charactersitic function variable might be referenced before they are assigned; now they are assigned as None and calls to assert help finding wrong definitions if not assigned correctly within if clause
897 lines
42 KiB
Python
Executable File
897 lines
42 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
Function to run automated picking algorithms using AIC,
|
|
HOS and AR prediction. Uses objects CharFuns and Picker and
|
|
function conglomerate utils.
|
|
|
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from pylot.core.pick.picker import AICPicker, PragPicker
|
|
from pylot.core.pick.charfuns import CharacteristicFunction
|
|
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
|
|
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker,\
|
|
getSNR, fmpicker, checkPonsets, wadaticheck
|
|
from pylot.core.util.utils import getPatternLine
|
|
from pylot.core.read.data import Data
|
|
from pylot.core.analysis.magnitude import WApp
|
|
|
|
def autopickevent(data, param):
|
|
stations = []
|
|
all_onsets = {}
|
|
|
|
# get some parameters for quality control from
|
|
# parameter input file (usually autoPyLoT.in).
|
|
wdttolerance = param.getParam('wdttolerance')
|
|
mdttolerance = param.getParam('mdttolerance')
|
|
iplot = param.getParam('iplot')
|
|
for n in range(len(data)):
|
|
station = data[n].stats.station
|
|
if station not in stations:
|
|
stations.append(station)
|
|
else:
|
|
continue
|
|
|
|
for station in stations:
|
|
topick = data.select(station=station)
|
|
all_onsets[station] = autopickstation(topick, param)
|
|
|
|
# quality control
|
|
# median check and jackknife on P-onset times
|
|
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot)
|
|
# check S-P times (Wadati)
|
|
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
|
|
|
|
def autopickstation(wfstream, pickparam, verbose=False):
|
|
"""
|
|
:param: wfstream
|
|
:type: `~obspy.core.stream.Stream`
|
|
|
|
:param: pickparam
|
|
:type: container of picking parameters from input file,
|
|
usually autoPyLoT.in
|
|
"""
|
|
|
|
# declaring pickparam variables (only for convenience)
|
|
# read your autoPyLoT.in for details!
|
|
|
|
# special parameters for P picking
|
|
algoP = pickparam.getParam('algoP')
|
|
iplot = pickparam.getParam('iplot')
|
|
pstart = pickparam.getParam('pstart')
|
|
pstop = pickparam.getParam('pstop')
|
|
thosmw = pickparam.getParam('tlta')
|
|
tsnrz = pickparam.getParam('tsnrz')
|
|
hosorder = pickparam.getParam('hosorder')
|
|
bpz1 = pickparam.getParam('bpz1')
|
|
bpz2 = pickparam.getParam('bpz2')
|
|
pickwinP = pickparam.getParam('pickwinP')
|
|
tsmoothP = pickparam.getParam('tsmoothP')
|
|
ausP = pickparam.getParam('ausP')
|
|
nfacP = pickparam.getParam('nfacP')
|
|
tpred1z = pickparam.getParam('tpred1z')
|
|
tdet1z = pickparam.getParam('tdet1z')
|
|
Parorder = pickparam.getParam('Parorder')
|
|
addnoise = pickparam.getParam('addnoise')
|
|
Precalcwin = pickparam.getParam('Precalcwin')
|
|
minAICPslope = pickparam.getParam('minAICPslope')
|
|
minAICPSNR = pickparam.getParam('minAICPSNR')
|
|
timeerrorsP = pickparam.getParam('timeerrorsP')
|
|
# special parameters for S picking
|
|
algoS = pickparam.getParam('algoS')
|
|
sstart = pickparam.getParam('sstart')
|
|
sstop = pickparam.getParam('sstop')
|
|
bph1 = pickparam.getParam('bph1')
|
|
bph2 = pickparam.getParam('bph2')
|
|
tsnrh = pickparam.getParam('tsnrh')
|
|
pickwinS = pickparam.getParam('pickwinS')
|
|
tpred1h = pickparam.getParam('tpred1h')
|
|
tdet1h = pickparam.getParam('tdet1h')
|
|
tpred2h = pickparam.getParam('tpred2h')
|
|
tdet2h = pickparam.getParam('tdet2h')
|
|
Sarorder = pickparam.getParam('Sarorder')
|
|
aictsmoothS = pickparam.getParam('aictsmoothS')
|
|
tsmoothS = pickparam.getParam('tsmoothS')
|
|
ausS = pickparam.getParam('ausS')
|
|
minAICSslope = pickparam.getParam('minAICSslope')
|
|
minAICSSNR = pickparam.getParam('minAICSSNR')
|
|
Srecalcwin = pickparam.getParam('Srecalcwin')
|
|
nfacS = pickparam.getParam('nfacS')
|
|
timeerrorsS = pickparam.getParam('timeerrorsS')
|
|
# parameters for first-motion determination
|
|
minFMSNR = pickparam.getParam('minFMSNR')
|
|
fmpickwin = pickparam.getParam('fmpickwin')
|
|
minfmweight = pickparam.getParam('minfmweight')
|
|
# parameters for checking signal length
|
|
minsiglength = pickparam.getParam('minsiglength')
|
|
minpercent = pickparam.getParam('minpercent')
|
|
