484 lines
16 KiB
Python
484 lines
16 KiB
Python
# -*- coding: utf-8 -*-
|
|
import sys
|
|
import numpy as np
|
|
|
|
|
|
def vgrids2VTK(inputfile='vgrids.in', outputfile='vgrids.vtk', absOrRel='abs', inputfileref='vgridsref.in'):
|
|
'''
|
|
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
|
|
'''
|
|
R = 6371. # earth radius
|
|
outfile = open(outputfile, 'w')
|
|
|
|
number, delta, start, vel = _readVgrid(inputfile)
|
|
|
|
nR, nTheta, nPhi = number
|
|
dR, dTheta, dPhi = delta
|
|
sR, sTheta, sPhi = start
|
|
|
|
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
|
|
|
|
nPoints = nR * nTheta * nPhi
|
|
|
|
nX = nPhi;
|
|
nY = nTheta;
|
|
nZ = nR
|
|
|
|
sZ = sR - R
|
|
sX = _getDistance(sPhi)
|
|
sY = _getDistance(sTheta)
|
|
|
|
dX = _getDistance(dPhi)
|
|
dY = _getDistance(dTheta)
|
|
dZ = dR
|
|
|
|
# write header
|
|
print("Writing header for VTK file...")
|
|
outfile.writelines('# vtk DataFile Version 3.1\n')
|
|
outfile.writelines('Velocity on FMTOMO vgrids.in points\n')
|
|
outfile.writelines('ASCII\n')
|
|
outfile.writelines('DATASET STRUCTURED_POINTS\n')
|
|
|
|
outfile.writelines('DIMENSIONS %d %d %d\n' % (nX, nY, nZ))
|
|
outfile.writelines('ORIGIN %f %f %f\n' % (sX, sY, sZ))
|
|
outfile.writelines('SPACING %f %f %f\n' % (dX, dY, dZ))
|
|
|
|
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
|
if absOrRel == 'abs':
|
|
<<<<<<< HEAD
|
|
outfile.writelines('SCALARS velocity float %d\n' %(1))
|
|
if absOrRel == 'relDepth':
|
|
outfile.writelines('SCALARS velocity2depthMean float %d\n' %(1))
|
|
=======
|
|
outfile.writelines('SCALARS velocity float %d\n' % (1))
|
|
>>>>>>> 37f9292c39246b327d3630995ca2521725c6cdd7
|
|
elif absOrRel == 'rel':
|
|
outfile.writelines('SCALARS velChangePercent float %d\n' % (1))
|
|
outfile.writelines('LOOKUP_TABLE default\n')
|
|
|
|
pointsPerR = nTheta * nPhi
|
|
|
|
# write velocity
|
|
if absOrRel == 'abs':
|
|
print("Writing velocity values to VTK file...")
|
|
for velocity in vel:
|
|
<<<<<<< HEAD
|
|
outfile.writelines('%10f\n' %velocity)
|
|
elif absOrRel == 'relDepth':
|
|
print("Writing velocity values to VTK file relative to mean of each depth...")
|
|
index = 0; count = 0
|
|
veldepth = []
|
|
for velocity in vel:
|
|
count += 1
|
|
veldepth.append(velocity)
|
|
if count%pointsPerR == 0:
|
|
velmean = np.mean(veldepth)
|
|
#print velmean, count, count/pointsPerR
|
|
for vel in veldepth:
|
|
outfile.writelines('%10f\n' %(vel - velmean))
|
|
veldepth = []
|
|
=======
|
|
outfile.writelines('%10f\n' % velocity)
|
|
>>>>>>> 37f9292c39246b327d3630995ca2521725c6cdd7
|
|
elif absOrRel == 'rel':
|
|
nref, dref, sref, velref = _readVgrid(inputfileref)
|
|
nR_ref, nTheta_ref, nPhi_ref = nref
|
|
if not len(velref) == len(vel):
|
|
print('ERROR: Number of gridpoints mismatch for %s and %s' % (inputfile, inputfileref))
|
|
return
|
|
# velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
|
velrel = []
|
|
for velocities in zip(vel, velref):
|
|
v, vref = velocities
|
|
if not vref == 0:
|
|
velrel.append((v - vref) / vref * 100)
|
|
else:
|
|
velrel.append(0)
|
|
|
|
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
|
|
print('ERROR: Dimension mismatch of grids %s and %s' % (inputfile, inputfileref))
|
|
return
|
|
print("Writing velocity values to VTK file...")
