %s for output' % (self.cwd))
def runFmm(self, directory, logfile, processes):
'''
Calls an instance of the FMM code in the process directory.
Requires a list of all active processes and returns an updated list.
'''
os.chdir(directory)
fout = open(logfile, 'w')
processes.append(subprocess.Popen(self.fmm, stdout=fout))
fout.close()
os.chdir(self.cwd)
return processes
def clean_up(self):
self.removeDirectories()
self.unlink(os.path.join(self.cwd, self.frechout))
self.unlink(os.path.join(self.cwd, self.ttim))
def startForward(self, logdir):
'''
Runs an instance of the FMM code in the process directory.
'''
self._printLine()
print('Starting forward simulation for iteration %s.' % (self.citer))
if self.citer == 0:
self.copyRef()
self.runFrech()
self.makeDirectories()
starttime = datetime.datetime.now()
processes = []
for procID in range(1, self.nproc + 1):
directory = self.getProcDir(procID)
logfn = 'fm3dlog_' + str(procID) + '.out'
log_out = os.path.join(logdir, logfn)
self.writeSrcFile(procID)
self.writeTracesFile(procID)
os.system('cp {cvg} {cig} {mode} {pg} {frechin} {dest}'
.format(cvg=self.cvg, cig=self.cig, frechin=self.frech,
mode=self.mode, pg=self.pg, dest=directory))
# MP MP +++ small hack for teleseismic alparray configuration with injected teleseismic ttimes
iaf = os.path.join(self.simuldir, 'input_associations_file.in')
if os.path.isfile(iaf):
os.system('cp {iaf} {dest}'.format(iaf=iaf, dest=directory))
picksdir = os.path.join(directory, 'picks')
os.system('ln -s {pdir_root} {pdir}'.format(pdir_root=os.path.join(self.simuldir, 'picks'),
pdir=picksdir))
# MP MP ---
processes = self.runFmm(directory, log_out, processes)
for p in processes:
p.wait()
self.mergeOutput(self.cInvIterDir)
#self.clearDirectories()
self.copyArrivals()
if self.citer == 0:
self.copyArrivals(self.rtrav)
# do not try to calculate residuals if we only do one forward run (e.g. for teleseismic reference times)
if self.iter != 0:
self.calcRes()
tdelta = datetime.datetime.now() - starttime
print('Finished Forward calculation after %s' % tdelta)
def startInversion(self):
'''
Simply calls the inversion program.
'''
print('Calling %s...' % self.inv)
os.system(self.inv)
def calcRes(self):
'''
Calls residual calculation program.
'''
resout = os.path.join(self.cwd, self.resout)
if self.citer == 0:
os.system('%s > %s' % (self.resid, resout))
else:
os.system('%s >> %s' % (self.resid, resout))
with open(resout, 'r') as infile:
residuals = infile.readlines()
RMS, var, chi2 = residuals[-1].split()
print('Residuals: RMS = %s, var = %s, Chi^2 = %s.' % (RMS, var, chi2))
def raiseIter(self):
self.citer += 1
self._printLine()
invfile = open(self.cwd + '/inviter.in', 'w')
invfile.write('%s' % self.citer)
invfile.close()
def makeDir(self, directory):
err = os.system('mkdir %s' % directory)
if err == 0:
self.directories.append(directory)
return
if err == 256:
if self.overwrite == True:
print('Overwriting existing files.')
self.clearDir(directory)
self.directories.append(directory)
return
raise RuntimeError('Could not create directory: %s' % directory)
def makeDirectories(self):
'''
Makes temporary directories for all processes.
'''
for procID in range(1, self.nproc + 1):
directory = self.getProcDir(procID)
self.makeDir(directory)
def makeInvIterDir(self):
'''
Makes directories for each iteration step for the output.
'''
invIterDir = self.cwd + '/it_%s' % (self.citer)
err = os.system('mkdir %s' % invIterDir)
if err == 256:
if self.overwrite:
self.clearDir(invIterDir)
elif err != 0:
raise RuntimeError('Could not create directory: %s' % invIterDir)
self.cInvIterDir = invIterDir
def clearDir(self, directory):
'''
Wipes a certain directory.
'''
# print('Wiping directory %s...'%directory)
for filename in os.listdir(directory):
filenp = os.path.join(directory, filename)
os.remove(filenp)
def clearDirectories(self):
'''
Wipes all generated temporary directories.
