pylot/pylot/core/active/fmtomoUtils.py

484 lines
16 KiB
Python

# -*- coding: utf-8 -*-
import sys
import numpy as np
def vgrids2VTK(inputfile='vgrids.in', outputfile='vgrids.vtk', absOrRel='abs', inputfileref='vgridsref.in'):
'''
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
'''
R = 6371. # earth radius
outfile = open(outputfile, 'w')
number, delta, start, vel = _readVgrid(inputfile)
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
nPoints = nR * nTheta * nPhi
nX = nPhi;
nY = nTheta;
nZ = nR
sZ = sR - R
sX = _getDistance(sPhi)
sY = _getDistance(sTheta)
dX = _getDistance(dPhi)
dY = _getDistance(dTheta)
dZ = dR
# write header
print("Writing header for VTK file...")
outfile.writelines('# vtk DataFile Version 3.1\n')
outfile.writelines('Velocity on FMTOMO vgrids.in points\n')
outfile.writelines('ASCII\n')
outfile.writelines('DATASET STRUCTURED_POINTS\n')
outfile.writelines('DIMENSIONS %d %d %d\n' % (nX, nY, nZ))
outfile.writelines('ORIGIN %f %f %f\n' % (sX, sY, sZ))
outfile.writelines('SPACING %f %f %f\n' % (dX, dY, dZ))
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
if absOrRel == 'abs':
<<<<<<< HEAD
outfile.writelines('SCALARS velocity float %d\n' %(1))
if absOrRel == 'relDepth':
outfile.writelines('SCALARS velocity2depthMean float %d\n' %(1))
=======
outfile.writelines('SCALARS velocity float %d\n' % (1))
>>>>>>> 37f9292c39246b327d3630995ca2521725c6cdd7
elif absOrRel == 'rel':
outfile.writelines('SCALARS velChangePercent float %d\n' % (1))
outfile.writelines('LOOKUP_TABLE default\n')
pointsPerR = nTheta * nPhi
# write velocity
if absOrRel == 'abs':
print("Writing velocity values to VTK file...")
for velocity in vel:
<<<<<<< HEAD
outfile.writelines('%10f\n' %velocity)
elif absOrRel == 'relDepth':
print("Writing velocity values to VTK file relative to mean of each depth...")
index = 0; count = 0
veldepth = []
for velocity in vel:
count += 1
veldepth.append(velocity)
if count%pointsPerR == 0:
velmean = np.mean(veldepth)
#print velmean, count, count/pointsPerR
for vel in veldepth:
outfile.writelines('%10f\n' %(vel - velmean))
veldepth = []
=======
outfile.writelines('%10f\n' % velocity)
>>>>>>> 37f9292c39246b327d3630995ca2521725c6cdd7
elif absOrRel == 'rel':
nref, dref, sref, velref = _readVgrid(inputfileref)
nR_ref, nTheta_ref, nPhi_ref = nref
if not len(velref) == len(vel):
print('ERROR: Number of gridpoints mismatch for %s and %s' % (inputfile, inputfileref))
return
# velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
velrel = []
for velocities in zip(vel, velref):
v, vref = velocities
if not vref == 0:
velrel.append((v - vref) / vref * 100)
else:
velrel.append(0)
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
print('ERROR: Dimension mismatch of grids %s and %s' % (inputfile, inputfileref))
return
print("Writing velocity values to VTK file...")
for velocity in velrel:
outfile.writelines('%10f\n' % velocity)
print('Pertubations: min: %s %%, max: %s %%' % (min(velrel), max(velrel)))
outfile.close()
print("Wrote velocity grid for %d points to file: %s" % (nPoints, outputfile))
return
def rays2VTK(fnin, fdirout='./vtk_files/', nthPoint=50):
'''
Writes VTK file(s) for FMTOMO rays from rays.dat
:param: nthPoint, plot every nth point of the ray
:type: integer
'''
infile = open(fnin, 'r')
R = 6371
rays = {}
raynumber = 0
nPoints = 0
### NOTE: rays.dat seems to be in km and radians
while True:
raynumber += 1
firstline = infile.readline()
if firstline == '': break # break at EOF
raynumber = int(firstline.split()[0])
shotnumber = int(firstline.split()[1])
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
if rayValid == 0:
print('Invalid ray number %d for shot number %d' % (raynumber, shotnumber))
continue
nRayPoints = int(infile.readline().split()[0])
if not shotnumber in rays.keys():
rays[shotnumber] = {}
rays[shotnumber][raynumber] = []
for index in range(nRayPoints):
if index % nthPoint is 0 or index == (nRayPoints - 1):
rad, lat, lon = infile.readline().split()
rays[shotnumber][raynumber].append(
[_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
else:
dummy = infile.readline()
infile.close()
for shotnumber in rays.keys():
fnameout = fdirout + 'rays%03d.vtk' % (shotnumber)
outfile = open(fnameout, 'w')
nPoints = 0
for raynumber in rays[shotnumber]:
for ray in rays[shotnumber][raynumber]:
nPoints += 1
# write header
# print("Writing header for VTK file...")
print("Writing shot %d to file %s" % (shotnumber, fnameout))
outfile.writelines('# vtk DataFile Version 3.1\n')
outfile.writelines('FMTOMO rays\n')
outfile.writelines('ASCII\n')
outfile.writelines('DATASET POLYDATA\n')
outfile.writelines('POINTS %15d float\n' % (nPoints))
# write coordinates
# print("Writing coordinates to VTK file...")
for raynumber in rays[shotnumber].keys():
for raypoint in rays[shotnumber][raynumber]:
outfile.writelines('%10f %10f %10f \n' % (raypoint[0], raypoint[1], raypoint[2]))
outfile.writelines('LINES %15d %15d\n' % (len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
# write indices
# print("Writing indices to VTK file...")
count = 0
for raynumber in rays[shotnumber].keys():
outfile.writelines('%d ' % (len(rays[shotnumber][raynumber])))
for index in range(len(rays[shotnumber][raynumber])):
outfile.writelines('%d ' % (count))
count += 1
outfile.writelines('\n')
def _readVgrid(filename):
def readNumberOfPoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
nR = int(vglines[1].split()[0])
nTheta = int(vglines[1].split()[1])
nPhi = int(vglines[1].split()[2])
print('readNumberOf Points: Awaiting %d grid points in %s'
% (nR * nTheta * nPhi, filename))
fin.close()
return nR, nTheta, nPhi
def readDelta(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
dR = float(vglines[2].split()[0])
dTheta = float(vglines[2].split()[1])
dPhi = float(vglines[2].split()[2])
fin.close()
return dR, dTheta, dPhi
def readStartpoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
sR = float(vglines[3].split()[0])
sTheta = float(vglines[3].split()[1])
sPhi = float(vglines[3].split()[2])
fin.close()
return sR, sTheta, sPhi
def readVelocity(filename):
'''
Reads in velocity from vgrids file and returns a list containing all values in the same order
'''
vel = [];
count = 0
fin = open(filename, 'r')
vglines = fin.readlines()
for line in vglines:
count += 1
if count > 4:
vel.append(float(line.split()[0]))
print("Read %d points out of file: %s" % (count - 4, filename))
return vel
# Theta, Phi in radians, R in km
nR, nTheta, nPhi = readNumberOfPoints(filename)
dR, dThetaRad, dPhiRad = readDelta(filename)
sR, sThetaRad, sPhiRad = readStartpoints(filename)
vel = readVelocity(filename)
dTheta, dPhi = np.rad2deg((dThetaRad, dPhiRad))
sTheta, sPhi = np.rad2deg((sThetaRad, sPhiRad))
number = (nR, nTheta, nPhi)
delta = (dR, dTheta, dPhi)
start = (sR, sTheta, sPhi)
return number, delta, start, vel
def _generateGrids(number, delta, start):
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
eR = sR + (nR - 1) * dR
ePhi = sPhi + (nPhi - 1) * dPhi
eTheta = sTheta + (nTheta - 1) * dTheta
thetaGrid = np.linspace(sTheta, eTheta, num=nTheta)
phiGrid = np.linspace(sPhi, ePhi, num=nPhi)
rGrid = np.linspace(sR, eR, num=nR)
return (thetaGrid, phiGrid, rGrid)
def addCheckerboard(spacing=10., pertubation=0.1, inputfile='vgrids.in',
outputfile='vgrids_cb.in', ampmethod='linear', rect=(None, None)):
'''
Add a checkerboard to an existing vgrids.in velocity model.
:param: spacing, size of the tiles
type: float
:param: pertubation, pertubation (default: 0.1 = 10%)
type: float
'''
def correctSpacing(spacing, delta, disttype=None):
if spacing > delta:
spacing_corr = round(spacing / delta) * delta
elif spacing < delta:
spacing_corr = delta
print('The spacing of the checkerboard of %s (%s) was corrected to '
'a value of %s to fit the grid spacing of %s.' % (spacing, disttype, spacing_corr, delta))
return spacing_corr
def linearAmp(InCell):
decimal = InCell - np.floor(InCell)
return (-abs(decimal - 0.5) + 0.5) * 2
def rectAmp(InCell, rect):
decimal = InCell - np.floor(InCell)
r1, r2 = rect
if r1 <= decimal <= r2:
return 1
else:
return 0
def ampFunc(InCell, method='linear', rect=None):
if method == 'linear':
return linearAmp(InCell)
if method == 'rect' and rect is not None:
return rectAmp(InCell, rect)
else:
print('ampFunc: Could not amplify cb pattern')
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
outfile = open(outputfile, 'w')
number, delta, start, vel = _readVgrid(inputfile)
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
nPoints = nR * nTheta * nPhi
# write header for velocity grid file (in RADIANS)
outfile.writelines('%10s %10s \n' % (1, 1))
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
spacR = correctSpacing(spacing, dR, '[meter], R')
spacTheta = correctSpacing(_getAngle(spacing), dTheta, '[degree], Theta')
spacPhi = correctSpacing(_getAngle(spacing), dPhi, '[degree], Phi')
count = 0
evenOdd = 1
even = 0;