nfacsl = pickparam.getParam('noisefactor')
|
|
# parameter to check for spuriously picked S onset
|
|
zfac = pickparam.getParam('zfac')
|
|
# path to inventory-, dataless- or resp-files
|
|
invdir = pickparam.getParam('invdir')
|
|
|
|
# initialize output
|
|
Pweight = 4 # weight for P onset
|
|
Sweight = 4 # weight for S onset
|
|
FM = 'N' # first motion (polarity)
|
|
SNRP = None # signal-to-noise ratio of P onset
|
|
SNRPdB = None # signal-to-noise ratio of P onset [dB]
|
|
SNRS = None # signal-to-noise ratio of S onset
|
|
SNRSdB = None # signal-to-noise ratio of S onset [dB]
|
|
mpickP = None # most likely P onset
|
|
lpickP = None # latest possible P onset
|
|
epickP = None # earliest possible P onset
|
|
mpickS = None # most likely S onset
|
|
lpickS = None # latest possible S onset
|
|
epickS = None # earliest possible S onset
|
|
Perror = None # symmetrized picking error P onset
|
|
Serror = None # symmetrized picking error S onset
|
|
|
|
aicSflag = 0
|
|
aicPflag = 0
|
|
Pflag = 0
|
|
Sflag = 0
|
|
Pmarker = []
|
|
Ao = None # Wood-Anderson peak-to-peak amplitude
|
|
|
|
# split components
|
|
zdat = wfstream.select(component="Z")
|
|
if len(zdat) == 0: # check for other components
|
|
zdat = wfstream.select(component="3")
|
|
edat = wfstream.select(component="E")
|
|
if len(edat) == 0: # check for other components
|
|
edat = wfstream.select(component="2")
|
|
ndat = wfstream.select(component="N")
|
|
if len(ndat) == 0: # check for other components
|
|
ndat = wfstream.select(component="1")
|
|
|
|
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
|
|
msg = '##########################################\nautopickstation:' \
|
|
' Working on P onset of station {station}\nFiltering vertical ' \
|
|
'trace ...\n{data}'.format(station=zdat[0].stats.station,
|
|
data=str(zdat))
|
|
if verbose: print(msg)
|
|
z_copy = zdat.copy()
|
|
# filter and taper data
|
|
tr_filt = zdat[0].copy()
|
|
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1],
|
|
zerophase=False)
|
|
tr_filt.taper(max_percentage=0.05, type='hann')
|
|
z_copy[0].data = tr_filt.data
|
|
##############################################################
|
|
# check length of waveform and compare with cut times
|
|
Lc = pstop - pstart
|
|
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
|
|
Ldiff = Lwf - Lc
|
|
if Ldiff < 0:
|
|
msg = 'autopickstation: Cutting times are too large for actual ' \
|
|
'waveform!\nUsing entire waveform instead!'
|
|
if verbose: print(msg)
|
|
pstart = 0
|
|
pstop = len(zdat[0].data) * zdat[0].stats.delta
|
|
cuttimes = [pstart, pstop]
|
|
cf1 = None
|
|
if algoP == 'HOS':
|
|
# calculate HOS-CF using subclass HOScf of class
|
|
# CharacteristicFunction
|
|
cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) # instance of HOScf
|
|
elif algoP == 'ARZ':
|
|
# calculate ARZ-CF using subclass ARZcf of class
|
|
# CharcteristicFunction
|
|
cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z,
|
|
addnoise) # instance of ARZcf
|
|
##############################################################
|
|
# calculate AIC-HOS-CF using subclass AICcf of class
|
|
# CharacteristicFunction
|
|
# class needs stream object => build it
|
|
assert isinstance(cf1, CharacteristicFunction), 'cf2 is not set ' \
|
|
'correctly: maybe the algorithm name ({algoP}) is ' \
|
|
'corrupted'.format(algoP=algoP)
|
|
tr_aic = tr_filt.copy()
|
|
tr_aic.data = cf1.getCF()
|
|
z_copy[0].data = tr_aic.data
|
|
aiccf = AICcf(z_copy, cuttimes) # instance of AICcf
|
|
##############################################################
|
|
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
|
|
# of class AutoPicking
|
|
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
|
|
##############################################################
|
|
if aicpick.getpick() is not None:
|
|
# check signal length to detect spuriously picked noise peaks
|
|
# use all available components to avoid skipping correct picks
|
|
# on vertical traces with weak P coda
|
|
z_copy[0].data = tr_filt.data
|
|
zne = z_copy
|
|
if len(ndat) == 0 or len(edat) == 0:
|
|
msg = 'One or more horizontal component(s) missing!\nSignal ' \
|
|
'length only checked on vertical component!\n' \
|
|
'Decreasing minsiglengh from {0} to ' \
|
|
'{1}'.format(minsiglength, minsiglength / 2)
|
|
if verbose: print(msg)
|
|
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
|
|
minsiglength / 2,