'''
for directory in self.directories:
self.clearDir(directory)
def rmDir(self, directory):
# print('Removing directory %s...'%directory)
return shutil.rmtree(directory)
def removeDirectories(self):
'''
Removes all generated temporary directories.
'''
for directory in self.directories:
self.rmDir(directory)
self.directories = []
def getProcDir(self, procID):
'''
Returns the temporary directory for a certain process
with procID = process number.
'''
return os.path.join(self.cwd, self.folder) + str(procID)
def getTraceIDs4Sources(self, sourceIDs):
'''
Returns corresponding trace IDs for a set of given source IDs.
'''
traceIDs = []
for traceID in self.traces.keys():
if self.traces[traceID]['source'] in sourceIDs:
traceIDs.append(traceID)
return traceIDs
def getTraceIDs4Source(self, sourceID):
'''
Returns corresponding trace IDs for a source ID.
'''
traceIDs = []
for traceID in self.traces.keys():
if self.traces[traceID]['source'] == sourceID:
traceIDs.append(traceID)
return traceIDs
def copyArrivals(self, target=None):
'''
Copies the FMM output file (self.ttim) to a specific target file.
Default target is self.mtrav (model travel times).
'''
if target == None:
target = os.path.join(self.cwd, self.mtrav)
os.system('cp %s %s' % (os.path.join(
self.cInvIterDir, self.ttim), target))
def saveVgrid(self):
'''
Saves the current velocity grid for the current iteration step.
'''
# small hack: add smoothing file and ecmi file (smv and ecmi in invert3d.f90) for Norm calculation
smvf = os.path.join(self.cwd, 'smv.out')
ecmif = os.path.join(self.cwd, 'ecmi.out')
dmf = os.path.join(self.cwd, 'dm.out')
if os.path.isfile(smvf):
os.system('cp %s %s' % (smvf, self.cInvIterDir))
if os.path.isfile(ecmif):
os.system('cp %s %s' % (ecmif, self.cInvIterDir))
if os.path.isfile(dmf):
os.system('cp %s %s' % (dmf, self.cInvIterDir))
vgpath = os.path.join(self.cwd, self.cvg)
os.system('cp %s %s' % (vgpath, self.cInvIterDir))
def calcSrcPerKernel(self):
'''
(Equally) distributes all sources depending on the number of processes (kernels).
Returns two integer values.
First: minimum number of sources for each process
Second: remaining sources (always less than number of processes)
'''
nsrc = self.readNsrc()
if self.nproc > nsrc:
print('Warning: Number of spawned processes higher than number of sources')
return nsrc // self.nproc, nsrc % self.nproc
def srcIDs4Kernel(self, procID):
'''
Calculates and returns all source IDs for a given process ID.
'''
proc = procID - 1
nsrc = self.readNsrc()
srcPK, remain = self.calcSrcPerKernel()
if procID > self.nproc:
sys.exit('STOP: Kernel ID exceeds available number.')
if proc < remain:
start = (srcPK + 1) * (proc) + 1
return range(start, start + srcPK + 1)
elif proc == remain:
start = (srcPK + 1) * (proc) + 1
return range(start, start + srcPK)
elif proc > remain:
start = (srcPK + 1) * remain + srcPK * (proc - remain) + 1
return range(start, start + srcPK)
def readNsrc(self):
srcfile = open(self.csl, 'r')
nsrc = int(srcfile.readline())
srcfile.close()
return nsrc
def readNtraces(self):
'''
Reads the total number of traces from self.rec header.
'''
recfile = open(self.rec, 'r')
nrec = int(recfile.readline())
recfile.close()
return nrec
def readSrcFile(self):
'''
Reads the whole sourcefile and returns structured information in a dictionary.
'''
nsrc = self.readNsrc()
srcfile = open(self.csl, 'r')
sources = {}
temp = srcfile.readline()
for index in range(nsrc):
teleflag = int(srcfile.readline())
if teleflag == 1:
phase = srcfile.readline()
else:
phase = None
coords = srcfile.readline().split()
numpaths = int(srcfile.readline())
steps = int(srcfile.readline())
interactions = srcfile.readline().split()
veltype = int(srcfile.readline())
#if teleflag is not 0:
# sys.exit('Script not yet usable for teleseismic.')
if numpaths != 1:
sys.exit('Script not yet usable for more than one path per source.')
sources[index + 1] = {'teleflag': teleflag,
'phase': phase,
'coords': coords,
'numpaths': numpaths,
'steps': steps,
'interactions': interactions,
'veltype': veltype
}
return sources
def readTraces(self):
'''
Reads the receiver input file and returns the information
in a structured dictionary.
