Marginal changes.
This commit is contained in:
parent
5bb616ffc5
commit
3e81adfec6
@ -13,8 +13,6 @@ import scipy as sc
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
import pdb
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
'''
|
||||
@ -257,6 +255,8 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
elif P1[0] > 0 and P2[0] <= 0:
|
||||
FM = '+'
|
||||
|
||||
print 'fmpicker: Found polarity %s' % FM
|
||||
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
plt.subplot(2, 1, 1)
|
||||
@ -301,48 +301,34 @@ def crossings_nonzero_all(data):
|
||||
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
||||
|
||||
|
||||
def getSNR(st, TSNR, t0):
|
||||
"""
|
||||
returns the maximum signal to noise ratio SNR (also in dB) and the
|
||||
corresponding noise level for a given data stream ST ,initial time T0 and
|
||||
time window parameter tuple TSNR
|
||||
def getSNR(X, TSNR, t1):
|
||||
'''
|
||||
Function to calculate SNR of certain part of seismogram relative to
|
||||
given time (onset) out of given noise and signal windows. A safety gap
|
||||
between noise and signal part can be set. Returns SNR and SNR [dB] and
|
||||
noiselevel.
|
||||
|
||||
:param: st, time series (seismogram)
|
||||
:param: X, time series (seismogram)
|
||||
:type: `~obspy.core.stream.Stream`
|
||||
:param: TSNR, length of time windows [s] around t0 (onset) used to determine
|
||||
SNR
|
||||
|
||||
:param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR
|
||||
:type: tuple (T_noise, T_gap, T_signal)
|
||||
:param: t0, initial time (onset) from which noise and signal windows are calculated
|
||||
|
||||
:param: t1, initial time (onset) from which noise and signal windows are calculated
|
||||
:type: float
|
||||
:return: SNR, SNRdB, noiselevel
|
||||
'''
|
||||
|
||||
..examples:
|
||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||
|
||||
>>> from obspy.core import read
|
||||
>>> st = read()
|
||||
>>> result = getSNR(st, (6., .3, 3.), 4.67)
|
||||
>>> print result
|
||||
(5.1267717641040758, 7.0984398375666435, 132.89370192191919)
|
||||
>>> result = getSNR(st, (8., .2, 5.), 4.67)
|
||||
>>> print result
|
||||
(4.645441835797703, 6.6702702677384131, 133.03562794665109)
|
||||
"""
|
||||
|
||||
assert isinstance(st, Stream), "%s is not a stream object" % str(st)
|
||||
|
||||
SNR = None
|
||||
noiselevel = None
|
||||
|
||||
for tr in st:
|
||||
x = tr.data
|
||||
t = np.arange(0, tr.stats.npts / tr.stats.sampling_rate,
|
||||
tr.stats.delta)
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, t0, TSNR[0], TSNR[1])
|
||||
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
|
||||
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, t0, TSNR[2])
|
||||
isignal = getsignalwin(t, t1, TSNR[2])
|
||||
if np.size(inoise) < 1:
|
||||
print 'getSNR: Empty array inoise, check noise window!'
|
||||
return
|
||||
@ -354,18 +340,9 @@ def getSNR(st, TSNR, t0):
|
||||
x = x - np.mean(x[inoise])
|
||||
|
||||
# calculate ratios
|
||||
new_noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
||||
newSNR = signallevel / new_noiselevel
|
||||
if not SNR or newSNR > SNR:
|
||||
SNR = newSNR
|
||||
noiselevel = new_noiselevel
|
||||
|
||||
if not SNR or not noiselevel:
|
||||
raise ValueError('signal to noise ratio could not be calculated:\n'
|
||||
'noiselevel: {0}\n'
|
||||
'SNR: {1}'.format(noiselevel, SNR))
|
||||
|
||||
SNR = signallevel / noiselevel
|
||||
SNRdB = 10 * np.log10(SNR)
|
||||
|
||||
return SNR, SNRdB, noiselevel
|
||||
@ -457,7 +434,7 @@ def getResolutionWindow(snr):
|
||||
else:
|
||||
time_resolution = res_wins['HRW']
|
||||
|
||||
return time_resolution / 2
|
||||
return time_resolution/2
|
||||
|
||||
|
||||
def wadaticheck(pickdic, dttolerance, iplot):
|
||||
@ -496,6 +473,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
Spicks.append(UTCSpick.timestamp)
|
||||
SPtimes.append(spt)
|
||||
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
@ -527,8 +505,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
checkedPpicks.append(checkedPpick.timestamp)
|
||||
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
checkedSpicks.append(checkedSpick.timestamp)
|
||||
checkedSPtime = pickdic[key]['S']['mpp'] - \
|
||||
pickdic[key]['P']['mpp']
|
||||
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
checkedSPtimes.append(checkedSPtime)
|
||||
|
||||
pickdic[key]['S']['marked'] = marker
|
||||
@ -551,7 +528,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||
print 'Skip wadati check!'
