Add all notebooks for part ii of the lecture. #13
@ -1,52 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Time-Frequency Analysis\n",
|
||||
"## Moving window analysis\n",
|
||||
"One way to analyse the time-varying frequency content of a signal is to\n",
|
||||
"apply windows in the time domain to the signal and to calculate a Fourier spectrum\n",
|
||||
"of the windowed part. The window marches along the signal with defined overlap creating\n",
|
||||
"a series of Fourier spectra associated with the center times of the windows. The resulting amplitude\n",
|
||||
"spectra are then plotted versus window center time. In more detail:\n",
|
||||
"\n",
|
||||
"1. Choose windowing functions: $w(t,t_m)$ with $t_m$ the center of the window.\n",
|
||||
"2. Multiply windowing function with time series: $f_m(t) = f(t)w(t,t_m)$\n",
|
||||
"3. Detrend the windowed signal.\n",
|
||||
"4. Perform a DFT: $F_{km} = \\Delta t\\sum_{n=0}^N f_m(t)\\exp(-2\\pi i \\frac{kn}{N})$\n",
|
||||
" and calculate the absolute value, $|F_{km}|$.\n",
|
||||
"5. Plot the resulting matrix: $|F_{km}|$ in the time-frequency plane."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
19
README.md
19
README.md
@ -18,4 +18,21 @@ This has been forked from [Seismo Live](http://seismo-live.org). The source code
|
||||
|
||||
1. Simple Cross Correlation: Use the cross-correlation to detect and determine the time shift of two test events with one template event.
|
||||
2. Enhanced Picker: This has been taken from the [ObsPy Tutorial](https://docs.obspy.org/master/tutorial/code_snippets/xcorr_pick_correction.html). ObsPy is licensed under the [LGPL v3.0](https://www.gnu.de/documents/lgpl-3.0.en.html)
|
||||
3. Ambient Seismic Noise Analysis from [Seismo Live](http://seismo-live.org). The source code is available at https://github.com/krischer/seismo_live (licensed under a ***CC BY-NC-SA 4.0 License***. © 2015-2019 Lion Krischer).
|
||||
3. Ambient Seismic Noise Analysis from [Seismo Live](http://seismo-live.org). The source code is available at https://github.com/krischer/seismo_live (licensed under a ***CC BY-NC-SA 4.0 License***. © 2015-2019 Lion Krischer).
|
||||
|
||||
### 04 - FFT, DFT and Applications
|
||||
|
||||
Interpolation and Deciamtion of Time Series using the DFT
|
||||
|
||||
### 05 - Spectrogram
|
||||
|
||||
1. Analysing dispersive signals. How to visualize changes in frequency content over time (moving window analysis, mutiple filter technique, instantaneous frequency, continuous wavelet transform, the uncertainty problem).
|
||||
2. Filtering time series with non spectral filtering method.
|
||||
|
||||
### 06 - Surface Waves
|
||||
|
||||
Analysing phase and group velocity of recorded earthquake signals at one and two seismological stations.
|
||||
|
||||
### 07 - Receiver Functions
|
||||
|
||||
How to get receiver functions from seismograms.
|
Loading…
Reference in New Issue
Block a user