'''
recfile = open(self.rec, 'r')
ntraces = self.readNtraces()
traces = {}
temp = recfile.readline()
for index in range(ntraces):
coords = recfile.readline().split()
paths = int(recfile.readline())
source = int(recfile.readline())
path = int(recfile.readline())
traces[index + 1] = {'coords': coords,
'paths': paths,
'source': source,
'path': path
}
return traces
def readArrivals(self, procID):
'''
Reads the arrival times from a temporary process directory,
changes local to global sourceIDs and traceIDs and returns
a list of arrival times.
'''
directory = self.getProcDir(procID)
arrfile = open(os.path.join(directory, self.ttim), 'r')
sourceIDs = self.srcIDs4Kernel(procID)
arrivals = []
for sourceID in sourceIDs:
traceIDs = self.getTraceIDs4Source(sourceID)
for traceID in traceIDs:
line = arrfile.readline().split()
if line != []:
# recID and srcID for the individual processor will not be needed
recID_proc, srcID_proc, ray, normal, arrtime, diff, head = line
arrivals.append([traceID, sourceID, ray, normal, arrtime, diff, head])
return arrivals
def readRays(self, procID):
'''
Reads rays output from a temporary process directory and returns
the information in a structured dictionary.
'''
directory = self.getProcDir(procID)
raysfile = open(directory + '/rays.dat', 'r')
sourceIDs = self.srcIDs4Kernel(procID)
rays = {}
for sourceID in sourceIDs:
traceIDs = self.getTraceIDs4Source(sourceID)
for traceID in traceIDs:
line1 = raysfile.readline().split()
if line1 != []:
# recID and srcID for the individual processor will not be needed
recID_proc, srcID_proc, ray, normal, nsec = line1
raysecs = {}
for sec in range(int(nsec)):
line2 = raysfile.readline().split()
npoints, region, diff, head = line2
raypoints = []
for j in range(int(npoints)):
raypoints.append(raysfile.readline())
raysecs[sec] = {'npoints': npoints,
'region': region,
'diff': diff,
'head': head,
'raypoints': raypoints
}
rays[traceID] = {'sourceID': sourceID,
'raypath': ray,
'normal': normal,
'nsec': nsec,
'raysections': raysecs
}
return rays
def writeSrcFile(self, procID):
'''
Writes a source input file for a process with ID = procID.
'''
directory = self.getProcDir(procID)
srcfile = open(os.path.join(directory, self.csl), 'w')
sourceIDs = self.srcIDs4Kernel(procID)
srcfile.write('%s\n' % len(sourceIDs))
for sourceID in sourceIDs:
source = self.sources[sourceID]
coords = source['coords']
interactions = source['interactions']
srcfile.write('%s\n' % source['teleflag'])
if source['teleflag'] == 1:
srcfile.write('%s\n' % source['phase'])
srcfile.write('%s %s %s\n' % (float(coords[0]), float(coords[1]), float(coords[2])))
srcfile.write('%s\n' % source['numpaths'])
srcfile.write('%s\n' % source['steps'])
srcfile.write('%s %s\n' % (int(interactions[0]), int(interactions[1])))
srcfile.write('%s\n' % source['veltype'])
def writeTracesFile(self, procID):
'''
Writes a receiver input file for a process with ID = procID.
'''
directory = self.getProcDir(procID)
recfile = open('%s/receivers.in' % directory, 'w')
sourceIDs = self.srcIDs4Kernel(procID)
traceIDs = self.getTraceIDs4Sources(sourceIDs)
recfile.write('%s\n' % len(traceIDs))
for traceID in traceIDs:
trace = self.traces[traceID]
coords = trace['coords']
source = int(trace['source']) - sourceIDs[0] + 1
recfile.write('%s %s %s\n' % (float(coords[0]), float(coords[1]), float(coords[2])))
recfile.write('%s\n' % trace['paths'])
recfile.write('%s\n' % source)
recfile.write('%s\n' % trace['path'])
def mergeArrivals(self, directory):
'''
Merges the arrival times for all processes to self.cInvIterDir.
