2016-02-05 13:41:22 +01:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from pylot.core.util.version import get_git_version as _getVersionString
|
|
|
|
|
|
|
|
__version__ = _getVersionString()
|
|
|
|
__author__ = 'sebastianw'
|
|
|
|
|
|
|
|
|
|
|
|
def gauss_parameter(te, tm, tl, eta):
|
|
|
|
'''
|
|
|
|
takes three onset times and returns the parameters sig1, sig2, a1 and a2
|
|
|
|
to represent the pick as a probability density funtion (PDF) with two
|
|
|
|
Gauss branches
|
|
|
|
:param te:
|
|
|
|
:param tm:
|
|
|
|
:param tl:
|
|
|
|
:param eta:
|
|
|
|
:return:
|
|
|
|
'''
|
|
|
|
|
|
|
|
sig1 = (tm - te) / np.sqrt(2 * np.log(1 / eta))
|
|
|
|
sig2 = (tl - tm) / np.sqrt(2 * np.log(1 / eta))
|
|
|
|
|
|
|
|
a1 = 2 / (1 + sig2 / sig1)
|
|
|
|
a2 = 2 / (1 + sig1 / sig2)
|
|
|
|
|
|
|
|
return sig1, sig2, a1, a2
|
|
|
|
|
|
|
|
|
|
|
|
def exp_parameter(te, tm, tl, eta):
|
|
|
|
'''
|
|
|
|
takes three onset times te, tm and tl and returns the parameters sig1,
|
|
|
|
sig2 and a to represent the pick as a probability density function (PDF)
|
|
|
|
with two exponential decay branches
|
|
|
|
:param te:
|
|
|
|
:param tm:
|
|
|
|
:param tl:
|
|
|
|
:param eta:
|
|
|
|
:return:
|
|
|
|
'''
|
|
|
|
|
|
|
|
sig1 = np.log(eta) / (te - tm)
|
|
|
|
sig2 = np.log(eta) / (tm - tl)
|
|
|
|
a = 1 / (1 / sig1 + 1 / sig2)
|
|
|
|
|
|
|
|
return sig1, sig2, a
|
|
|
|
|
|
|
|
|
|
|
|
def gauss_branches(x, mu, sig1, sig2, a1, a2):
|
|
|
|
'''
|
|
|
|
function gauss_branches takes an axes x, a center value mu, two sigma
|
|
|
|
values sig1 and sig2 and two scaling factors a1 and a2 and return a
|
|
|
|
list containing the values of a probability density function (PDF)
|
|
|
|
consisting of gauss branches
|
|
|
|
:param x:
|
|
|
|
:type x:
|
|
|
|
:param mu:
|
|
|
|
:type mu:
|
|
|
|
:param sig1:
|
|
|
|
:type sig1:
|
|
|
|
:param sig2:
|
|
|
|
:type sig2:
|
|
|
|
:param a1:
|
|
|
|
:type a1:
|
|
|
|
:param a2:
|
|
|
|
:returns fun_vals: list with function values along axes x
|
|
|
|
'''
|
|
|
|
fun_vals = []
|
|
|
|
for k in x:
|
|
|
|
if k < mu:
|
|
|
|
fun_vals.append(a1 * 1 / (np.sqrt(2 * np.pi) * sig1) * np.exp(-((k - mu) / sig1)**2 / 2 ))
|
|
|
|
else:
|
|
|
|
fun_vals.append(a2 * 1 / (np.sqrt(2 * np.pi) * sig2) * np.exp(-((k - mu) / sig2)**2 / 2))
|
|
|
|
return np.array(fun_vals)
|
|
|
|
|
|
|
|
|
|
|
|
def exp_branches(x, mu, sig1, sig2, a):
|
|
|
|
'''
|
|
|
|
function exp_branches takes an axes x, a center value mu, two sigma
|
|
|
|
values sig1 and sig2 and a scaling factor a and return a
|
|
|
|
list containing the values of a probability density function (PDF)
|
|
|
|
consisting of exponential decay branches
|
|
|
|
:param x:
|
|
|
|
:param mu:
|
|
|
|
:param sig1:
|
|
|
|
:param sig2:
|
|
|
|
:param a:
|
|
|
|
:returns fun_vals: list with function values along axes x:
|
|
|
|
'''
|
|
|
|
fun_vals = []
|
|
|
|
for k in x:
|
|
|
|
if k < mu:
|
|
|
|
fun_vals.append(a * np.exp(sig1 * (k - mu)))
|
|
|
|
else:
|
|
|
|
fun_vals.append(a * np.exp(-sig2 * (k - mu)))
|
|
|
|
return np.array(fun_vals)
|
|
|
|
|
|
|
|
# define container dictionaries for different types of pdfs
|
|
|
|
parameter = dict(gauss=gauss_parameter, exp=exp_parameter)
|
|
|
|
branches = dict(gauss=gauss_branches, exp=exp_branches)
|
|
|
|
|
|
|
|
|
|
|
|
class ProbabilityDensityFunction(object):
|
|
|
|
'''
|
|
|
|
A probability density function toolkit.