|
|
for velocity in velrel:
|
|
outfile.writelines('%10f\n' % velocity)
|
|
print('Pertubations: min: %s %%, max: %s %%' % (min(velrel), max(velrel)))
|
|
|
|
outfile.close()
|
|
print("Wrote velocity grid for %d points to file: %s" % (nPoints, outputfile))
|
|
return
|
|
|
|
|
|
def rays2VTK(fnin, fdirout='./vtk_files/', nthPoint=50):
|
|
'''
|
|
Writes VTK file(s) for FMTOMO rays from rays.dat
|
|
|
|
:param: nthPoint, plot every nth point of the ray
|
|
:type: integer
|
|
'''
|
|
infile = open(fnin, 'r')
|
|
R = 6371
|
|
rays = {}
|
|
raynumber = 0
|
|
nPoints = 0
|
|
|
|
### NOTE: rays.dat seems to be in km and radians
|
|
while True:
|
|
raynumber += 1
|
|
firstline = infile.readline()
|
|
if firstline == '': break # break at EOF
|
|
raynumber = int(firstline.split()[0])
|
|
shotnumber = int(firstline.split()[1])
|
|
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
|
if rayValid == 0:
|
|
print('Invalid ray number %d for shot number %d' % (raynumber, shotnumber))
|
|
continue
|
|
nRayPoints = int(infile.readline().split()[0])
|
|
if not shotnumber in rays.keys():
|
|
rays[shotnumber] = {}
|
|
rays[shotnumber][raynumber] = []
|
|
for index in range(nRayPoints):
|
|
if index % nthPoint is 0 or index == (nRayPoints - 1):
|
|
rad, lat, lon = infile.readline().split()
|
|
rays[shotnumber][raynumber].append(
|
|
[_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
|
else:
|
|
dummy = infile.readline()
|
|
|
|
infile.close()
|
|
|
|
for shotnumber in rays.keys():
|
|
fnameout = fdirout + 'rays%03d.vtk' % (shotnumber)
|
|
outfile = open(fnameout, 'w')
|
|
|
|
nPoints = 0
|
|
for raynumber in rays[shotnumber]:
|
|
for ray in rays[shotnumber][raynumber]:
|
|
nPoints += 1
|
|
|
|
# write header
|
|
# print("Writing header for VTK file...")
|
|
print("Writing shot %d to file %s" % (shotnumber, fnameout))
|
|
outfile.writelines('# vtk DataFile Version 3.1\n')
|
|
outfile.writelines('FMTOMO rays\n')
|
|
outfile.writelines('ASCII\n')
|
|
outfile.writelines('DATASET POLYDATA\n')
|
|
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
|
|
|
# write coordinates
|
|
# print("Writing coordinates to VTK file...")
|
|
for raynumber in rays[shotnumber].keys():
|
|
for raypoint in rays[shotnumber][raynumber]:
|
|
outfile.writelines('%10f %10f %10f \n' % (raypoint[0], raypoint[1], raypoint[2]))
|
|
|
|
outfile.writelines('LINES %15d %15d\n' % (len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
