general code clean-up
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created Oct/Nov 2014
|
||||
@@ -119,7 +120,7 @@ class CharacteristicFunction(object):
|
||||
|
||||
def getTimeArray(self):
|
||||
incr = self.getIncrement()
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
|
||||
return self.TimeArray
|
||||
|
||||
def getFnoise(self):
|
||||
@@ -175,7 +176,7 @@ class CharacteristicFunction(object):
|
||||
h2 = hh[1].copy()
|
||||
hh[0].data = h1.data[int(start):int(stop)]
|
||||
hh[1].data = h2.data[int(start):int(stop)]
|
||||
data = hh
|
||||
data = hh
|
||||
return data
|
||||
elif len(self.orig_data) == 3:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
@@ -196,12 +197,12 @@ class CharacteristicFunction(object):
|
||||
hh[0].data = h1.data[int(start):int(stop)]
|
||||
hh[1].data = h2.data[int(start):int(stop)]
|
||||
hh[2].data = h3.data[int(start):int(stop)]
|
||||
data = hh
|
||||
data = hh
|
||||
return data
|
||||
else:
|
||||
data = self.orig_data.copy()
|
||||
return data
|
||||
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
|
||||
@@ -285,7 +286,7 @@ class HOScf(CharacteristicFunction):
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
LTA[j] = lta / np.power(lta1, 2)
|
||||
|
||||
|
||||
nn = np.isnan(LTA)
|
||||
if len(nn) > 1:
|
||||
LTA[nn] = 0
|
||||
@@ -315,7 +316,7 @@ class ARZcf(CharacteristicFunction):
|
||||
cf = np.zeros(len(xnp))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() #AR-calculation index
|
||||
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
@@ -362,7 +363,7 @@ class ARZcf(CharacteristicFunction):
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet+1):
|
||||
ki = k + 1
|
||||
ki = k + 1
|
||||
rhs[k] = rhs[k] + data[i] * data[i - ki]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
@@ -382,7 +383,7 @@ class ARZcf(CharacteristicFunction):
|
||||
def arPredZ(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, time series to be predicted
|
||||
:type: array
|
||||
@@ -400,9 +401,9 @@ class ARZcf(CharacteristicFunction):
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
if rind < len(arpara):
|
||||
rind = len(arpara)
|
||||
rind = len(arpara)
|
||||
if rind > len(data) - lpred :
|
||||
rind = len(data) - lpred
|
||||
rind = len(data) - lpred
|
||||
if lpred < 1:
|
||||
lpred = 1
|
||||
if lpred > len(data) - 2:
|
||||
@@ -422,7 +423,7 @@ class ARHcf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from both horizontal traces ...'
|
||||
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
@@ -430,7 +431,7 @@ class ARHcf(CharacteristicFunction):
|
||||
n1 = np.isnan(xnp[1].data)
|
||||
if len(n1) > 1:
|
||||
xnp[1].data[n1] = 0
|
||||
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
@@ -441,7 +442,7 @@ class ARHcf(CharacteristicFunction):
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = lpred + self.getOrder() - 1 #AR-calculation index
|
||||
@@ -515,7 +516,7 @@ class ARHcf(CharacteristicFunction):
|
||||
def arPredH(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, horizontal component seismograms to be predicted
|
||||
:type: structured array
|
||||
@@ -558,7 +559,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from all 3 components ...'
|
||||
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
@@ -569,7 +570,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
n2 = np.isnan(xnp[2].data)
|
||||
if len(n2) > 1:
|
||||
xnp[2].data[n2] = 0
|
||||
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
@@ -581,7 +582,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
@@ -616,7 +617,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
||||
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
||||
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
|
||||
AR parameters are calculated based on both horizontal components and vertical
|
||||
AR parameters are calculated based on both horizontal components and vertical
|
||||
componant.
|
||||
:param: data, horizontal component seismograms to calculate AR parameters from
|
||||
:type: structured array
|
||||
@@ -658,7 +659,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
def arPred3C(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, horizontal and vertical component seismograms to be predicted
|
||||
:type: structured array
|
||||
|
||||
@@ -312,7 +312,7 @@ class PragPicker(AutoPicking):
|
||||
else:
|
||||
for i in range(1, len(self.cf)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth;
|
||||
ii1 = i - ismooth
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
#
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
|
||||
@@ -317,29 +317,29 @@ def autopickstation(wfstream, pickparam):
|
||||
data = Data()
|
||||
[corzdat, restflag] = data.restituteWFData(invdir, zdat)
|
||||
if restflag == 1:
|
||||
# integrate to displacement
|
||||
corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
|
||||
# class needs stream object => build it
|
||||
z_copy = zdat.copy()
|
||||
z_copy[0].data = corintzdat
|
||||
# largest detectable period == window length
|
||||
# after P pulse for calculating source spectrum
|
||||
winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate
|
||||
impickP = mpickP * z_copy[0].stats.sampling_rate
|
||||
wfzc = z_copy[0].data[impickP : impickP + winzc]
|
||||
# calculate spectrum using only first cycles of
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
if np.size(zc) == 0:
|
||||
print ("Something is wrong with the waveform, " \
|
||||
"no zero crossings derived!")