'''
arrfn = os.path.join(directory, self.ttim)
arrivalsOut = open(arrfn, 'w')
print('Merging %s...' % self.ttim)
for procID in range(1, self.nproc + 1):
arrivals = self.readArrivals(procID)
for line in arrivals:
arrivalsOut.write('%6s %6s %6s %6s %15s %5s %5s\n' % tuple(line))
os.system('ln -fs %s %s' % (arrfn, os.path.join(self.cwd, self.ttim)))
def mergeRays(self, directory):
'''
Merges the ray paths for all processes to self.cInvIterDir.
'''
print('Merging rays.dat...')
with open(directory + '/rays.dat', 'w') as outfile:
for procID in range(1, self.nproc + 1):
rays = self.readRays(procID)
for traceID in rays:
ray = rays[traceID]
outfile.write('%6s %6s %6s %6s %6s\n' % (traceID,
ray['sourceID'],
ray['raypath'],
ray['normal'],
ray['nsec']))
for sec in range(int(ray['nsec'])):
raysec = ray['raysections'][sec]
outfile.write('%6s %6s %6s %6s\n' % (raysec['npoints'],
raysec['region'],
raysec['diff'],
raysec['head']))
outfile.writelines(raysec['raypoints'])
def mergeFrechet(self, directory):
'''
Merges the frechet derivatives for all processes to self.cInvIterDir.
'''
frechfnout = os.path.join(directory, self.frechout)
print('Merging %s...' % self.frechout)
with open(frechfnout, 'w') as outfile:
for procID in range(1, self.nproc + 1):
filename = os.path.join(self.getProcDir(procID), self.frechout)
with open(filename) as infile:
for sourceID in self.srcIDs4Kernel(procID):
for traceID in self.getTraceIDs4Source(sourceID):
try:
recID_proc, srcID_proc, ray, normal, NPDEV = infile.readline().split()
except ValueError as e:
print('Value error: {}. Continue with next line'.format(e))
continue
outfile.write('%6s %6s %6s %6s %6s\n' % (traceID, sourceID, ray, normal, NPDEV))
for index in range(int(NPDEV)):
outfile.write(infile.readline())
os.system('ln -fs %s %s' % (frechfnout, os.path.join(self.cwd, self.frechout)))
def mergeOutput(self, directory):
'''
Calls self.mergeArrivals, self.mergeFrechet and self.mergeRays.
'''
self.mergeArrivals(directory)
self.mergeFrechet(directory)
if self.saveRays == True or (type(self.saveRays) is list and self.citer in self.saveRays):
self.mergeRays(directory)
def unlink(self, filepath):
return os.system('unlink %s' % filepath)
def _printLine(self):
print('----------------------------------------')
def vgrids2VTK(inputfile='vgrids.in', outputfile='vgrids.vtk', absOrRel='abs',
inputfileref='vgridsref.in', spherical=False):
'''
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
'''
R = 6371. # earth radius
outfile = open(outputfile, 'w')
number, delta, start, vel = _readVgrid(inputfile)
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
nPoints = nR * nTheta * nPhi
# write header2vtk
print("Writing header for VTK file...")