|
|
nfacsl, minpercent, iplot)
|
|
else:
|
|
# filter and taper horizontal traces
|
|
trH1_filt = edat.copy()
|
|
trH2_filt = ndat.copy()
|
|
trH1_filt.filter('bandpass', freqmin=bph1[0],
|
|
freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=bph1[0],
|
|
freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
zne += trH1_filt
|
|
zne += trH2_filt
|
|
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
|
|
minsiglength,
|
|
nfacsl, minpercent, iplot)
|
|
|
|
if Pflag == 1:
|
|
# check for spuriously picked S onset
|
|
# both horizontal traces needed
|
|
if len(ndat) == 0 or len(edat) == 0:
|
|
msg = 'One or more horizontal components missing!\n' \
|
|
'Skipping control function checkZ4S.'
|
|
if verbose: print(msg)
|
|
else:
|
|
Pflag = checkZ4S(zne, aicpick.getpick(), zfac,
|
|
tsnrz[3], iplot)
|
|
if Pflag == 0:
|
|
Pmarker = 'SinsteadP'
|
|
Pweight = 9
|
|
else:
|
|
Pmarker = 'shortsignallength'
|
|
Pweight = 9
|
|
##############################################################
|
|
# go on with processing if AIC onset passes quality control
|
|
if (aicpick.getSlope() >= minAICPslope and
|
|
aicpick.getSNR() >= minAICPSNR and
|
|
Pflag == 1):
|
|
aicPflag = 1
|
|
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
|
|
'SNR: {1}\nGo on with refined picking ...\n' \
|
|
'autopickstation: re-filtering vertical trace ' \
|
|
'...'.format(aicpick.getSlope(), aicpick.getSNR())
|
|
if verbose: print(msg)
|
|
# re-filter waveform with larger bandpass
|
|
z_copy = zdat.copy()
|
|
tr_filt = zdat[0].copy()
|
|
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1],
|
|
zerophase=False)
|
|
tr_filt.taper(max_percentage=0.05, type='hann')
|
|
z_copy[0].data = tr_filt.data
|
|
#############################################################
|
|
# re-calculate CF from re-filtered trace in vicinity of initial
|
|
# onset
|
|
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])),
|
|
round(min([len(zdat[0].data) * zdat[0].stats.delta,
|
|
aicpick.getpick() + Precalcwin]))]
|
|
cf2 = None
|
|
if algoP == 'HOS':
|
|
# calculate HOS-CF using subclass HOScf of class
|
|
# CharacteristicFunction
|
|
cf2 = HOScf(z_copy, cuttimes2, thosmw,
|
|
hosorder) # instance of HOScf
|
|
elif algoP == 'ARZ':
|
|
# calculate ARZ-CF using subclass ARZcf of class
|
|
# CharcteristicFunction
|
|
cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z,
|
|
addnoise) # instance of ARZcf
|
|
##############################################################
|
|
# get refined onset time from CF2 using class Picker
|
|
assert isinstance(cf2, CharacteristicFunction), 'cf2 is not set ' \
|
|
'correctly: maybe the algorithm name ({algoP}) is ' \
|
|
'corrupted'.format(algoP=algoP)
|
|
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP,
|
|
aicpick.getpick())
|
|
mpickP = refPpick.getpick()
|
|
#############################################################
|
|
if mpickP is not None:
|
|
# quality assessment
|
|
# get earliest and latest possible pick and symmetrized uncertainty
|
|
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz,
|
|
mpickP, iplot)
|
|
|
|
# get SNR
|
|
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP)
|
|
|
|
# weight P-onset using symmetric error
|
|
if Perror <= timeerrorsP[0]:
|
|
Pweight = 0
|
|
elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
|
|
Pweight = 1
|
|
elif timeerrorsP[1] < Perror <= timeerrorsP[2]:
|
|
Pweight = 2
|
|
elif timeerrorsP[2] < Perror <= timeerrorsP[3]:
|
|
Pweight = 3
|
|
elif Perror > timeerrorsP[3]:
|
|
Pweight = 4
|
|
|
|
##############################################################
|
|
# get first motion of P onset
|
|
# certain quality required
|
|
if Pweight <= minfmweight and SNRP >= minFMSNR:
|
|
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot)
|
|
else:
|
|
FM = 'N'
|
|
|
|
msg = "autopickstation: P-weight: {0}, " \
|
|
"SNR: {1}, SNR[dB]: {2}, Polarity: {3}".format(Pweight,
|
|
SNRP,
|
|
SNRPdB,
|
|
FM)
|
|
print(msg)
|
|
Sflag = 1
|
|
|
|
else:
|
|
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n' \
|
|
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
|
|
'(min. AIC-SNR={2}, ' \
|
|
'min. AIC-Slope={3}counts/s)'.format(aicpick.getSNR(),
|
|
aicpick.getSlope(),
|
|
minAICPSNR,
|
|
minAICPslope)
|
|
if verbose: print(msg)
|
|
Sflag = 0
|
|
|
|
else:
|
|
print('autopickstation: No vertical component data available!, '
|
|
'Skipping station!')