|
||||
print ("Cannot calculate source spectrum!")
|
||||
else:
|
||||
calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
|
||||
# calculate source spectrum and get w0 and fc
|
||||
specpara = DCfc(z_copy, mpickP, calcwin, iplot)
|
||||
w0 = specpara.getw0()
|
||||
fc = specpara.getfc()
|
||||
# integrate to displacement
|
||||
corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
|
||||
# class needs stream object => build it
|
||||
z_copy = zdat.copy()
|
||||
z_copy[0].data = corintzdat
|
||||
# largest detectable period == window length
|
||||
# after P pulse for calculating source spectrum
|
||||
winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate
|
||||
impickP = mpickP * z_copy[0].stats.sampling_rate
|
||||
wfzc = z_copy[0].data[impickP : impickP + winzc]
|
||||
# calculate spectrum using only first cycles of
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
if np.size(zc) == 0:
|
||||
print ("Something is wrong with the waveform, " \
|
||||
"no zero crossings derived!")
|
||||
print ("Cannot calculate source spectrum!")
|
||||
else:
|
||||
calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
|
||||
# calculate source spectrum and get w0 and fc
|
||||
specpara = DCfc(z_copy, mpickP, calcwin, iplot)
|
||||
w0 = specpara.getw0()
|
||||
fc = specpara.getfc()
|
||||
|
||||
print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, " \
|
||||
"Polarity: %s" % (Pweight, SNRP, SNRPdB, FM))
|
||||
@@ -560,7 +560,7 @@ def autopickstation(wfstream, pickparam):
|
||||
hdat += ndat
|
||||
h_copy = hdat.copy()
|
||||
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# using subclass WApp of superclass Magnitude
|
||||
if restflag == 1:
|
||||
if Sweight < 4:
|
||||
@@ -591,7 +591,7 @@ def autopickstation(wfstream, pickparam):
|
||||
h_copy = hdat.copy()
|
||||
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
||||
if restflag == 1:
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# using subclass WApp of superclass Magnitude
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
|
||||
+ sstop)), iplot)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
@@ -91,7 +92,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length
|
||||
# T0/4 is assumed as time difference between most likely and earliest possible pick!
|
||||
EPick = Pick1 - T0 / 2
|
||||
|
||||
|
||||
|
||||
# get symmetric pick error as mean from earliest and latest possible pick
|
||||
# by weighting latest possible pick two times earliest possible pick
|
||||
@@ -493,9 +494,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
wdfit = np.polyval(p1, Ppicks)
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
wdfit = np.polyval(p1, Ppicks)
|
||||
wfitflag = 0
|
||||
|
||||
# calculate vp/vs ratio before check
|
||||
@@ -532,40 +533,40 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
pickdic[key]['S']['marked'] = marker
|
||||
|
||||
if len(checkedPpicks) >= 3:
|
||||
# calculate new slope
|
||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||
# calculate new slope
|
||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||
|
||||
# calculate vp/vs ratio after check
|
||||
cvpvsr = p2[0] + 1
|
||||
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
|
||||
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
|
||||
# calculate vp/vs ratio after check
|
||||
cvpvsr = p2[0] + 1
|
||||
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
|
||||
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
|
||||
else:
|
||||
print ("###############################################")
|
||||
print ("wadatacheck: Not enough checked S-P times available!")
|
||||
print ("Skip Wadati check!")
|
||||
print ("###############################################")
|
||||
print ("wadatacheck: Not enough checked S-P times available!")
|
||||
print ("Skip Wadati check!")