outfile.write('# vtk DataFile Version 3.1\n')
outfile.write('Velocity on FMTOMO vgrids.in points\n')
outfile.write('ASCII\n')
if spherical == False:
nX = nPhi
nY = nTheta
nZ = nR
sZ = sR - R
sX = _getDistance(sPhi)
sY = _getDistance(sTheta)
dX = _getDistance(dPhi)
dY = _getDistance(dTheta)
dZ = dR
outfile.write('DATASET STRUCTURED_POINTS\n')
outfile.write('DIMENSIONS %d %d %d\n' % (nX, nY, nZ))
outfile.write('ORIGIN %f %f %f\n' % (sX, sY, sZ))
outfile.write('SPACING %f %f %f\n' % (dX, dY, dZ))
elif spherical == True:
outfile.write('DATASET STRUCTURED_GRID\n')
outfile.write('DIMENSIONS %15d %15d %15d\n' % (nPhi, nTheta, nR))
outfile.write('POINTS %15d float\n' % (nPoints))
radii = np.linspace(sR, sR + dR * nR, nR)
lats = np.linspace(sTheta, sTheta + dTheta * nTheta, nTheta)
lons = np.linspace(sPhi, sPhi + dPhi * nPhi, nPhi)
for rad in radii:
for lat in lats:
for lon in lons:
x, y, z = pol2cart(lat, lon, rad)
outfile.write('%10f %10f %10f \n' % (x, y, z))
outfile.write('POINT_DATA %15d\n' % (nPoints))
if absOrRel == 'abs':
outfile.write('SCALARS velocity float %d\n' % (1))
if absOrRel == 'relDepth':
outfile.write('SCALARS velocity2depthMean float %d\n' % (1))
elif absOrRel == 'rel':
outfile.write('SCALARS velChangePercent float %d\n' % (1))
outfile.write('LOOKUP_TABLE default\n')
pointsPerR = nTheta * nPhi
# write velocity
if absOrRel == 'abs':
print("Writing velocity values to VTK file...")
for velocity in vel:
outfile.write('%10f\n' % velocity)
elif absOrRel == 'relDepth':
print("Writing velocity values to VTK file relative to mean of each depth...")
index = 0
count = 0
veldepth = []
for velocity in vel:
count += 1
veldepth.append(velocity)
if count % pointsPerR == 0:
velmean = np.mean(veldepth)
# print velmean, count, count/pointsPerR
for vel in veldepth:
outfile.write('%10f\n' % float(vel - velmean))
veldepth = []
elif absOrRel == 'rel':
nref, dref, sref, velref = _readVgrid(inputfileref)
nR_ref, nTheta_ref, nPhi_ref = nref
if not len(velref) == len(vel):
print('ERROR: Number of gridpoints mismatch for %s and %s' % (inputfile, inputfileref))
return
# velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
velrel = []
for velocities in zip(vel, velref):
v, vref = velocities
if not vref == 0:
velrel.append((v - vref) / vref * 100)
else:
velrel.append(0)
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
print('ERROR: Dimension mismatch of grids %s and %s' % (inputfile, inputfileref))
return
print("Writing velocity values to VTK file...")
for velocity in velrel:
outfile.write('%10f\n' % velocity)
print('Pertubations: min: %s %%, max: %s %%' % (min(velrel), max(velrel)))
outfile.close()
print("Wrote velocity grid for %d points to file: %s" % (nPoints, outputfile))
return
def rays2VTK(fnin, fdirout='./vtk_files/', nthPoint=50, spherical=False):
'''
Writes VTK file(s) for FMTOMO rays from rays.dat
:param: nthPoint, plot every nth point of the ray
:type: integer
'''
infile = open(fnin, 'r')
R = 6371.
rays = {}
raynumber = 0
### NOTE: rays.dat seems to be in km and radians
while True:
raynumber += 1
firstline = infile.readline()
if firstline == '':
break # break at EOF
fl_list = firstline.split()
recnumber = int(fl_list[0])
shotnumber = int(fl_list[1])
nRaySections = int(fl_list[4]) # is zero if the ray is invalid
if nRaySections == 0:
print('Invalid ray number %d for shot number %d' % (raynumber, shotnumber))
continue
if not shotnumber in rays.keys():
rays[shotnumber] = {}
rays[shotnumber][recnumber] = []
for raySection in range(nRaySections):
nRayPoints = int(infile.readline().split()[0])
for index in range(nRayPoints):
if index % nthPoint == 0 or index == (nRayPoints - 1):
rad, lat, lon = infile.readline().split()
rays[shotnumber][recnumber].append(
[_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
else:
dummy = infile.readline()
infile.close()
for shotnumber in rays.keys():
fnameout = os.path.join(fdirout, 'rays%04d.vtk' % (shotnumber))
outfile = open(fnameout, 'w')
nPoints = 0
for raynumber in rays[shotnumber]:
for ray in rays[shotnumber][raynumber]:
nPoints += 1
# write header
# print("Writing header for VTK file...")
print("Writing shot %d to file %s" % (shotnumber, fnameout))
outfile.write('# vtk DataFile Version 3.1\n')
outfile.write('FMTOMO rays\n')
outfile.write('ASCII\n')
outfile.write('DATASET POLYDATA\n')
outfile.write('POINTS %15d float\n' % (nPoints))
