diff --git a/02-FFT_and_Basic_Filtering/1-fourier_transform.ipynb b/02-FFT_and_Basic_Filtering/1-fourier_transform.ipynb
index 8183d40..833e874 100644
--- a/02-FFT_and_Basic_Filtering/1-fourier_transform.ipynb
+++ b/02-FFT_and_Basic_Filtering/1-fourier_transform.ipynb
@@ -238,7 +238,6 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "scrolled": false,
"slideshow": {
"slide_type": "fragment"
}
@@ -429,15 +428,26 @@
"# reconstruct signal\n",
"g = np.ones_like(t_) * a0\n",
"for k, (ak, bk) in enumerate(zip(a, b)):\n",
- " g += ak * np.sin(bk*t_)\n",
- "\n",
- "# plotting\n",
+ " g += ak * np.sin(bk*t_)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Cell 7b: plotting\n",
"plt.plot(t_, square, 'r', label='original signal') \n",
"plt.plot(t_, g, 'g', label='Reihenentwicklung')\n",
"plt.ticklabel_format(axis='y', style='sci', scilimits=(-1,1))\n",
"plt.xlabel('time [sec]')\n",
"plt.ylabel('amplitude')\n",
- "#plt.ylim(-1.1,1.1)\n",
+ "#plt.ylim(0.9,1.1)\n",
"plt.legend()\n",
"plt.show()"
]
@@ -494,14 +504,14 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
- "scrolled": true,
+ "scrolled": false,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
- "#plotting\n",
+ "#Cell 8b: plotting\n",
"plt.subplot(311)\n",
"plt.title('Time Domain')\n",
"plt.plot(t, square, linewidth=1)\n",
diff --git a/02-FFT_and_Basic_Filtering/2-filter_basics.ipynb b/02-FFT_and_Basic_Filtering/2-filter_basics.ipynb
index 1850435..79b7a74 100644
--- a/02-FFT_and_Basic_Filtering/2-filter_basics.ipynb
+++ b/02-FFT_and_Basic_Filtering/2-filter_basics.ipynb
@@ -12,7 +12,7 @@
"
\n",
"
\n",
"
Signal Processing
\n",
- "
Filtering Basics
\n",
+ "
Filtering Basics - Solution
\n",
"
\n",
"
\n",
"\n",
@@ -157,6 +157,7 @@
},
"outputs": [],
"source": [
+ "# Cell 1b: print stats\n",
"print(st[0].stats)"
]
},
@@ -206,7 +207,7 @@
},
"outputs": [],
"source": [
- "# filtered traces\n",
+ "# Cell 2b: filtered traces\n",
"stHP = st.copy()\n",
"stHP.filter('highpass', freq=f0, corners=corners, zerophase=True)\n",
"stLP = st.copy()\n",
@@ -229,13 +230,15 @@
"execution_count": null,
"metadata": {
"slideshow": {
+ "rise": {
+ "scroll": true
+ },
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
- "# ---------------------------------------------------------------\n",
- "# plot\n",
+ "# Cell 2c - plot\n",
"plt.rcParams['figure.figsize'] = 17, 17\n",
"tx1 = 3000\n",
"tx2 = 8000\n",
@@ -392,7 +395,7 @@
},
"outputs": [],
"source": [
- "# plot - comment single lines to better see the remaining ones\n",
+ "# Cell 3b: plot - comment single lines to better see the remaining ones\n",
"plt.rcParams['figure.figsize'] = 15, 4\n",
"plt.plot(t, tr.data, 'k', label='original', linewidth=1.)\n",
"plt.plot(t, tr_filt.data, 'b', label='causal, n=2', linewidth=1.2)\n",
@@ -491,6 +494,7 @@
},
"outputs": [],
"source": [
+ "# Cell 5b: plot\n",
"plt.rcParams['figure.figsize'] = 17, 21\n",
"fig = plt.figure()\n",
"ax1 = fig.add_subplot(7,1,1)\n",
@@ -574,6 +578,13 @@
"\n",
"6) There is no clear S-wave visible. Also in the horizontal components (channel 0 and 1) almost no S-wave energy is visible. This is a clear hint for an explosive type of event. Indeed, this is the recording of a nuclear test explosion. The recording with exactly these bandpass filters was used as cover figure for the book 'Quantitative Seismology' by Keiiti Aki and Paul G. Richards, 2nd edition."
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -594,6 +605,9 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
+ },
+ "rise": {
+ "scroll": true
}
},
"nbformat": 4,