|
|
|
|
if edat is not None and ndat is not None and len(edat) > 0 and len(
|
|
ndat) > 0 and Pweight < 4:
|
|
msg = 'Go on picking S onset ...\n' \
|
|
'##################################################\n' \
|
|
'Working on S onset of station {0}\nFiltering horizontal ' \
|
|
'traces ...'.format(edat[0].stats.station)
|
|
if verbose: print(msg)
|
|
# determine time window for calculating CF after P onset
|
|
cuttimesh = [round(max([mpickP + sstart, 0])),
|
|
round(min([mpickP + sstop, Lwf]))]
|
|
|
|
if algoS == 'ARH':
|
|
if verbose: print(edat, ndat)
|
|
# re-create stream object including both horizontal components
|
|
hdat = edat.copy()
|
|
hdat += ndat
|
|
h_copy = hdat.copy()
|
|
# filter and taper data
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
elif algoS == 'AR3':
|
|
if verbose: print(zdat, edat, ndat)
|
|
# re-create stream object including all components
|
|
hdat = zdat.copy()
|
|
hdat += edat
|
|
hdat += ndat
|
|
h_copy = hdat.copy()
|
|
# filter and taper data
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH3_filt = hdat[2].copy()
|
|
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
h_copy[2].data = trH3_filt.data
|
|
##############################################################
|
|
if algoS == 'ARH':
|
|
# calculate ARH-CF using subclass ARHcf of class
|
|
# CharcteristicFunction
|
|
arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
|
|
addnoise) # instance of ARHcf
|
|
elif algoS == 'AR3':
|
|
# calculate ARH-CF using subclass AR3cf of class
|
|
# CharcteristicFunction
|
|
arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
|
|
addnoise) # instance of ARHcf
|
|
##############################################################
|
|
# calculate AIC-ARH-CF using subclass AICcf of class
|
|
# CharacteristicFunction
|
|
# class needs stream object => build it
|
|
tr_arhaic = trH1_filt.copy()
|
|
tr_arhaic.data = arhcf1.getCF()
|
|
h_copy[0].data = tr_arhaic.data
|
|
# calculate ARH-AIC-CF
|
|
haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf
|
|
##############################################################
|
|
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
|
|
# of class AutoPicking
|
|
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None,
|
|
aictsmoothS)
|
|
###############################################################
|
|
# go on with processing if AIC onset passes quality control
|
|
if (aicarhpick.getSlope() >= minAICSslope and
|
|
aicarhpick.getSNR() >= minAICSSNR and
|
|
aicarhpick.getpick() is not None):
|
|
aicSflag = 1
|
|
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
|
|
'SNR: {1}\nGo on with refined picking ...\n' \
|
|
'autopickstation: re-filtering horizontal traces ' \
|
|
'...'.format(aicarhpick.getSlope(), aicarhpick.getSNR())
|
|
if verbose: print(msg)
|
|
# re-calculate CF from re-filtered trace in vicinity of initial
|
|
# onset
|
|
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin),
|
|
round(aicarhpick.getpick() + Srecalcwin)]
|
|
# re-filter waveform with larger bandpass
|
|
h_copy = hdat.copy()
|
|
# filter and taper data
|
|
if algoS == 'ARH':
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
#############################################################
|
|
arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
|
|
addnoise) # instance of ARHcf
|
|
elif algoS == 'AR3':
|
|
trH1_filt = hdat[0].copy()
|
|
trH2_filt = hdat[1].copy()
|
|
trH3_filt = hdat[2].copy()
|
|
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
|
zerophase=False)
|
|
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
|
zerophase=False)
|
|
trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
|
zerophase=False)
|
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
|
h_copy[0].data = trH1_filt.data
|
|
h_copy[1].data = trH2_filt.data
|
|
h_copy[2].data = trH3_filt.data
|
|
#############################################################
|
|
arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
|
|
addnoise) # instance of ARHcf
|
|
|
|
# get refined onset time from CF2 using class Picker
|
|
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS,
|
|
tsmoothS, aicarhpick.getpick())
|
|
mpickS = refSpick.getpick()
|
|
