pylot/autoPyLoT.py

183 lines
7.4 KiB
Python
Raw Normal View History

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
import argparse
import glob
import matplotlib.pyplot as plt
from obspy.core import read
from pylot.core.util import _getVersionString
from pylot.core.read import Data, AutoPickParameter
from pylot.core.pick.run_autopicking import run_autopicking
from pylot.core.util.structure import DATASTRUCTURE
2015-06-26 16:00:20 +02:00
from pylot.core.pick.utils import wadaticheck, checkPonsets
2015-06-24 10:23:24 +02:00
import pdb
__version__ = _getVersionString()
def autoPyLoT(inputfile):
'''
Determine phase onsets automatically utilizing the automatic picking
algorithms by Kueperkoch et al. 2010/2012.
:param inputfile: path to the input file containing all parameter
information for automatic picking (for formatting details, see.
`~pylot.core.read.input.AutoPickParameter`
:type inputfile: str
:return:
.. rubric:: Example
'''
2015-06-24 10:23:24 +02:00
print '************************************'
print '*********autoPyLoT starting*********'
print 'The Python picking and Location Tool'
print ' Version ', _getVersionString(), '2015'
print '**Authors:'
print '**S. Wehling-Benatelli'
print '** Ruhr-University Bochum'
print '**L. Kueperkoch'
print '** BESTEC GmbH'
print '**K. Olbert'
print '** Christian-Albrechts University Kiel'
print '************************************'
# reading parameter file
parameter = AutoPickParameter(inputfile)
2015-06-19 15:27:24 +02:00
# get some parameters for quality control from
# parameter input file (usually autoPyLoT.in).
wdttolerance = parameter.getParam('wdttolerance')
2015-06-26 16:00:20 +02:00
mdttolerance = parameter.getParam('mdttolerance')
2015-06-19 15:27:24 +02:00
iplot = parameter.getParam('iplot')
data = Data()
# getting information on data structure
if parameter.hasParam('datastructure'):
datastructure = DATASTRUCTURE[parameter.getParam('datastructure')]()
dsfields = {'root':parameter.getParam('rootpath'),
'dpath':parameter.getParam('datapath'),
'dbase':parameter.getParam('database')}
2015-05-20 09:59:06 +02:00
exf = ['root', 'dpath', 'dbase']
if parameter.hasParam('eventID'):
dsfields['eventID'] = parameter.getParam('eventID')
exf.append('eventID')
datastructure.modifyFields(**dsfields)
2015-05-20 09:59:06 +02:00
datastructure.setExpandFields(exf)
# multiple event processing
# read each event in database
datapath = datastructure.expandDataPath()
2015-05-20 09:59:06 +02:00
if not parameter.hasParam('eventID'):
for event in [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)]:
data.setWFData(glob.glob(os.path.join(datapath, event, '*')))
print 'Working on event %s' %event
print data
wfdat = data.getWFData() # all available streams
##########################################################
# !automated picking starts here!
procstats = []
2015-06-19 15:27:24 +02:00
# initialize dictionary for onsets
picks = None
station = wfdat[0].stats.station
allonsets = {station: picks}
for i in range(len(wfdat)):
stationID = wfdat[i].stats.station
# check if station has already been processed
if stationID not in procstats:
procstats.append(stationID)
# find corresponding streams
statdat = wfdat.select(station=stationID)
2015-06-19 15:27:24 +02:00
######################################################
# get onset times and corresponding picking errors
picks = run_autopicking(statdat, parameter)
2015-06-19 15:27:24 +02:00
######################################################
# add station and corresponding onsets to dictionary
station = stationID
allonsets[station] = picks
# quality control
2015-06-26 16:00:20 +02:00
# median check and jackknife on P onset times
checkedonsetsjk = checkPonsets(allonsets, mdttolerance, iplot)
2015-06-19 15:27:24 +02:00
# check S-P times (Wadati)
2015-06-26 16:00:20 +02:00
checkedonsetwd = wadaticheck(checkedonsetsjk, wdttolerance, iplot)
2015-06-02 13:42:44 +02:00
print '------------------------------------------'
print '-----Finished event %s!-----' % event
print '------------------------------------------'
# single event processing
2015-05-20 09:59:06 +02:00
else:
2015-06-02 13:43:39 +02:00
data.setWFData(glob.glob(os.path.join(datapath, parameter.getParam('eventID'), '*')))
print 'Working on event ', parameter.getParam('eventID')
2015-05-20 10:56:53 +02:00
print data
wfdat = data.getWFData() # all available streams
##########################################################
# !automated picking starts here!
procstats = []
# initialize dictionary for onsets
picks = None
station = wfdat[0].stats.station
allonsets = {station: picks}
for i in range(len(wfdat)):
2015-06-26 16:00:20 +02:00
#for i in range(0,10):
stationID = wfdat[i].stats.station
#check if station has already been processed
if stationID not in procstats:
procstats.append(stationID)
2015-06-26 16:00:20 +02:00
# find corresponding streams
statdat = wfdat.select(station=stationID)
2015-06-19 15:27:24 +02:00
######################################################
# get onset times and corresponding picking parameters
picks = run_autopicking(statdat, parameter)
2015-06-19 15:27:24 +02:00
######################################################
# add station and corresponding onsets to dictionary
2015-06-19 15:27:24 +02:00
station = stationID
allonsets[station] = picks
2015-06-19 15:27:24 +02:00
2015-06-26 16:00:20 +02:00
# quality control
# median check and jackknife on P onset times
checkedonsetsjk = checkPonsets(allonsets, mdttolerance, iplot)
# check S-P times (Wadati)
checkedonsetswd = wadaticheck(checkedonsetsjk, wdttolerance, iplot)
2015-06-02 13:42:44 +02:00
print '------------------------------------------'
print '-------Finished event %s!-------' % parameter.getParam('eventID')
print '------------------------------------------'
2015-06-24 10:23:24 +02:00
print '************************************'
print '*********autoPyLoT terminates*******'
print 'The Python picking and Location Tool'
print '************************************'
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser(
description='''autoPyLoT automatically picks phase onset times using higher order statistics,
autoregressive prediction and AIC''')
parser.add_argument('-i', '-I', '--inputfile', type=str,
action='store',
help='''full path to the file containing the input
parameters for autoPyLoT''',
default=os.path.join(os.path.expanduser('~'), '.pylot',
'autoPyLoT.in')
)
parser.add_argument('-v', '-V', '--version', action='version',
version='autoPyLoT ' + __version__,
help='show version information and exit')
cla = parser.parse_args()
autoPyLoT(str(cla.inputfile))