|
|
|
# write indices
|
|
# print("Writing indices to VTK file...")
|
|
count = 0
|
|
for raynumber in rays[shotnumber].keys():
|
|
outfile.writelines('%d ' % (len(rays[shotnumber][raynumber])))
|
|
for index in range(len(rays[shotnumber][raynumber])):
|
|
outfile.writelines('%d ' % (count))
|
|
count += 1
|
|
outfile.writelines('\n')
|
|
|
|
|
|
def _readVgrid(filename):
|
|
def readNumberOfPoints(filename):
|
|
fin = open(filename, 'r')
|
|
vglines = fin.readlines()
|
|
|
|
nR = int(vglines[1].split()[0])
|
|
nTheta = int(vglines[1].split()[1])
|
|
nPhi = int(vglines[1].split()[2])
|
|
|
|
print('readNumberOf Points: Awaiting %d grid points in %s'
|
|
% (nR * nTheta * nPhi, filename))
|
|
fin.close()
|
|
return nR, nTheta, nPhi
|
|
|
|
def readDelta(filename):
|
|
fin = open(filename, 'r')
|
|
vglines = fin.readlines()
|
|
|
|
dR = float(vglines[2].split()[0])
|
|
dTheta = float(vglines[2].split()[1])
|
|
dPhi = float(vglines[2].split()[2])
|
|
|
|
fin.close()
|
|
return dR, dTheta, dPhi
|
|
|
|
def readStartpoints(filename):
|
|
fin = open(filename, 'r')
|
|
vglines = fin.readlines()
|
|
|
|
sR = float(vglines[3].split()[0])
|
|
sTheta = float(vglines[3].split()[1])
|
|
sPhi = float(vglines[3].split()[2])
|
|
|
|
fin.close()
|
|
return sR, sTheta, sPhi
|
|
|
|
def readVelocity(filename):
|
|
'''
|
|
Reads in velocity from vgrids file and returns a list containing all values in the same order
|
|
'''
|
|
vel = [];
|
|
count = 0
|
|
fin = open(filename, 'r')
|
|
vglines = fin.readlines()
|
|
|
|
for line in vglines:
|
|
count += 1
|
|
if count > 4:
|
|
vel.append(float(line.split()[0]))
|
|
|
|
print("Read %d points out of file: %s" % (count - 4, filename))
|
|
return vel
|
|
|
|
# Theta, Phi in radians, R in km
|
|
nR, nTheta, nPhi = readNumberOfPoints(filename)
|
|
dR, dThetaRad, dPhiRad = readDelta(filename)
|
|
sR, sThetaRad, sPhiRad = readStartpoints(filename)
|
|
vel = readVelocity(filename)
|
|
|
|
dTheta, dPhi = np.rad2deg((dThetaRad, dPhiRad))
|
|
sTheta, sPhi = np.rad2deg((sThetaRad, sPhiRad))
|
|
|
|
number = (nR, nTheta, nPhi)
|
|
delta = (dR, dTheta, dPhi)
|
|
start = (sR, sTheta, sPhi)
|
|
return number, delta, start, vel
|
|
|
|
|
|
def _generateGrids(number, delta, start):
|
|
nR, nTheta, nPhi = number
|
|
dR, dTheta, dPhi = delta
|
|
sR, sTheta, sPhi = start
|
|
|
|
eR = sR + (nR - 1) * dR
|
|
ePhi = sPhi + (nPhi - 1) * dPhi
|
|
eTheta = sTheta + (nTheta - 1) * dTheta
|
|
|
|
thetaGrid = np.linspace(sTheta, eTheta, num=nTheta)
|
|
phiGrid = np.linspace(sPhi, ePhi, num=nPhi)
|
|
rGrid = np.linspace(sR, eR, num=nR)
|
|
|
|
return (thetaGrid, phiGrid, rGrid)
|
|
|
|
|
|
def addCheckerboard(spacing=10., pertubation=0.1, inputfile='vgrids.in',
|
|
outputfile='vgrids_cb.in', ampmethod='linear', rect=(None, None)):
|
|
'''
|
|
Add a checkerboard to an existing vgrids.in velocity model.