#############################################################
|
|
if mpickS is not None:
|
|
# quality assessment
|
|
# get earliest and latest possible pick and symmetrized uncertainty
|
|
h_copy[0].data = trH1_filt.data
|
|
[lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS,
|
|
tsnrh,
|
|
mpickS, iplot)
|
|
h_copy[0].data = trH2_filt.data
|
|
[lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS,
|
|
tsnrh,
|
|
mpickS, iplot)
|
|
if epickS1 is not None and epickS2 is not None:
|
|
if algoS == 'ARH':
|
|
# get earliest pick of both earliest possible picks
|
|
epick = [epickS1, epickS2]
|
|
lpick = [lpickS1, lpickS2]
|
|
pickerr = [Serror1, Serror2]
|
|
if epickS1 == None and epickS2 is not None:
|
|
ipick = 1
|
|
elif epickS1 is not None and epickS2 == None:
|
|
ipick = 0
|
|
elif epickS1 is not None and epickS2 is not None:
|
|
ipick = np.argmin([epickS1, epickS2])
|
|
elif algoS == 'AR3':
|
|
[lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS,
|
|
tsnrh,
|
|
mpickS, iplot)
|
|
# get earliest pick of all three picks
|
|
epick = [epickS1, epickS2, epickS3]
|
|
lpick = [lpickS1, lpickS2, lpickS3]
|
|
pickerr = [Serror1, Serror2, Serror3]
|
|
if epickS1 == None and epickS2 is not None \
|
|
and epickS3 is not None:
|
|
ipick = np.argmin([epickS2, epickS3])
|
|
elif epickS1 is not None and epickS2 == None \
|
|
and epickS3 is not None:
|
|
ipick = np.argmin([epickS2, epickS3])
|
|
elif epickS1 is not None and epickS2 is not None \
|
|
and epickS3 == None:
|
|
ipick = np.argmin([epickS1, epickS2])
|
|
elif epickS1 is not None and epickS2 is not None \
|
|
and epickS3 is not None:
|
|
ipick = np.argmin([epickS1, epickS2, epickS3])
|
|
|
|
epickS = epick[ipick]
|
|
lpickS = lpick[ipick]
|
|
Serror = pickerr[ipick]
|
|
|
|
# get SNR
|
|
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, mpickS)
|
|
|
|
# weight S-onset using symmetric error
|
|
if Serror <= timeerrorsS[0]:
|
|
Sweight = 0
|
|
elif timeerrorsS[0] < Serror <= timeerrorsS[1]:
|
|
Sweight = 1
|
|
elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]:
|
|
Sweight = 2
|
|
elif timeerrorsS[2] < Serror <= timeerrorsS[3]:
|
|
Sweight = 3
|
|
elif Serror > timeerrorsS[3]:
|
|
Sweight = 4
|
|
|
|
print('autopickstation: S-weight: {0}, SNR: {1}, '
|
|
'SNR[dB]: {2}\n'
|
|
'################################################'
|
|
''.format(Sweight, SNRS, SNRSdB))
|
|
##################################################################
|
|
# get Wood-Anderson peak-to-peak amplitude
|
|
# initialize Data object
|
|
data = Data()
|
|
# re-create stream object including both horizontal components
|
|
hdat = edat.copy()
|
|
hdat += ndat
|
|
h_copy = hdat.copy()
|
|
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
|
# calculate WA-peak-to-peak amplitude
|
|
# using subclass WApp of superclass Magnitude
|
|
if restflag == 1:
|
|
if Sweight < 4:
|
|
wapp = WApp(cordat, mpickS, mpickP + sstop, iplot)
|
|
else:
|
|
# use larger window for getting peak-to-peak amplitude
|
|
# as the S pick is quite unsure
|
|
wapp = WApp(cordat, mpickP, mpickP + sstop + \
|
|
(0.5 * (mpickP + sstop)), iplot)
|
|
|
|
Ao = wapp.getwapp()
|
|
|
|
else:
|
|
msg = 'Bad initial (AIC) S-pick, skipping this onset!\n' \
|
|
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
|
|
'(min. AIC-SNR={2}, ' \
|
|
'min. AIC-Slope={3}counts/s)\n' \
|
|
'################################################' \
|
|
''.format(aicarhpick.getSNR(),
|
|
aicarhpick.getSlope(),
|
|
minAICSSNR,
|
|
minAICSslope)
|
|
if verbose: print(msg)
|
|
|
|
############################################################
|
|
# get Wood-Anderson peak-to-peak amplitude
|
|
# initialize Data object
|
|
data = Data()
|
|
# re-create stream object including both horizontal components
|
|
hdat = edat.copy()
|
|
hdat += ndat
|
|
h_copy = hdat.copy()
|
|
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
|
if restflag == 1:
|
|
# calculate WA-peak-to-peak amplitude
|
|
# using subclass WApp of superclass Magnitude
|
|
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP
|
|
+ sstop)), iplot)
|
|
Ao = wapp.getwapp()
|
|
|
|
else:
|
|
print('autopickstation: No horizontal component data available or ' \
|
|
'bad P onset, skipping S picking!')
