48 lines
2.3 KiB
Python
48 lines
2.3 KiB
Python
import numpy as np
|
|
|
|
def multipleFilterAnalysis(data,alfa,cfreq,dt,ndec):
|
|
"""
|
|
Perform a multiple filter analysis of data.
|
|
data: Array of detrended and demeaned data whose length is power of 2
|
|
alfa: Width parameter of Gaussian bandpass filter
|
|
cfreq: Array of center frequencies of Gaussian filter
|
|
dt: sampling interval of data
|
|
ndec: decimation factor for instantaneous amplitude output
|
|
"""
|
|
npts = len(data)
|
|
nd = int(pow(2, np.ceil(np.log(npts)/np.log(2)))) # find next higher power of 2 of npts
|
|
ftd = np.fft.rfft(data,nd) # Fourier transform of entire data set (pos. freq.)
|
|
# data are padded with zeros since npts <= nd
|
|
freq = np.fft.rfftfreq(nd,dt) # Fourier frequencies (positive frequencies)
|
|
nt = int(np.ceil(npts/ndec))
|
|
mfa = np.zeros((len(cfreq),nt)) # numpy array for MFA result
|
|
for jf,cf in enumerate(cfreq):
|
|
hg = np.exp(-alfa*((freq-cf)/cf)**2) # Gaussian filter (use f instead of omega here)
|
|
fk = hg*ftd # multiply FT of data with filter
|
|
qk = np.complex(0,1)*fk # FT of Hilbert transform
|
|
ftk = np.fft.irfft(fk) # filtered data
|
|
qtk = np.fft.irfft(qk) # Hilbert transform of filtered data
|
|
at = np.sqrt(ftk**2+qtk**2) # instantaneous amplitude
|
|
mfa[jf,:] = at[0:npts:ndec] # store decimated original result
|
|
return mfa
|
|
#-----------------------------------------------------------------------
|
|
# normalize multiple filter result either along time or frequency axis
|
|
def normalizeMFT(mfa,mode,exp):
|
|
"""
|
|
Normalize the result of the mutiple filtering operation.
|
|
mfa: array with instantaneous amplitudes versus frequency (mfa(f,t))
|
|
mode: normalization mode: if 'time', normalize along time axis
|
|
else normalize along frequency axis
|
|
exp: exponent for modifying inst amp using a power less than 1
|
|
"""
|
|
nf,nt = mfa.shape
|
|
if mode == 'time':
|
|
for jf in range(0,nf):
|
|
mfamax = np.amax(mfa[jf,:])
|
|
mfa[jf,:] = np.power(mfa[jf,:]/mfamax+1.e-10,exp)
|
|
else:
|
|
for jt in range(0,nt):
|
|
mfamax = np.amax(mfa[:,jt])
|
|
mfa[:,jt] = np.power(mfa[:,jt]/mfamax+1.e-10,exp)
|
|
return mfa
|