# write coordinates
# print("Writing coordinates to VTK file...")
for raynumber in rays[shotnumber].keys():
for raypoint in rays[shotnumber][raynumber]:
# longitude, latitude, rad - R
x, y, z = raypoint[:3]
if spherical:
x, y, z = pol2cart(_getAngle(y), _getAngle(x), z + R)
outfile.write('%10f %10f %10f \n' % (x, y, z))
outfile.write('LINES %15d %15d\n' % (len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
# write indices
# print("Writing indices to VTK file...")
count = 0
for raynumber in rays[shotnumber].keys():
outfile.write('%d ' % (len(rays[shotnumber][raynumber])))
for index in range(len(rays[shotnumber][raynumber])):
outfile.write('%d ' % (count))
count += 1
outfile.write('\n')
def receivers2VTK(fnin='receivers.in', fnout='receivers.vtk', spherical=False, R=6371.):
'''
Generates a vtk file from all receivers of the SeisArray object.
'''
infile = open(fnin, 'r')
outfile = open(fnout, 'w')
nLines = int(infile.readline())
# write header
print("Writing header for VTK file...")
outfile.write('# vtk DataFile Version 3.1\n')
outfile.write('Receivers with traceIDs\n')
outfile.write('ASCII\n')
outfile.write('DATASET POLYDATA\n')
# check for duplicates
coord_tuples = []
# save write output lines
points_out = []
# write coordinates
print("Writing coordinates to VTK file...")
for index in range(nLines):
# elevation, lat, lon
z, y, x = [float(val) for val in infile.readline().split()]
# read following 3 lines until next receiver locations
for _ in range(3):
infile.readline()
# eliminate duplicates
coord_tuple = (x, y, z)
if coord_tuple in coord_tuples:
continue
coord_tuples.append((x, y, z))
if not spherical:
x = _getDistance(x)
y = _getDistance(y)
z = -z
else:
x, y, z = pol2cart(y, x, R - z)
points_out.append('%10f %10f %10f \n' % (x, y, z))
nPoints = len(points_out)
outfile.write('POINTS %15d float\n' % (nPoints))
for line in points_out:
outfile.write(line)
outfile.write('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
# write indices
print("Writing indices to VTK file...")
for index in range(nPoints):
outfile.write('%10d %10d\n' % (1, index))
outfile.close()
infile.close()
print("Wrote %d receivers to file: %s" % (nPoints, fnout))
def sources2VTK(fnin='sources.in', fname_out='sources.vtk', spherical=False, R=6371.):
'''
Generates a vtk-file for all source locations in the SeisArray object.
'''
infile = open(fnin, 'r')
nSources = int(infile.readline())
outfile = open(fname_out, 'w')
points = []
vertices = []
# write header
print("Writing header for VTK file...")
outfile.write('# vtk DataFile Version 3.1\n')
outfile.write('Shots with shotnumbers\n')
outfile.write('ASCII\n')
outfile.write('DATASET POLYDATA\n')
outfile.write('POINTS %15d float\n' % (nSources))
# write coordinates
print("Writing coordinates to VTK file...")
