added checkerboard to fmtomo utils and added different checkerboard ampl. functions

This commit is contained in:
Marcel Paffrath 2015-11-16 11:48:45 +01:00
parent 165419cb88
commit 0a0ab4bfa9

View File

@ -0,0 +1,417 @@
# -*- coding: utf-8 -*-
import sys
import numpy as np
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'abs', inputfileref = 'vgridsref.in'):
'''
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
'''
def getDistance(angle):
PI = np.pi
R = 6371.
distance = angle / 180 * (PI * R)
return distance
def readNumberOfPoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
nR = int(vglines[1].split()[0])
nTheta = int(vglines[1].split()[1])
nPhi = int(vglines[1].split()[2])
print('readNumberOf Points: Awaiting %d grid points in %s'
%(nR*nTheta*nPhi, filename))
fin.close()
return nR, nTheta, nPhi
def readDelta(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
dR = float(vglines[2].split()[0])
dTheta = float(vglines[2].split()[1])
dPhi = float(vglines[2].split()[2])
fin.close()
return dR, dTheta, dPhi
def readStartpoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
sR = float(vglines[3].split()[0])
sTheta = float(vglines[3].split()[1])
sPhi = float(vglines[3].split()[2])
fin.close()
return sR, sTheta, sPhi
def readVelocity(filename):
'''
Reads in velocity from vgrids file and returns a list containing all values in the same order
'''
vel = []; count = 0
fin = open(filename, 'r')
vglines = fin.readlines()
for line in vglines:
count += 1
if count > 4:
vel.append(float(line.split()[0]))
print("Read %d points out of file: %s" %(count - 4, filename))
return vel
R = 6371. # earth radius
outfile = open(outputfile, 'w')
# Theta, Phi in radians, R in km
nR, nTheta, nPhi = readNumberOfPoints(inputfile)
dR, dTheta, dPhi = readDelta(inputfile)
sR, sTheta, sPhi = readStartpoints(inputfile)
vel = readVelocity(inputfile)
nX = nPhi; nY = nTheta; nZ = nR
sZ = sR - R
sX = getDistance(np.rad2deg(sPhi))
sY = getDistance(np.rad2deg(sTheta))
dX = getDistance(np.rad2deg(dPhi))
dY = getDistance(np.rad2deg(dTheta))
nPoints = nX * nY * nZ
dZ = dR
# write header
print("Writing header for VTK file...")
outfile.writelines('# vtk DataFile Version 3.1\n')
outfile.writelines('Velocity on FMTOMO vgrids.in points\n')
outfile.writelines('ASCII\n')
outfile.writelines('DATASET STRUCTURED_POINTS\n')
outfile.writelines('DIMENSIONS %d %d %d\n' %(nX, nY, nZ))
outfile.writelines('ORIGIN %f %f %f\n' %(sX, sY, sZ))
outfile.writelines('SPACING %f %f %f\n' %(dX, dY, dZ))
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
if absOrRel == 'abs':
outfile.writelines('SCALARS velocity float %d\n' %(1))
elif absOrRel == 'rel':
outfile.writelines('SCALARS velChangePercent float %d\n' %(1))
outfile.writelines('LOOKUP_TABLE default\n')
# write velocity
if absOrRel == 'abs':
print("Writing velocity values to VTK file...")
for velocity in vel:
outfile.writelines('%10f\n' %velocity)
elif absOrRel == 'rel':
velref = readVelocity(inputfileref)
if not len(velref) == len(vel):
print('ERROR: Number of gridpoints mismatch for %s and %s'%(inputfile, inputfileref))
return
#velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
velrel = []
for velocities in zip(vel, velref):
v, vref = velocities
if not vref == 0:
velrel.append((v - vref) / vref * 100)
else:
velrel.append(0)
nR_ref, nTheta_ref, nPhi_ref = readNumberOfPoints(inputfileref)
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
print('ERROR: Dimension mismatch of grids %s and %s'%(inputfile, inputfileref))
return
print("Writing velocity values to VTK file...")
for velocity in velrel:
outfile.writelines('%10f\n' %velocity)
print('Pertubations: min: %s %%, max: %s %%'%(min(velrel), max(velrel)))
outfile.close()
print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
return
def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
'''
Writes VTK file(s) for FMTOMO rays from rays.dat
:param: nthPoint, plot every nth point of the ray
:type: integer
'''
def getDistance(angle):
PI = np.pi
R = 6371.
