Modified plot output.
This commit is contained in:
		
							parent
							
								
									f4a76680ad
								
							
						
					
					
						commit
						2ef647251e
					
				| @ -9,7 +9,6 @@ | ||||
| """ | ||||
| 
 | ||||
| import warnings | ||||
| 
 | ||||
| import matplotlib.pyplot as plt | ||||
| import numpy as np | ||||
| from obspy.core import Stream, UTCDateTime | ||||
| @ -411,7 +410,9 @@ def getnoisewin(t, t1, tnoise, tgap): | ||||
|     inoise, = np.where((t <= max([t1 - tgap, 0])) \ | ||||
|                        & (t >= max([t1 - tnoise - tgap, 0]))) | ||||
|     if np.size(inoise) < 1: | ||||
|         print ("getnoisewin: Empty array inoise, check noise window!") | ||||
|         inoise, = np.where((t>=t[0]) & (t<=t1)) | ||||
|         if np.size(inoise) < 1: | ||||
|             print ("getnoisewin: Empty array inoise, check noise window!") | ||||
| 
 | ||||
|     return inoise | ||||
| 
 | ||||
| @ -605,7 +606,7 @@ def wadaticheck(pickdic, dttolerance, iplot): | ||||
|         wfitflag = 1 | ||||
| 
 | ||||
|     # plot results | ||||
|     if iplot > 1: | ||||
|     if iplot > 0: | ||||
|         plt.figure(iplot) | ||||
|         f1, = plt.plot(Ppicks, SPtimes, 'ro') | ||||
|         if wfitflag == 0: | ||||
| @ -756,11 +757,12 @@ def checkPonsets(pickdic, dttolerance, iplot): | ||||
|     [xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1) | ||||
|     # get pseudo variances smaller than average variances | ||||
|     # (times safety factor), these picks passed jackknife test | ||||
|     ij = np.where(PHI_pseudo <= 2 * xjack) | ||||
|     ij = np.where(PHI_pseudo <= 5 * xjack) | ||||
|     # these picks did not pass jackknife test | ||||
|     badjk = np.where(PHI_pseudo > 2 * xjack) | ||||
|     badjk = np.where(PHI_pseudo > 5 * xjack) | ||||
|     badjkstations = np.array(stations)[badjk] | ||||
|     print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations)) | ||||
|     print(badjkstations) | ||||
| 
 | ||||
|     # calculate median from these picks | ||||
|     pmedian = np.median(np.array(Ppicks)[ij]) | ||||
| @ -795,19 +797,22 @@ def checkPonsets(pickdic, dttolerance, iplot): | ||||
| 
 | ||||
|     checkedonsets = pickdic | ||||
| 
 | ||||
|     if iplot > 1: | ||||
|         p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14) | ||||
|         p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14) | ||||
|     if iplot > 0: | ||||
|         p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'ro', markersize=14) | ||||
|         if len(badstations) < 1 and len(badjkstations) < 1: | ||||
|             p2, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'go', markersize=14) | ||||
|         else: | ||||
|             p2, = plt.plot(igood, np.array(Ppicks)[igood], 'go', markersize=14) | ||||
|         p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', | ||||
|                        linewidth=2) | ||||
|         for i in range(0, len(Ppicks)): | ||||
|             plt.text(i, Ppicks[i] + 0.2, stations[i]) | ||||
|             plt.text(i, Ppicks[i] + 0.01, '{0}'.format(stations[i])) | ||||
| 
 | ||||
|         plt.xlabel('Number of P Picks') | ||||
|         plt.ylabel('Onset Time [s] from 1.1.1970') | ||||
|         plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'], | ||||
|                    loc='best') | ||||
|         plt.title('Check P Onsets') | ||||
|         plt.title('Jackknifing and Median Tests on P Onsets') | ||||
|         plt.show() | ||||
|         raw_input() | ||||
| 
 | ||||
| @ -943,8 +948,18 @@ def checkZ4S(X, pick, zfac, checkwin, iplot): | ||||
|     isignal = getsignalwin(tz, pick, checkwin) | ||||
| 
 | ||||
|     # calculate energy levels | ||||
|     zcodalevel = max(absz[isignal]) | ||||
|     encodalevel = max(absen[isignal]) | ||||
|     try: | ||||
|        zcodalevel = max(absz[isignal]) | ||||
|     except: | ||||
|        ii = np.where(isignal <= len(absz)) | ||||
|        isignal = isignal[ii] | ||||
|        zcodalevel = max(absz[isignal - 1]) | ||||
|     try: | ||||
|        encodalevel = max(absen[isignal]) | ||||
|     except: | ||||
|        ii = np.where(isignal <= len(absen)) | ||||
|        isignal = isignal[ii] | ||||
|        encodalevel = max(absen[isignal - 1]) | ||||
| 
 | ||||
|     # calculate threshold | ||||
|     minsiglevel = encodalevel * zfac | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user