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
else:
|
||||
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
||||
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
||||
print ("Skip wadati check!")
|
||||
wfitflag = 1
|
||||
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
plt.figure(iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
if wfitflag == 0:
|
||||
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
else:
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
|
||||
plt.ylabel('S-P Times [s]')
|
||||
plt.xlabel('P Times [s]')
|
||||
@@ -579,8 +580,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
'''
|
||||
Function to detect spuriously picked noise peaks.
|
||||
Uses RMS trace of all 3 components (if available) to determine,
|
||||
how many samples [per cent] after P onset are below certain
|
||||
Uses RMS trace of all 3 components (if available) to determine,
|
||||
how many samples [per cent] after P onset are below certain
|
||||
threshold, calculated from noise level times noise factor.
|
||||
|
||||
: param: X, time series (seismogram)
|
||||
@@ -612,7 +613,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
print ("Checking signal length ...")
|
||||
|
||||
if len(X) > 1:
|
||||
# all three components available
|
||||
# all three components available
|
||||
# make sure, all components have equal lengths
|
||||
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
||||
x1 = X[0][0:ilen]
|
||||
@@ -639,7 +640,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
|
||||
|
||||
if numoverthr >= minnum:
|
||||
print ("checksignallength: Signal reached required length.")
|
||||
print ("checksignallength: Signal reached required length.")
|
||||
returnflag = 1
|
||||
else:
|
||||
print ("checksignallength: Signal shorter than required minimum signal length!")
|
||||
@@ -649,7 +650,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
@@ -729,27 +730,27 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
badjkmarker = 'badjkcheck'
|
||||
for i in range(0, len(goodstations)):
|
||||
# mark P onset as checked and keep P weight
|
||||
pickdic[goodstations[i]]['P']['marked'] = goodmarker
|
||||
pickdic[goodstations[i]]['P']['marked'] = goodmarker
|
||||
for i in range(0, len(badstations)):
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badstations[i]]['P']['marked'] = badmarker
|
||||
pickdic[badstations[i]]['P']['weight'] = 9
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badstations[i]]['P']['marked'] = badmarker
|
||||
pickdic[badstations[i]]['P']['weight'] = 9
|
||||
for i in range(0, len(badjkstations)):
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
|
||||
pickdic[badjkstations[i]]['P']['weight'] = 9
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
|
||||
pickdic[badjkstations[i]]['P']['weight'] = 9
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
if iplot > 1:
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
|
||||
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \
|
||||
linewidth=2)
|
||||
for i in range(0, len(Ppicks)):
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
|
||||
plt.xlabel('Number of P Picks')
|
||||
plt.ylabel('Onset Time [s] from 1.1.1970')
|
||||
@@ -789,37 +790,37 @@ def jackknife(X, phi, h):
|
||||
g = len(X) / h
|
||||
|
||||
if type(g) is not int:
|
||||
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
||||
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
||||
print ("Choose another size for subgroups!")
|
||||
return PHI_jack, PHI_pseudo, PHI_sub
|
||||
else:
|
||||
# estimator of undisturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sc = np.mean(X)
|
||||
# estimator of undisturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sc = np.mean(X)
|
||||
elif phi == 'VAR':
|
||||
phi_sc = np.var(X)
|
||||
phi_sc = np.var(X)
|
||||
elif phi == 'MED':
|
||||
phi_sc = np.median(X)
|
||||
phi_sc = np.median(X)
|
||||
|
||||
# estimators of subgroups
|
||||
# estimators of subgroups
|
||||
PHI_pseudo = []
|
||||
PHI_sub = []
|
||||
for i in range(0, g - 1):
|
||||
# subgroup i, remove i-th sample
|
||||
xx = X[:]
|
||||
del xx[i]
|
||||
# calculate estimators of disturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sub = np.mean(xx)
|
||||
elif phi == 'VAR':
|
||||
phi_sub = np.var(xx)
|
||||
elif phi == 'MED':
|
||||
phi_sub = np.median(xx)
|
||||
# subgroup i, remove i-th sample
|
||||
xx = X[:]
|
||||
del xx[i]
|
||||
# calculate estimators of disturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sub = np.mean(xx)
|
||||
elif phi == 'VAR':
|
||||
phi_sub = np.var(xx)
|
||||
elif phi == 'MED':
|
||||
phi_sub = np.median(xx)
|
||||
|
||||
PHI_sub.append(phi_sub)
|
||||
# pseudo values
|
||||
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
|
||||
PHI_pseudo.append(phi_pseudo)
|
||||
PHI_sub.append(phi_sub)
|
||||
# pseudo values
|
||||
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
|
||||
PHI_pseudo.append(phi_pseudo)
|
||||
# jackknife estimator
|
||||
PHI_jack = np.mean(PHI_pseudo)
|
||||
|
||||
@@ -899,17 +900,17 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
# vertical P-coda level must exceed horizontal P-coda level
|
||||
# zfac times encodalevel
|
||||
if zcodalevel < minsiglevel:
|
||||
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||
else:
|
||||
print ("checkZ4S: P onset passes checkZ4S test!")
|
||||
returnflag = 1
|
||||
|
||||
if iplot > 1:
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
edat[0].stats.delta)
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
ndat[0].stats.delta)
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
|
||||
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
||||
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
|
||||
|
||||
Reference in New Issue
Block a user