for index in range(nSources):
shotnumber = index + 1
phaseID = infile.readline()
_ = infile.readline()
# elevation, lat, lon
z, y, x = [float(val) for val in infile.readline().split()[:3]]
if not spherical:
x = _getDistance(x)
y = _getDistance(y)
z = -z
else:
x, y, z = pol2cart(y, x, R - z)
# read following 4 lines until next source locations
for _ in range(4):
infile.readline()
outfile.write('%10f %10f %10f \n' % (x, y, z))
outfile.write('VERTICES %15d %15d\n' % (1, nSources))
outfile.write('{} '.format(nSources - 1))
for index in range(nSources - 1):
outfile.write('{} '.format(index))
outfile.close()
print("Wrote %d sources to file %s" % (nSources, fname_out))
def _readVgrid(filename):
def readNumberOfPoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
nR = int(vglines[1].split()[0])
nTheta = int(vglines[1].split()[1])
nPhi = int(vglines[1].split()[2])
print('readNumberOf Points: Awaiting %d grid points in %s'
% (nR * nTheta * nPhi, filename))
fin.close()
return nR, nTheta, nPhi
def readDelta(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
dR = float(vglines[2].split()[0])
dTheta = float(vglines[2].split()[1])
dPhi = float(vglines[2].split()[2])
fin.close()
return dR, dTheta, dPhi
def readStartpoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
sR = float(vglines[3].split()[0])
sTheta = float(vglines[3].split()[1])
sPhi = float(vglines[3].split()[2])
fin.close()
return sR, sTheta, sPhi
def readVelocity(filename):
'''
Reads in velocity from vgrids file and returns a list containing all values in the same order
'''
vel = []
count = 0
fin = open(filename, 'r')
vglines = fin.readlines()
for line in vglines:
count += 1
if count > 4:
if line.split():
vel.append(float(line.split()[0]))
print("Read %d points out of file: %s" % (len(vel), filename))
return vel
# Theta, Phi in radians, R in km
nR, nTheta, nPhi = readNumberOfPoints(filename)
dR, dThetaRad, dPhiRad = readDelta(filename)
sR, sThetaRad, sPhiRad = readStartpoints(filename)
vel = readVelocity(filename)
dTheta, dPhi = np.rad2deg((dThetaRad, dPhiRad))
sTheta, sPhi = np.rad2deg((sThetaRad, sPhiRad))
number = (nR, nTheta, nPhi)
delta = (dR, dTheta, dPhi)
start = (sR, sTheta, sPhi)
return number, delta, start, vel
def _generateGrids(number, delta, start):
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
eR = sR + (nR - 1) * dR
ePhi = sPhi + (nPhi - 1) * dPhi
eTheta = sTheta + (nTheta - 1) * dTheta
thetaGrid = np.linspace(sTheta, eTheta, num=nTheta)
phiGrid = np.linspace(sPhi, ePhi, num=nPhi)
rGrid = np.linspace(sR, eR, num=nR)
return (thetaGrid, phiGrid, rGrid)
def addCheckerboard(spacing=10., pertubation=0.1, inputfile='vgrids.in',
outputfile='vgrids_cb.in', ampmethod='linear', rect=(None, None),
spherical=False, spacTheta=None, spacPhi=None):
'''
Add a checkerboard to an existing vgrids.in velocity model.
:param: spacing, size of the tiles
type: float
:param: pertubation, pertubation (default: 0.1 = 10%)
type: float
'''
def correctSpacing(spacing, delta, disttype=None):
if spacing > delta:
spacing_corr = round(spacing / delta) * delta
elif spacing < delta:
spacing_corr = delta
print('The spacing of the checkerboard of %s (%s) was corrected to '
'a value of %s to fit the grid spacing of %s.' % (spacing, disttype, spacing_corr, delta))
return spacing_corr
def linearAmp(InCell):
decimal = InCell - np.floor(InCell)
return (-abs(decimal - 0.5) + 0.5) * 2
def rectAmp(InCell, rect):
decimal = InCell - np.floor(InCell)
r1, r2 = rect
if r1 <= decimal <= r2:
return 1
else:
return 0
def ampFunc(InCell, method='linear', rect=None):
if method == 'linear':
return linearAmp(InCell)
if method == 'rect' and rect is not None:
return rectAmp(InCell, rect)
else:
print('ampFunc: Could not amplify cb pattern')
if spherical == True:
if spacTheta == None or spacPhi == None:
print('Please give explicit values for spacing in theta and phi direction. Abort.')
return
print('In spherical mode. Spacing in R: {}, Theta: {}, Phi: {}'.format(spacing, spacTheta, spacPhi))
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
outfile = open(outputfile, 'w')
number, delta, start, vel = _readVgrid(inputfile)
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
nPoints = nR * nTheta * nPhi
# write header for velocity grid file (in RADIANS)
outfile.write('%10s %10s \n' % (1, 1))
outfile.write('%10s %10s %10s\n' % (nR, nTheta, nPhi))
outfile.write('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
outfile.write('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
spacR = correctSpacing(spacing, dR, '[meter], R')
# correction for spherical case, angles given explicitly
if not spherical == True:
spacTheta = _getAngle(spacing)
spacPhi = _getAngle(spacing)
spacTheta = correctSpacing(spacTheta, dTheta, '[degree], Theta')
spacPhi = correctSpacing(spacPhi, dPhi, '[degree], Phi')