|
||||
wfitflag = 1
|
||||
iplot = 2
|
||||
iplot=2
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
@ -563,8 +540,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'],
|
||||
loc='best')
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
else:
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
|
||||
@ -626,7 +602,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
# calculate minimum adjusted signal level
|
||||
minsiglevel = max(e[inoise]) * nfac
|
||||
# minimum adjusted number of samples over minimum signal level
|
||||
minnum = len(isignal) * minpercent / 100
|
||||
minnum = len(isignal) * minpercent/100
|
||||
# get number of samples above minimum adjusted signal level
|
||||
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
||||
|
||||
@ -640,17 +616,16 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t, x, 'k')
|
||||
p1, = plt.plot(t,x, 'k')
|
||||
p2, = plt.plot(t[inoise], e[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal], e[isignal], 'r')
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p2, = plt.plot(t[inoise], e[inoise])
|
||||
p3, = plt.plot(t[isignal], e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]], \
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
[minsiglevel, minsiglevel], 'g')
|
||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
||||
'Envelope Signal Window',
|
||||
'Minimum Signal Level', \
|
||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
||||
'Onset'], loc='best')
|
||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
@ -694,7 +669,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
|
||||
# apply jackknife bootstrapping on variance of P onsets
|
||||
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
|
||||
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
# get pseudo variances smaller than average variances
|
||||
# these picks passed jackknife test
|
||||
ij = np.where(PHI_pseudo <= xjack)
|
||||
@ -713,8 +688,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
badstations = np.array(stations)[ibad]
|
||||
|
||||
print 'checkPonset: Skipped %d P onsets out of %d' % (len(badstations) \
|
||||
+ len(badjkstations),
|
||||
len(stations))
|
||||
+ len(badjkstations), len(stations))
|
||||
|
||||
goodmarker = 'goodPonsetcheck'
|
||||
badmarker = 'badPonsetcheck'
|
||||
@ -819,7 +793,108 @@ def jackknife(X, phi, h):
|
||||
return PHI_jack, PHI_pseudo, PHI_sub
|
||||
|
||||
|
||||
def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
'''
|
||||
Function to compare energy content of vertical trace with
|
||||
energy content of horizontal traces to detect spuriously
|
||||
picked S onsets instead of P onsets. Usually, P coda shows
|
||||
larger longitudal energy on vertical trace than on horizontal
|
||||
traces, where the transversal energy is larger within S coda.
|
||||
Be careful: there are special circumstances, where this is not
|
||||
the case!
|
||||
|
||||
: param: X, fitered(!) time series, three traces
|
||||
: type: `~obspy.core.stream.Stream`
|
||||
|
||||
: param: pick, initial (AIC) P onset time
|
||||
: type: float
|
||||
|
||||
: param: zfac, factor for threshold determination,
|
||||
vertical energy must exceed coda level times zfac
|
||||
to declare a pick as P onset
|
||||
: type: float
|
||||
|
||||
: param: checkwin, window length [s] for calculating P-coda
|
||||
energy content
|
||||
: type: float
|
||||
|
||||
: param: iplot, if iplot > 1, energy content and threshold
|
||||
are shown
|
||||
: type: int
|
||||
'''
|
||||
|
||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||
|
||||
print 'Check for spuriously picked S onset instead of P onset ...'
|
||||
|
||||
returnflag = 0
|
||||
|
||||
# split components
|
||||
zdat = X.select(component="Z")
|
||||
edat = X.select(component="E")
|
||||
if len(edat) == 0: # check for other components
|
||||
edat = X.select(component="2")
|
||||
ndat = X.select(component="N")
|
||||
if len(ndat) == 0: # check for other components
|
||||
ndat = X.select(component="1")
|
||||
|
||||
|
||||
z = zdat[0].data
|
||||
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
|
||||
zdat[0].stats.delta)
|
||||
|
||||
# calculate RMS trace from vertical component
|
||||
absz = np.sqrt(np.power(z, 2))
|
||||
# calculate RMS trace from both horizontal traces
|
||||
# make sure, both traces have equal lengths
|
||||
lene = len(edat[0].data)
|
||||
lenn = len(ndat[0].data)
|
||||
minlen = min([lene, lenn])
|
||||
absen = np.sqrt(np.power(edat[0].data[0:minlen - 1], 2) \
|
||||
+ np.power(ndat[0].data[0:minlen - 1], 2))
|
||||
|
||||
# get signal window
|
||||
isignal = getsignalwin(tz, pick, checkwin)
|
||||
|
||||
# calculate energy levels
|
||||
zcodalevel = max(absz[isignal])
|
||||
encodalevel = max(absen[isignal])
|
||||
|
||||
# calculate threshold
|
||||
minsiglevel = encodalevel * zfac
|
||||
|
||||
# vertical P-coda level must exceed horizontal P-coda level
|
||||
# zfac times encodalevel
|
||||
if zcodalevel < minsiglevel:
|
||||
print 'checkZ4S: Maybe S onset? Skip this P pick!'
|
||||
else:
|
||||
print 'checkZ4S: P onset passed checkZ4S test!'
|
||||
returnflag = 1
|
||||
|
||||
if iplot > 1:
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
edat[0].stats.delta)
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
ndat[0].stats.delta)
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
|
||||
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
||||
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
|
||||
plt.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k')
|
||||
plt.plot(tn[isignal], ndat[0].data[isignal] / max(ndat[0].data) + 2, 'r')
|
||||
plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]], \
|
||||
[minsiglevel / max(z), minsiglevel / max(z)], 'g', \
|
||||
linewidth=2)
|
||||
plt.xlabel('Time [s] since %s' % zdat[0].stats.starttime)
|
||||
plt.ylabel('Normalized Counts')
|
||||
plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel, \
|
||||
ndat[0].stats.channel])
|
||||
plt.title('CheckZ4S, Station %s' % zdat[0].stats.station)
|
||||
plt.show()
|
||||
raw_input()
|
||||
|
||||
return returnflag
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
Loading…
Reference in New Issue
Block a user