|
|
|
|
:param: spacing, size of the tiles
|
|
type: float
|
|
|
|
:param: pertubation, pertubation (default: 0.1 = 10%)
|
|
type: float
|
|
'''
|
|
|
|
def correctSpacing(spacing, delta, disttype=None):
|
|
if spacing > delta:
|
|
spacing_corr = round(spacing / delta) * delta
|
|
elif spacing < delta:
|
|
spacing_corr = delta
|
|
print('The spacing of the checkerboard of %s (%s) was corrected to '
|
|
'a value of %s to fit the grid spacing of %s.' % (spacing, disttype, spacing_corr, delta))
|
|
return spacing_corr
|
|
|
|
def linearAmp(InCell):
|
|
decimal = InCell - np.floor(InCell)
|
|
return (-abs(decimal - 0.5) + 0.5) * 2
|
|
|
|
def rectAmp(InCell, rect):
|
|
decimal = InCell - np.floor(InCell)
|
|
r1, r2 = rect
|
|
if r1 <= decimal <= r2:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def ampFunc(InCell, method='linear', rect=None):
|
|
if method == 'linear':
|
|
return linearAmp(InCell)
|
|
if method == 'rect' and rect is not None:
|
|
return rectAmp(InCell, rect)
|
|
else:
|
|
print('ampFunc: Could not amplify cb pattern')
|
|
|
|
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
|
outfile = open(outputfile, 'w')
|
|
|
|
number, delta, start, vel = _readVgrid(inputfile)
|
|
|
|
nR, nTheta, nPhi = number
|
|
dR, dTheta, dPhi = delta
|
|
sR, sTheta, sPhi = start
|
|
|
|
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
|
|
|
|
nPoints = nR * nTheta * nPhi
|
|
|
|
# write header for velocity grid file (in RADIANS)
|
|
outfile.writelines('%10s %10s \n' % (1, 1))
|
|
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
|
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
|
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
|
|
|
spacR = correctSpacing(spacing, dR, '[meter], R')
|
|
spacTheta = correctSpacing(_getAngle(spacing), dTheta, '[degree], Theta')
|
|
spacPhi = correctSpacing(_getAngle(spacing), dPhi, '[degree], Phi')
|
|
|
|
count = 0
|
|
evenOdd = 1
|
|
even = 0;
|
|
odd = 0
|
|
|
|
# In the following loop it is checked whether the positive distance from the border of the model
|
|
# for a point on the grid divided by the spacing is even or odd and then pertubated.
|
|
# The position is also shifted by half of the delta so that the position is directly on the point and
|
|
# not on the border between two points.
|
|
# "InCell" points e.g. rInCell are floats with their integer number corresponding to the cell number and
|
|
# their decimal place (0 - 1) corresponding to the position inside the cell.
|
|
# The amplification factor ampFactor comes from a linear relationship and ranges between 0 (cell border)
|
|
# and 1 (cell middle)
|
|
for radius in rGrid:
|
|
rInCell = (radius - sR - dR / 2) / spacR
|
|
ampR = ampFunc(rInCell, ampmethod, rect)
|
|
if np.floor(rInCell) % 2:
|
|
evenOddR = 1
|
|
else:
|
|
evenOddR = -1
|
|
for theta in thetaGrid:
|
|
thetaInCell = (theta - sTheta - dTheta / 2) / spacTheta
|
|
ampTheta = ampFunc(thetaInCell, ampmethod, rect)
|
|
if np.floor(thetaInCell) % 2:
|
|
evenOddT = 1
|
|
else:
|
|
evenOddT = -1
|
|
for phi in phiGrid:
|
|
phiInCell = (phi - sPhi - dPhi / 2) / spacPhi
|
|
ampPhi = ampFunc(phiInCell, ampmethod, rect)
|
|
if np.floor(phiInCell) % 2:
|
|
evenOddP = 1
|
|
else:
|
|
evenOddP = -1
|
|
velocity = vel[count]
|
|
ampFactor = (ampR + ampTheta + ampPhi) / 3
|
|
evenOdd = evenOddR * evenOddT * evenOddP * ampFactor
|
|
velocity += evenOdd * pertubation * velocity
|
|
|
|
outfile.writelines('%10s %10s\n' % (velocity, decm))
|
|
count += 1
|
|
|
|
progress = float(count) / float(nPoints) * 100
|
|
_update_progress(progress)
|
|
|
|
print('Added checkerboard to the grid in file %s with a spacing of %s and a pertubation of %s %%. '
|
|
'Outputfile: %s.' % (inputfile, spacing, pertubation * 100, outputfile))
|
|
outfile.close()
|
|
|
|
|
|
def addBox(x=(None, None), y=(None, None), z=(None, None),
|
|
boxvelocity=1.0, inputfile='vgrids.in',
|
|
outputfile='vgrids_box.in'):
|
|
'''
|
|
Add a box with constant velocity to an existing vgrids.in velocity model.