count = 0
evenOdd = 1
even = 0
odd = 0
# In the following loop it is checked whether the positive distance from the border of the model
# for a point on the grid divided by the spacing is even or odd and then pertubated.
# The position is also shifted by half of the delta so that the position is directly on the point and
# not on the border between two points.
# "InCell" points e.g. rInCell are floats with their integer number corresponding to the cell number and
# their decimal place (0 - 1) corresponding to the position inside the cell.
# The amplification factor ampFactor comes from a linear relationship and ranges between 0 (cell border)
# and 1 (cell middle)
for radius in rGrid:
rInCell = (radius - sR - dR / 2) / spacR
ampR = ampFunc(rInCell, ampmethod, rect)
if np.floor(rInCell) % 2:
evenOddR = 1
else:
evenOddR = -1
for theta in thetaGrid:
thetaInCell = (theta - sTheta - dTheta / 2) / spacTheta
ampTheta = ampFunc(thetaInCell, ampmethod, rect)
if np.floor(thetaInCell) % 2:
evenOddT = 1
else:
evenOddT = -1
for phi in phiGrid:
phiInCell = (phi - sPhi - dPhi / 2) / spacPhi
ampPhi = ampFunc(phiInCell, ampmethod, rect)
if np.floor(phiInCell) % 2:
evenOddP = 1
else:
evenOddP = -1
velocity = vel[count]
ampFactor = (ampR + ampTheta + ampPhi) / 3
evenOdd = evenOddR * evenOddT * evenOddP * ampFactor
velocity += evenOdd * pertubation * velocity
outfile.write('%10s %10s\n' % (velocity, decm))
count += 1
progress = float(count) / float(nPoints) * 100
_update_progress(progress)
print('Added checkerboard to the grid in file %s with a spacing of %s and a pertubation of %s %%. '
'Outputfile: %s.' % (inputfile, spacing, pertubation * 100, outputfile))
outfile.close()
def addBox(x=(None, None), y=(None, None), z=(None, None),
boxvelocity=1.0, inputfile='vgrids.in',
outputfile='vgrids_box.in'):
'''
Add a box with constant velocity to an existing vgrids.in velocity model.
:param: x, borders of the box (xleft, xright)
type: tuple
:param: y, borders of the box (yleft, yright)
type: tuple
:param: z, borders of the box (bot, top)
type: tuple
:param: boxvelocity, default: 1.0 km/s
type: float
'''
R = 6371.
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
outfile = open(outputfile, 'w')
theta1 = _getAngle(y[0])
theta2 = _getAngle(y[1])
phi1 = _getAngle(x[0])
phi2 = _getAngle(x[1])
r1 = R + z[0]
r2 = R + z[1]
print('Adding box to grid with theta = (%s, %s), phi = (%s, %s), '
'r = (%s, %s), velocity = %s [km/s]'
% (theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
number, delta, start, vel = _readVgrid(inputfile)
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
nPoints = nR * nTheta * nPhi
# write header for velocity grid file (in RADIANS)
outfile.write('%10s %10s \n' % (1, 1))
outfile.write('%10s %10s %10s\n' % (nR, nTheta, nPhi))
outfile.write('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
outfile.write('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
count = 0
for radius in rGrid:
if r1 <= radius <= r2:
rFlag = 1
else:
rFlag = 0
for theta in thetaGrid:
if theta1 <= theta <= theta2:
thetaFlag = 1
else:
thetaFlag = 0
for phi in phiGrid:
if phi1 <= phi <= phi2:
phiFlag = 1
else:
phiFlag = 0
velocity = vel[count]
if rFlag * thetaFlag * phiFlag != 0:
velocity = boxvelocity
outfile.write('%10s %10s\n' % (velocity, decm))
count += 1
progress = float(count) / float(nPoints) * 100
_update_progress(progress)
print('Added box to the grid in file %s. '
'Outputfile: %s.' % (inputfile, outputfile))
outfile.close()
def _update_progress(progress):
sys.stdout.write("%d%% done \r" % (progress))
sys.stdout.flush()
def _getAngle(distance, R=6371.):
'''
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
'''
PI = np.pi
angle = distance * 180. / (PI * R)
return angle
def _getDistance(angle, R=6371.):
PI = np.pi
distance = angle / 180 * (PI * R)
return distance