distance = angle / 180 * (PI * R)
return distance
infile = open(fnin, 'r')
R = 6371
rays = {}
raynumber = 0
nPoints = 0
### NOTE: rays.dat seems to be in km and radians
while True:
raynumber += 1
firstline = infile.readline()
if firstline == '': break # break at EOF
raynumber = int(firstline.split()[0])
shotnumber = int(firstline.split()[1])
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
if rayValid == 0:
print('Invalid ray number %d for shot number %d'%(raynumber, shotnumber))
continue
nRayPoints = int(infile.readline().split()[0])
if not shotnumber in rays.keys():
rays[shotnumber] = {}
rays[shotnumber][raynumber] = []
for index in range(nRayPoints):
if index % nthPoint is 0 or index == (nRayPoints - 1):
rad, lat, lon = infile.readline().split()
rays[shotnumber][raynumber].append([getDistance(np.rad2deg(float(lon))), getDistance(np.rad2deg(float(lat))), float(rad) - R])
else:
dummy = infile.readline()
infile.close()
for shotnumber in rays.keys():
fnameout = fdirout + 'rays%03d.vtk'%(shotnumber)
outfile = open(fnameout, 'w')
nPoints = 0
for raynumber in rays[shotnumber]:
for ray in rays[shotnumber][raynumber]:
nPoints += 1
# write header
#print("Writing header for VTK file...")
print("Writing shot %d to file %s" %(shotnumber, fnameout))
outfile.writelines('# vtk DataFile Version 3.1\n')
outfile.writelines('FMTOMO rays\n')
outfile.writelines('ASCII\n')
outfile.writelines('DATASET POLYDATA\n')
outfile.writelines('POINTS %15d float\n' %(nPoints))
# write coordinates
#print("Writing coordinates to VTK file...")
for raynumber in rays[shotnumber].keys():
for raypoint in rays[shotnumber][raynumber]:
outfile.writelines('%10f %10f %10f \n' %(raypoint[0], raypoint[1], raypoint[2]))
outfile.writelines('LINES %15d %15d\n' %(len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
# write indices
#print("Writing indices to VTK file...")
count = 0
for raynumber in rays[shotnumber].keys():
outfile.writelines('%d ' %(len(rays[shotnumber][raynumber])))
for index in range(len(rays[shotnumber][raynumber])):
outfile.writelines('%d ' %(count))
count += 1
outfile.writelines('\n')
# outfile.writelines('POINT_DATA %15d\n' %(nPoints))
# outfile.writelines('SCALARS rays float %d\n' %(1))
# outfile.writelines('LOOKUP_TABLE default\n')
# # write velocity
# print("Writing velocity values to VTK file...")
# for velocity in vel:
# outfile.writelines('%10f\n' %velocity)
# outfile.close()
# print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
outputfile = 'vgrids_cb.in', ampmethod = 'linear', rect = (None, None)):
'''
Add a checkerboard to an existing vgrids.in velocity model.
:param: spacing, size of the tiles
type: float
:param: pertubation, pertubation (default: 0.1 = 10%)
type: float
'''
def readNumberOfPoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
nR = int(vglines[1].split()[0])
nTheta = int(vglines[1].split()[1])
nPhi = int(vglines[1].split()[2])
print('readNumberOf Points: Awaiting %d grid points in %s'
%(nR*nTheta*nPhi, filename))
fin.close()
return nR, nTheta, nPhi
def readDelta(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
dR = float(vglines[2].split()[0])
dTheta = float(vglines[2].split()[1])
dPhi = float(vglines[2].split()[2])
fin.close()
return dR, dTheta, dPhi
def readStartpoints(filename):
fin = open(filename, 'r')
vglines = fin.readlines()
sR = float(vglines[3].split()[0])
sTheta = float(vglines[3].split()[1])
sPhi = float(vglines[3].split()[2])
fin.close()
return sR, sTheta, sPhi
def readVelocity(filename):
'''
Reads in velocity from vgrids file and returns a list containing all values in the same order
'''
vel = []; count = 0
fin = open(filename, 'r')
vglines = fin.readlines()
for line in vglines:
count += 1
if count > 4:
vel.append(float(line.split()[0]))
print("Read %d points out of file: %s" %(count - 4, filename))
return vel