|
|
|
|
'''
|
|
|
|
|
|
|
|
version = __version__
|
|
|
|
|
2016-02-06 09:04:50 +01:00
|
|
|
def __init__(self, x, pdf):
|
|
|
|
self.axis = x
|
|
|
|
self.data = pdf
|
|
|
|
|
|
|
|
def __add__(self, other):
|
|
|
|
assert isinstance(other, ProbabilityDensityFunction), \
|
|
|
|
'both operands must be of type ProbabilityDensityFunction'
|
|
|
|
|
2016-02-09 11:15:04 +01:00
|
|
|
x, pdf_self, pdf_other = self.rearrange(other)
|
|
|
|
|
|
|
|
pdf = np.convolve(pdf_self, pdf_other, 'same') * self.delta()
|
2016-02-06 09:04:50 +01:00
|
|
|
|
|
|
|
return ProbabilityDensityFunction(x, pdf)
|
|
|
|
|
|
|
|
def __sub__(self, other):
|
2016-02-09 11:15:04 +01:00
|
|
|
assert isinstance(other, ProbabilityDensityFunction), \
|
|
|
|
'both operands must be of type ProbabilityDensityFunction'
|
|
|
|
|
|
|
|
x, pdf_self, pdf_other = self.rearrange(other, plus=False)
|
|
|
|
|
|
|
|
pdf = np.convolve(pdf_self, pdf_other[::-1], 'same') * self.delta()
|
|
|
|
|
|
|
|
return ProbabilityDensityFunction(x, pdf)
|
2016-02-06 09:04:50 +01:00
|
|
|
|
|
|
|
def __nonzero__(self):
|
|
|
|
return True
|
|
|
|
|
|
|
|
@property
|
|
|
|
def data(self):
|
|
|
|
return self.data
|
|
|
|
|
|
|
|
@data.setter
|
|
|
|
def data(self, pdf):
|
|
|
|
self.data = np.array(pdf)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def axis(self):
|
|
|
|
return self.axis
|
|
|
|
|
|
|
|
@axis.setter
|
|
|
|
def axis(self, x):
|
|
|
|
self.axis = np.array(x)
|
|
|
|
|
2016-02-09 11:15:04 +01:00
|
|
|
def delta(self):
|
2016-02-06 09:04:50 +01:00
|
|
|
return self.axis[1] - self.axis[0]
|
|
|
|
|
2016-02-09 11:15:04 +01:00
|
|
|
def rearrange(self, other, plus=True):
|
|
|
|
'''
|
|
|
|
Method rearrange takes another Probability Density Function and returns
|
|
|
|
a new axis with mid-point 0 and covering positive and negative range
|
|
|
|
of axis values, either containing the maximum value of both axis or
|
|
|
|
the sum of the maxima
|
|
|
|
:param other:
|
|
|
|
:param plus:
|
|
|
|
:return:
|
|
|
|
'''
|
|
|
|
|
|
|
|
assert isinstance(other, ProbabilityDensityFunction), \
|
|
|
|
'both operands must be of type ProbabilityDensityFunction'
|
|
|
|
|
|
|
|
sd = self.delta()
|
|
|
|
od = other.delta()
|
|
|
|
|
|
|
|
samin = np.min(self.axis)
|
|
|
|
oamin = np.min(other.axis)
|
|
|
|
|
|
|
|
# test if 0 is a sampling node
|
|
|
|
nodes_test = (not samin % sd and not oamin % od)
|
|
|
|
|
|
|
|
# test if sampling rates match and if 0 is a sampling node
|
|
|
|
if sd == od and nodes_test:
|
|
|
|
if plus:
|
|
|
|
max = np.max(self.axis) + np.max(other.axis)
|
|
|
|
else:
|
|
|
|
max = np.max(np.max(self.axis), np.max(other.axis))
|
|
|
|
x = np.arange(-max, max + sd, sd)
|
|
|
|
else:
|
|
|
|
raise ValueError('Sampling rates do not match or nodes shifted!')
