Modified plot output.
This commit is contained in:
		
							parent
							
								
									f4a76680ad
								
							
						
					
					
						commit
						2ef647251e
					
				@ -9,7 +9,6 @@
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import numpy as np
 | 
			
		||||
from obspy.core import Stream, UTCDateTime
 | 
			
		||||
@ -411,7 +410,9 @@ def getnoisewin(t, t1, tnoise, tgap):
 | 
			
		||||
    inoise, = np.where((t <= max([t1 - tgap, 0])) \
 | 
			
		||||
                       & (t >= max([t1 - tnoise - tgap, 0])))
 | 
			
		||||
    if np.size(inoise) < 1:
 | 
			
		||||
        print ("getnoisewin: Empty array inoise, check noise window!")
 | 
			
		||||
        inoise, = np.where((t>=t[0]) & (t<=t1))
 | 
			
		||||
        if np.size(inoise) < 1:
 | 
			
		||||
            print ("getnoisewin: Empty array inoise, check noise window!")
 | 
			
		||||
 | 
			
		||||
    return inoise
 | 
			
		||||
 | 
			
		||||
@ -605,7 +606,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
 | 
			
		||||
        wfitflag = 1
 | 
			
		||||
 | 
			
		||||
    # plot results
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
    if iplot > 0:
 | 
			
		||||
        plt.figure(iplot)
 | 
			
		||||
        f1, = plt.plot(Ppicks, SPtimes, 'ro')
 | 
			
		||||
        if wfitflag == 0:
 | 
			
		||||
@ -756,11 +757,12 @@ def checkPonsets(pickdic, dttolerance, iplot):
 | 
			
		||||
    [xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
 | 
			
		||||
    # get pseudo variances smaller than average variances
 | 
			
		||||
    # (times safety factor), these picks passed jackknife test
 | 
			
		||||
    ij = np.where(PHI_pseudo <= 2 * xjack)
 | 
			
		||||
    ij = np.where(PHI_pseudo <= 5 * xjack)
 | 
			
		||||
    # these picks did not pass jackknife test
 | 
			
		||||
    badjk = np.where(PHI_pseudo > 2 * xjack)
 | 
			
		||||
    badjk = np.where(PHI_pseudo > 5 * xjack)
 | 
			
		||||
    badjkstations = np.array(stations)[badjk]
 | 
			
		||||
    print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
 | 
			
		||||
    print(badjkstations)
 | 
			
		||||
 | 
			
		||||
    # calculate median from these picks
 | 
			
		||||
    pmedian = np.median(np.array(Ppicks)[ij])
 | 
			
		||||
@ -795,19 +797,22 @@ def checkPonsets(pickdic, dttolerance, iplot):
 | 
			
		||||
 | 
			
		||||
    checkedonsets = pickdic
 | 
			
		||||
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
        p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
 | 
			
		||||
        p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
 | 
			
		||||
    if iplot > 0:
 | 
			
		||||
        p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'ro', markersize=14)
 | 
			
		||||
        if len(badstations) < 1 and len(badjkstations) < 1:
 | 
			
		||||
            p2, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'go', markersize=14)
 | 
			
		||||
        else:
 | 
			
		||||
            p2, = plt.plot(igood, np.array(Ppicks)[igood], 'go', markersize=14)
 | 
			
		||||
        p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g',
 | 
			
		||||
                       linewidth=2)
 | 
			
		||||
        for i in range(0, len(Ppicks)):
 | 
			
		||||
            plt.text(i, Ppicks[i] + 0.2, stations[i])
 | 
			
		||||
            plt.text(i, Ppicks[i] + 0.01, '{0}'.format(stations[i]))
 | 
			
		||||
 | 
			
		||||
        plt.xlabel('Number of P Picks')
 | 
			
		||||
        plt.ylabel('Onset Time [s] from 1.1.1970')
 | 
			
		||||
        plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'],
 | 
			
		||||
                   loc='best')
 | 
			
		||||
        plt.title('Check P Onsets')
 | 
			
		||||
        plt.title('Jackknifing and Median Tests on P Onsets')
 | 
			
		||||
        plt.show()
 | 
			
		||||
        raw_input()
 | 
			
		||||
 | 
			
		||||
@ -943,8 +948,18 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
 | 
			
		||||
    isignal = getsignalwin(tz, pick, checkwin)
 | 
			
		||||
 | 
			
		||||
    # calculate energy levels
 | 
			
		||||
    zcodalevel = max(absz[isignal])
 | 
			
		||||
    encodalevel = max(absen[isignal])
 | 
			
		||||
    try:
 | 
			
		||||
       zcodalevel = max(absz[isignal])
 | 
			
		||||
    except:
 | 
			
		||||
       ii = np.where(isignal <= len(absz))
 | 
			
		||||
       isignal = isignal[ii]
 | 
			
		||||
       zcodalevel = max(absz[isignal - 1])
 | 
			
		||||
    try:
 | 
			
		||||
       encodalevel = max(absen[isignal])
 | 
			
		||||
    except:
 | 
			
		||||
       ii = np.where(isignal <= len(absen))
 | 
			
		||||
       isignal = isignal[ii]
 | 
			
		||||
       encodalevel = max(absen[isignal - 1])
 | 
			
		||||
 | 
			
		||||
    # calculate threshold
 | 
			
		||||
    minsiglevel = encodalevel * zfac
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user