|
|
|
|
##############################################################
|
|
if iplot > 0:
|
|
# plot vertical trace
|
|
plt.figure()
|
|
plt.subplot(3, 1, 1)
|
|
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
|
|
tr_filt.stats.delta)
|
|
# check equal length of arrays, sometimes they are different!?
|
|
wfldiff = len(tr_filt.data) - len(tdata)
|
|
if wfldiff < 0:
|
|
tdata = tdata[0:len(tdata) - abs(wfldiff)]
|
|
p1, = plt.plot(tdata, tr_filt.data / max(tr_filt.data), 'k')
|
|
if Pweight < 4:
|
|
p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
|
|
'b')
|
|
if aicPflag == 1:
|
|
p3, = plt.plot(cf2.getTimeArray(),
|
|
cf2.getCF() / max(cf2.getCF()), 'm')
|
|
p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
|
|
'r')
|
|
plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
|
|
[1, 1], 'r')
|
|
plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
|
|
[-1, -1], 'r')
|
|
p5, = plt.plot([refPpick.getpick(), refPpick.getpick()],
|
|
[-1.3, 1.3], 'r', linewidth=2)
|
|
plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
|
|
[1.3, 1.3], 'r', linewidth=2)
|
|
plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
|
|
[-1.3, -1.3], 'r', linewidth=2)
|
|
plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--')
|
|
plt.plot([epickP, epickP], [-1.1, 1.1], 'r--')
|
|
plt.legend([p1, p2, p3, p4, p5],
|
|
['Data', 'CF1', 'CF2', 'Initial P Onset',
|
|
'Final P Pick'])
|
|
plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
|
|
'Polarity: %s' % (tr_filt.stats.station,
|
|
tr_filt.stats.channel,
|
|
Pweight,
|
|
SNRP,
|
|
SNRPdB,
|
|
FM))
|
|
else:
|
|
plt.legend([p1, p2], ['Data', 'CF1'])
|
|
plt.title('%s, P Weight=%d, SNR=None, '
|
|
'SNRdB=None' % (tr_filt.stats.channel, Pweight))
|
|
else:
|
|
plt.title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
|
|
tr_filt.stats.channel,
|
|
Pweight))
|
|
|
|
plt.yticks([])
|
|
plt.ylim([-1.5, 1.5])
|
|
plt.ylabel('Normalized Counts')
|
|
plt.suptitle(tr_filt.stats.starttime)
|
|
|
|
if len(edat[0]) > 1 and len(ndat[0]) > 1 and Sflag == 1:
|
|
# plot horizontal traces
|
|
plt.subplot(3, 1, 2)
|
|
th1data = np.arange(0,
|
|
trH1_filt.stats.npts /
|
|
trH1_filt.stats.sampling_rate,
|
|
trH1_filt.stats.delta)
|
|
# check equal length of arrays, sometimes they are different!?
|
|
wfldiff = len(trH1_filt.data) - len(th1data)
|
|
if wfldiff < 0:
|
|
th1data = th1data[0:len(th1data) - abs(wfldiff)]
|
|
p21, = plt.plot(th1data, trH1_filt.data / max(trH1_filt.data), 'k')
|
|
if Pweight < 4:
|
|
p22, = plt.plot(arhcf1.getTimeArray(),
|
|
arhcf1.getCF() / max(arhcf1.getCF()), 'b')
|
|
if aicSflag == 1:
|
|
p23, = plt.plot(arhcf2.getTimeArray(),
|
|
arhcf2.getCF() / max(arhcf2.getCF()), 'm')
|
|
p24, = plt.plot(
|
|
[aicarhpick.getpick(), aicarhpick.getpick()],
|
|
[-1, 1], 'g')
|
|
plt.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[1, 1], 'g')
|
|
plt.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[-1, -1], 'g')
|
|
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()],
|
|
[-1.3, 1.3], 'g', linewidth=2)
|
|
plt.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[1.3, 1.3], 'g', linewidth=2)
|
|
plt.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[-1.3, -1.3], 'g', linewidth=2)
|
|
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
|
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
|
plt.legend([p21, p22, p23, p24, p25],
|
|
['Data', 'CF1', 'CF2', 'Initial S Onset',
|
|
'Final S Pick'])
|
|
plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
|
|
trH1_filt.stats.channel,
|
|
Sweight, SNRS, SNRSdB))
|
|
else:
|
|
plt.legend([p21, p22], ['Data', 'CF1'])
|
|
plt.title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
|
|
trH1_filt.stats.channel, Sweight))
|
|
plt.yticks([])
|
|
plt.ylim([-1.5, 1.5])
|
|
plt.ylabel('Normalized Counts')
|
|
plt.suptitle(trH1_filt.stats.starttime)
|
|
|
|
plt.subplot(3, 1, 3)
|
|
th2data = np.arange(0,
|
|
trH2_filt.stats.npts /
|
|
trH2_filt.stats.sampling_rate,
|
|
trH2_filt.stats.delta)