|
|
|
|
:param: x, borders of the box (xleft, xright)
|
|
type: tuple
|
|
|
|
:param: y, borders of the box (yleft, yright)
|
|
type: tuple
|
|
|
|
:param: z, borders of the box (bot, top)
|
|
type: tuple
|
|
|
|
:param: boxvelocity, default: 1.0 km/s
|
|
type: float
|
|
'''
|
|
R = 6371.
|
|
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
|
outfile = open(outputfile, 'w')
|
|
|
|
theta1 = _getAngle(y[0])
|
|
theta2 = _getAngle(y[1])
|
|
phi1 = _getAngle(x[0])
|
|
phi2 = _getAngle(x[1])
|
|
r1 = R + z[0]
|
|
r2 = R + z[1]
|
|
|
|
print('Adding box to grid with theta = (%s, %s), phi = (%s, %s), '
|
|
'r = (%s, %s), velocity = %s [km/s]'
|
|
% (theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
|
|
|
|
number, delta, start, vel = _readVgrid(inputfile)
|
|
|
|
nR, nTheta, nPhi = number
|
|
dR, dTheta, dPhi = delta
|
|
sR, sTheta, sPhi = start
|
|
|
|
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
|
|
|
|
nPoints = nR * nTheta * nPhi
|
|
|
|
# write header for velocity grid file (in RADIANS)
|
|
outfile.writelines('%10s %10s \n' % (1, 1))
|
|
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
|
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
|
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
|
|
|
count = 0
|
|
for radius in rGrid:
|
|
if r1 <= radius <= r2:
|
|
rFlag = 1
|
|
else:
|
|
rFlag = 0
|
|
for theta in thetaGrid:
|
|
if theta1 <= theta <= theta2:
|
|
thetaFlag = 1
|
|
else:
|
|
thetaFlag = 0
|
|
for phi in phiGrid:
|
|
if phi1 <= phi <= phi2:
|
|
phiFlag = 1
|
|
else:
|
|
phiFlag = 0
|
|
velocity = vel[count]
|
|
if rFlag * thetaFlag * phiFlag is not 0:
|
|
velocity = boxvelocity
|
|
|
|
outfile.writelines('%10s %10s\n' % (velocity, decm))
|
|
count += 1
|
|
|
|
progress = float(count) / float(nPoints) * 100
|
|
_update_progress(progress)
|
|
|
|
print('Added box to the grid in file %s. '
|
|
'Outputfile: %s.' % (inputfile, outputfile))
|
|
outfile.close()
|
|
|
|
|
|
def _update_progress(progress):
|
|
sys.stdout.write("%d%% done \r" % (progress))
|
|
sys.stdout.flush()
|
|
|
|
|
|
def _getAngle(distance):
|
|
'''
|
|
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
|
|
'''
|
|
PI = np.pi
|
|
R = 6371.
|
|
angle = distance * 180. / (PI * R)
|
|
return angle
|
|
|
|
|
|
def _getDistance(angle):
|
|
PI = np.pi
|
|
R = 6371.
|
|
distance = angle / 180 * (PI * R)
|
|
return distance
|