91 lines
2.5 KiB
Plaintext
91 lines
2.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Dispersive Signals\n",
|
|
"Up to now,we considered the spectral content of the entire time series. In many\n",
|
|
"cases, the spectral content varies with time in a time series and one often wants to\n",
|
|
"find out how this happens in detail. One important example are dispersed signals in\n",
|
|
"which energy with different frequency content arrives at different times. Most\n",
|
|
"prominent among these are seismic surface which exhibit significant dispersion if\n",
|
|
"epicentral distances between seismic station and source are large. Quantifying the\n",
|
|
"dispersion allows inferences on Earth structure. \n",
|
|
"\n",
|
|
"<img src=\"../images/seismogram.png\" alt=\"Drawing\" style=\"width: 700px;\"/>\n",
|
|
"<img src=\"../images/stack-surface-waves.png\" alt=\"Drawing\" style=\"width: 700px;\"/>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## The Chirp or Sweep"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib inline\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"plt.rcParams['figure.figsize'] = 12, 8 # Slightly bigger plots by default"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from scipy.signal import chirp\n",
|
|
"t = np.linspace(0, 30, 30001)\n",
|
|
"w = chirp(t, f0=0.01, f1=3, t1=np.max(t), method='linear')\n",
|
|
"plt.plot(t, w);"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Tasks\n",
|
|
"1. What is special about the Chirp Signal?\n",
|
|
"2. Plot the amplitude spectrum of the chirp signal, using numpys [FFT module](https://numpy.org/doc/stable/reference/routines.fft.html), including the correct frequncies on the x-axis!\n",
|
|
"3. Think of a solution how to visualize the increasing frequency content using the Fourier tansform"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|