|
|
# check equal length of arrays, sometimes they are different!?
|
|
wfldiff = len(trH2_filt.data) - len(th2data)
|
|
if wfldiff < 0:
|
|
th2data = th2data[0:len(th2data) - abs(wfldiff)]
|
|
plt.plot(th2data, trH2_filt.data / max(trH2_filt.data), 'k')
|
|
if Pweight < 4:
|
|
p22, = plt.plot(arhcf1.getTimeArray(),
|
|
arhcf1.getCF() / max(arhcf1.getCF()), 'b')
|
|
if aicSflag == 1:
|
|
p23, = plt.plot(arhcf2.getTimeArray(),
|
|
arhcf2.getCF() / max(arhcf2.getCF()), 'm')
|
|
p24, = plt.plot(
|
|
[aicarhpick.getpick(), aicarhpick.getpick()],
|
|
[-1, 1], 'g')
|
|
plt.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[1, 1], 'g')
|
|
plt.plot(
|
|
[aicarhpick.getpick() - 0.5,
|
|
aicarhpick.getpick() + 0.5],
|
|
[-1, -1], 'g')
|
|
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()],
|
|
[-1.3, 1.3], 'g', linewidth=2)
|
|
plt.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[1.3, 1.3], 'g', linewidth=2)
|
|
plt.plot(
|
|
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
|
[-1.3, -1.3], 'g', linewidth=2)
|
|
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
|
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
|
plt.legend([p21, p22, p23, p24, p25],
|
|
['Data', 'CF1', 'CF2', 'Initial S Onset',
|
|
'Final S Pick'])
|
|
else:
|
|
plt.legend([p21, p22], ['Data', 'CF1'])
|
|
plt.yticks([])
|
|
plt.ylim([-1.5, 1.5])
|
|
plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime)
|
|
plt.ylabel('Normalized Counts')
|
|
plt.title(trH2_filt.stats.channel)
|
|
plt.show()
|
|
raw_input()
|
|
plt.close()
|
|
##########################################################################
|
|
# calculate "real" onset times
|
|
if mpickP is not None and epickP is not None and mpickP is not None:
|
|
lpickP = zdat[0].stats.starttime + lpickP
|
|
epickP = zdat[0].stats.starttime + epickP
|
|
mpickP = zdat[0].stats.starttime + mpickP
|
|
else:
|
|
# dummy values (start of seismic trace) in order to derive
|
|
# theoretical onset times for iteratve picking
|
|
lpickP = zdat[0].stats.starttime
|
|
epickP = zdat[0].stats.starttime
|
|
mpickP = zdat[0].stats.starttime
|
|
|
|
if mpickS is not None and epickS is not None and mpickS is not None:
|
|
lpickS = edat[0].stats.starttime + lpickS
|
|
epickS = edat[0].stats.starttime + epickS
|
|
mpickS = edat[0].stats.starttime + mpickS
|
|
else:
|
|
# dummy values (start of seismic trace) in order to derive
|
|
# theoretical onset times for iteratve picking
|
|
lpickS = edat[0].stats.starttime
|
|
epickS = edat[0].stats.starttime
|
|
mpickS = edat[0].stats.starttime
|
|
|
|
# create dictionary
|
|
# for P phase
|
|
phase = 'P'
|
|
phasepick = {'lpp': lpickP, 'epp': epickP, 'mpp': mpickP, 'spe': Perror,
|
|
'snr': SNRP, 'snrdb': SNRPdB, 'weight': Pweight, 'fm': FM,
|
|
'w0': None, 'fc': None, 'Mo': None, 'Mw': None}
|
|
picks = {phase: phasepick}
|
|
# add P marker
|
|
picks[phase]['marked'] = Pmarker
|
|
# add S phase
|
|
phase = 'S'
|
|
phasepick = {'lpp': lpickS, 'epp': epickS, 'mpp': mpickS, 'spe': Serror,
|
|
'snr': SNRS, 'snrdb': SNRSdB, 'weight': Sweight, 'fm': None}
|
|
picks[phase] = phasepick
|
|
# add Wood-Anderson amplitude
|
|
picks[phase]['Ao'] = Ao
|
|
|
|
|
|
return picks
|
|
|
|
|
|
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
|
|
'''
|
|
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
|
|
|
|
:param wf: waveform, obspy stream object
|
|
|
|
:param NLLocfile: path/name of NLLoc-location file
|
|
|
|