odd = 0
# In the following loop it is checked whether the positive distance from the border of the model
# for a point on the grid divided by the spacing is even or odd and then pertubated.
# The position is also shifted by half of the delta so that the position is directly on the point and
# not on the border between two points.
# "InCell" points e.g. rInCell are floats with their integer number corresponding to the cell number and
# their decimal place (0 - 1) corresponding to the position inside the cell.
# The amplification factor ampFactor comes from a linear relationship and ranges between 0 (cell border)
# and 1 (cell middle)
for radius in rGrid:
rInCell = (radius - sR - dR / 2) / spacR
ampR = ampFunc(rInCell, ampmethod, rect)
if np.floor(rInCell) % 2:
evenOddR = 1
else:
evenOddR = -1
for theta in thetaGrid:
thetaInCell = (theta - sTheta - dTheta / 2) / spacTheta
ampTheta = ampFunc(thetaInCell, ampmethod, rect)
if np.floor(thetaInCell) % 2:
evenOddT = 1
else:
evenOddT = -1
for phi in phiGrid:
phiInCell = (phi - sPhi - dPhi / 2) / spacPhi
ampPhi = ampFunc(phiInCell, ampmethod, rect)
if np.floor(phiInCell) % 2:
evenOddP = 1
else:
evenOddP = -1
velocity = vel[count]
ampFactor = (ampR + ampTheta + ampPhi) / 3
evenOdd = evenOddR * evenOddT * evenOddP * ampFactor
velocity += evenOdd * pertubation * velocity
outfile.writelines('%10s %10s\n' % (velocity, decm))
count += 1
progress = float(count) / float(nPoints) * 100
_update_progress(progress)
print('Added checkerboard to the grid in file %s with a spacing of %s and a pertubation of %s %%. '
'Outputfile: %s.' % (inputfile, spacing, pertubation * 100, outputfile))
outfile.close()
def addBox(x=(None, None), y=(None, None), z=(None, None),
boxvelocity=1.0, inputfile='vgrids.in',
outputfile='vgrids_box.in'):
'''
Add a box with constant velocity to an existing vgrids.in velocity model.
:param: x, borders of the box (xleft, xright)
type: tuple
:param: y, borders of the box (yleft, yright)
type: tuple
:param: z, borders of the box (bot, top)
type: tuple
:param: boxvelocity, default: 1.0 km/s
type: float
'''
R = 6371.
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
outfile = open(outputfile, 'w')
theta1 = _getAngle(y[0])
theta2 = _getAngle(y[1])
phi1 = _getAngle(x[0])
phi2 = _getAngle(x[1])
r1 = R + z[0]
r2 = R + z[1]
print('Adding box to grid with theta = (%s, %s), phi = (%s, %s), '
'r = (%s, %s), velocity = %s [km/s]'
% (theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
number, delta, start, vel = _readVgrid(inputfile)
nR, nTheta, nPhi = number
dR, dTheta, dPhi = delta
sR, sTheta, sPhi = start
thetaGrid, phiGrid, rGrid = _generateGrids(number, delta, start)
nPoints = nR * nTheta * nPhi
# write header for velocity grid file (in RADIANS)
outfile.writelines('%10s %10s \n' % (1, 1))
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
count = 0
for radius in rGrid:
if r1 <= radius <= r2:
rFlag = 1
else:
rFlag = 0
for theta in thetaGrid:
if theta1 <= theta <= theta2:
thetaFlag = 1
else:
thetaFlag = 0
for phi in phiGrid:
if phi1 <= phi <= phi2:
phiFlag = 1
else:
phiFlag = 0
velocity = vel[count]
if rFlag * thetaFlag * phiFlag is not 0:
velocity = boxvelocity
outfile.writelines('%10s %10s\n' % (velocity, decm))
count += 1
progress = float(count) / float(nPoints) * 100
_update_progress(progress)
print('Added box to the grid in file %s. '
'Outputfile: %s.' % (inputfile, outputfile))
outfile.close()
def _update_progress(progress):
sys.stdout.write("%d%% done \r" % (progress))
sys.stdout.flush()
def _getAngle(distance):
'''
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
'''
PI = np.pi
R = 6371.
angle = distance * 180. / (PI * R)
return angle
def _getDistance(angle):
PI = np.pi
R = 6371.
distance = angle / 180 * (PI * R)
return distance