def correctSpacing(spacing, delta, disttype = None):
if spacing > delta:
spacing_corr = round(spacing / delta) * delta
elif spacing < delta:
spacing_corr = delta
print('The spacing of the checkerboard of %s (%s) was corrected to '
'a value of %s to fit the grid spacing of %s.' %(spacing, disttype, spacing_corr, delta))
return spacing_corr
def linearAmp(InCell):
decimal = InCell - np.floor(InCell)
return (-abs(decimal - 0.5) + 0.5) * 2
def rectAmp(InCell, rect):
decimal = InCell - np.floor(InCell)
r1, r2 = rect
if r1 <= decimal <= r2:
return 1
else:
return 0
def ampFunc(InCell, method = 'linear', rect = None):
if method == 'linear':
return linearAmp(InCell)
if method == 'rect' and rect is not None:
return rectAmp(InCell, rect)
else:
print('ampFunc: Could not amplify cb pattern')
R = 6371. # earth radius
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
outfile = open(outputfile, 'w')
# Theta, Phi in radians, R in km
nR, nTheta, nPhi = readNumberOfPoints(inputfile)
dR, dThetaRad, dPhiRad = readDelta(inputfile)
sR, sThetaRad, sPhiRad = readStartpoints(inputfile)
vel = readVelocity(inputfile)
dTheta, dPhi = np.rad2deg((dThetaRad, dPhiRad))
sTheta, sPhi = np.rad2deg((dThetaRad, dPhiRad))
eR = sR + (nR - 1) * dR
ePhi = sPhi + (nPhi - 1) * dPhi
eTheta = sTheta + (nTheta - 1) * dTheta
nPoints = nR * nTheta * nPhi
thetaGrid = np.linspace(sTheta, eTheta, num = nTheta)
phiGrid = np.linspace(sPhi, ePhi, num = nPhi)
rGrid = np.linspace(sR, eR, num = nR)
# write header for velocity grid file (in RADIANS)
outfile.writelines('%10s %10s \n' %(1, 1))
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
outfile.writelines('%10s %10s %10s\n' %(dR, dThetaRad, dPhiRad))
outfile.writelines('%10s %10s %10s\n' %(sR, sThetaRad, sPhiRad))
spacR = correctSpacing(spacing, dR, '[meter], R')
spacTheta = correctSpacing(_getAngle(spacing), dTheta, '[degree], Theta')
spacPhi = correctSpacing(_getAngle(spacing), dPhi, '[degree], Phi')
count = 0
evenOdd = 1
even = 0; odd = 0
# In the following loop it is checked whether the positive distance from the border of the model
# for a point on the grid divided by the spacing is even or odd and then pertubated.
# The position is also shifted by half of the delta so that the position is directly on the point and
# not on the border between two points.
# "InCell" points e.g. rInCell are floats with their integer number corresponding to the cell number and
# their decimal place (0 - 1) corresponding to the position inside the cell.
# The amplification factor ampFactor comes from a linear relationship and ranges between 0 (cell border)
# and 1 (cell middle)
for radius in rGrid:
rInCell = (radius - sR - dR/2) / spacR
ampR = ampFunc(rInCell, ampmethod, rect)
if np.floor(rInCell) % 2:
evenOddR = 1
else:
evenOddR = -1
for theta in thetaGrid:
thetaInCell = (theta - sTheta - dTheta/2) / spacTheta
ampTheta = ampFunc(thetaInCell, ampmethod, rect)
if np.floor(thetaInCell) % 2:
evenOddT = 1
else:
evenOddT = -1
for phi in phiGrid:
phiInCell = (phi - sPhi - dPhi/2) / spacPhi
ampPhi = ampFunc(phiInCell, ampmethod, rect)
if np.floor(phiInCell) % 2:
evenOddP = 1
else:
evenOddP = -1
velocity = vel[count]
ampFactor = (ampR + ampTheta + ampPhi) / 3
evenOdd = evenOddR * evenOddT * evenOddP * ampFactor
velocity += evenOdd * pertubation * velocity
outfile.writelines('%10s %10s\n'%(velocity, decm))
count += 1
progress = float(count) / float(nPoints) * 100
_update_progress(progress)
print('Added checkerboard to the grid in file %s with a spacing of %s and a pertubation of %s %%. '
'Outputfile: %s.'%(inputfile, spacing, pertubation, outputfile))
outfile.close()
def _update_progress(progress):
sys.stdout.write("%d%% done \r" % (progress) )
sys.stdout.flush()
def _getAngle(distance):
'''
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
'''
PI = np.pi
R = 6371.
angle = distance * 180. / (PI * R)
return angle