:param picks: dictionary of available onset times
|
|
|
|
:param badpicks: picks to be repicked
|
|
|
|
:param pickparameter: picking parameters from autoPyLoT-input file
|
|
'''
|
|
|
|
msg = '#######################################################\n' \
|
|
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
|
|
'starting re-picking them ...'.format(len(badpicks), badpicks)
|
|
print(msg)
|
|
|
|
newpicks = {}
|
|
for i in range(0, len(badpicks)):
|
|
if len(badpicks[i][0]) > 4:
|
|
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
|
elif len(badpicks[i][0]) == 4:
|
|
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
|
elif len(badpicks[i][0]) < 4:
|
|
Ppattern = '%s ? ? ? P' % badpicks[i][0]
|
|
nllocline = getPatternLine(NLLocfile, Ppattern)
|
|
res = nllocline.split(None)[16]
|
|
# get theoretical P-onset time from residuum
|
|
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
|
|
|
|
# get corresponding waveform stream
|
|
msg = '#######################################################\n' \
|
|
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
|
|
print(msg)
|
|
wf2pick = wf.select(station=badpicks[i][0])
|
|
|
|
# modify some picking parameters
|
|
pstart_old = pickparameter.getParam('pstart')
|
|
pstop_old = pickparameter.getParam('pstop')
|
|
sstop_old = pickparameter.getParam('sstop')
|
|
pickwinP_old = pickparameter.getParam('pickwinP')
|
|
Precalcwin_old = pickparameter.getParam('Precalcwin')
|
|
noisefactor_old = pickparameter.getParam('noisefactor')
|
|
zfac_old = pickparameter.getParam('zfac')
|
|
pickparameter.setParam(pstart=max([0, badpicks[i][1] - wf2pick[0].stats.starttime \
|
|
- pickparameter.getParam('tlta')]))
|
|
pickparameter.setParam(pstop=pickparameter.getParam('pstart') + \
|
|
(3 * pickparameter.getParam('tlta')))
|
|
pickparameter.setParam(sstop=pickparameter.getParam('sstop') / 2)
|
|
pickparameter.setParam(pickwinP=pickparameter.getParam('pickwinP') / 2)
|
|
pickparameter.setParam(Precalcwin=pickparameter.getParam('Precalcwin') / 2)
|
|
pickparameter.setParam(noisefactor=1.0)
|
|
pickparameter.setParam(zfac=1.0)
|
|
print("iteratepicker: The following picking parameters have been modified for iterative picking:")
|
|
print("pstart: %fs => %fs" % (pstart_old, pickparameter.getParam('pstart')))
|
|
print("pstop: %fs => %fs" % (pstop_old, pickparameter.getParam('pstop')))
|
|
print("sstop: %fs => %fs" % (sstop_old, pickparameter.getParam('sstop')))
|
|
print("pickwinP: %fs => %fs" % (pickwinP_old, pickparameter.getParam('pickwinP')))
|
|
print("Precalcwin: %fs => %fs" % (Precalcwin_old, pickparameter.getParam('Precalcwin')))
|
|
print("noisefactor: %f => %f" % (noisefactor_old, pickparameter.getParam('noisefactor')))
|
|
print("zfac: %f => %f" % (zfac_old, pickparameter.getParam('zfac')))
|
|
|
|
# repick station
|
|
newpicks = autopickstation(wf2pick, pickparameter)
|
|
|
|
# replace old dictionary with new one
|
|
picks[badpicks[i][0]] = newpicks
|
|
|
|
# reset temporary change of picking parameters
|
|
print("iteratepicker: Resetting picking parameters ...")
|
|
pickparameter.setParam(pstart=pstart_old)
|
|
pickparameter.setParam(pstop=pstop_old)
|
|
pickparameter.setParam(sstop=sstop_old)
|
|
pickparameter.setParam(pickwinP=pickwinP_old)
|
|
pickparameter.setParam(Precalcwin=Precalcwin_old)
|
|
pickparameter.setParam(noisefactor=noisefactor_old)
|
|
pickparameter.setParam(zfac=zfac_old)
|
|
|
|
return picks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|