|
|
|
|
|
|
|
|
pdf_self = np.zeros(x.size)
|
|
|
|
pdf_other = np.zeros(x.size)
|
|
|
|
|
|
|
|
sstart = np.where(x == samin)
|
|
|
|
s_end = sstart + self.data.size
|
|
|
|
ostart = np.where(x == oamin)
|
|
|
|
o_end = ostart + other.data.size
|
|
|
|
|
|
|
|
pdf_self[sstart:s_end] = self.data
|
|
|
|
pdf_other[ostart:o_end] = other.data
|
|
|
|
|
|
|
|
return x, pdf_self, pdf_other
|
|
|
|
|
|
|
|
|
2016-02-06 09:04:50 +01:00
|
|
|
class PickPDF(ProbabilityDensityFunction):
|
|
|
|
|
2016-02-05 13:41:22 +01:00
|
|
|
def __init__(self, x, lbound, midpoint, rbound, decfact=0.01, type='gauss'):
|
|
|
|
'''
|
|
|
|
Initialize a new ProbabilityDensityFunction object. Takes arguments x,
|
|
|
|
lbound, midpoint and rbound to define a probability density function
|
|
|
|
defined on the interval of x. Maximum density is given at the midpoint
|
|
|
|
and on the boundaries the function has declined to decfact times the
|
|
|
|
maximum value. Integration of the function over a particular interval
|
|
|
|
gives the probability for the variable value to lie in that interval.
|
|
|
|
:param x: interval on which the pdf is defined
|
|
|
|
:param lbound: left boundary
|
|
|
|
:param midpoint: point of maximum probability density
|
|
|
|
:param rbound: right boundary
|
|
|
|
:param decfact: boundary decline factor
|
|
|
|
:param type: determines the type of the probability density function's
|
|
|
|
branches
|
|
|
|
'''
|
|
|
|
|
2016-02-06 09:04:50 +01:00
|
|
|
self.nodes = dict(te=lbound, tm=midpoint, tl=rbound, eta=decfact)
|
2016-02-05 13:41:22 +01:00
|
|
|
self.type = type
|
2016-02-06 09:04:50 +01:00
|
|
|
super(PickPDF, self).__init__(x, self.pdf())
|
2016-02-05 13:41:22 +01:00
|
|
|
|
|
|
|
@property
|
|
|
|
def type(self):
|
|
|
|
return self.type
|
|
|
|
|
|
|
|
@type.setter
|
|
|
|
def type(self, type):
|
|
|
|
self.type = type
|
|
|
|
|
|
|
|
def params(self):
|
|
|
|
return parameter[self.type](**self.nodes)
|
|
|
|
|
2016-02-06 09:04:50 +01:00
|
|
|
def get(self, key):
|
|
|
|
return self.nodes[key]
|
|
|
|
|
|
|
|
def pdf(self):
|
|
|
|
return branches[self.type](self.axis, self.get('tm'), *self.params())
|