Marginal changes.

This commit is contained in:
Ludger Küperkoch 2015-07-01 15:31:50 +02:00
parent 5bb616ffc5
commit 3e81adfec6

View File

@ -13,8 +13,6 @@ import scipy as sc
import matplotlib.pyplot as plt
from obspy.core import Stream, UTCDateTime
import warnings
import pdb
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
'''
@ -61,7 +59,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
ilup, = np.where(x[isignal] > nlevel)
ildown, = np.where(x[isignal] < -nlevel)
if not ilup.size and not ildown.size:
print 'earllatepicker: Signal lower than noise level!'
print 'earllatepicker: Signal lower than noise level!'
print 'Skip this trace!'
return LPick, EPick, PickError
il = min(np.min(ilup) if ilup.size else float('inf'),
@ -188,11 +186,11 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
if imax1 == 0:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
if imax1 == 0:
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
return FM
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
return FM
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
# calculate slope as polynomal fit of order 1
@ -230,11 +228,11 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
if imax2 == 0:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
if imax1 == 0:
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
return FM
print 'fmpicker: Zero crossings too close!'
print 'Skip first motion determination!'
return FM
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
# calculate slope as polynomal fit of order 1
@ -256,6 +254,8 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
FM = '+'
elif P1[0] > 0 and P2[0] <= 0:
FM = '+'
print 'fmpicker: Found polarity %s' % FM
if iplot > 1:
plt.figure(iplot)
@ -301,71 +301,48 @@ def crossings_nonzero_all(data):
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
def getSNR(st, TSNR, t0):
"""
returns the maximum signal to noise ratio SNR (also in dB) and the
corresponding noise level for a given data stream ST ,initial time T0 and
time window parameter tuple TSNR
def getSNR(X, TSNR, t1):
'''
Function to calculate SNR of certain part of seismogram relative to
given time (onset) out of given noise and signal windows. A safety gap
between noise and signal part can be set. Returns SNR and SNR [dB] and
noiselevel.
:param: st, time series (seismogram)
:param: X, time series (seismogram)
:type: `~obspy.core.stream.Stream`
:param: TSNR, length of time windows [s] around t0 (onset) used to determine
SNR
:param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR
:type: tuple (T_noise, T_gap, T_signal)
:param: t0, initial time (onset) from which noise and signal windows are calculated
:param: t1, initial time (onset) from which noise and signal windows are calculated
:type: float
:return: SNR, SNRdB, noiselevel
'''
..examples:
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
>>> from obspy.core import read
>>> st = read()
>>> result = getSNR(st, (6., .3, 3.), 4.67)
>>> print result
(5.1267717641040758, 7.0984398375666435, 132.89370192191919)
>>> result = getSNR(st, (8., .2, 5.), 4.67)
>>> print result
(4.645441835797703, 6.6702702677384131, 133.03562794665109)
"""
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta)
assert isinstance(st, Stream), "%s is not a stream object" % str(st)
# get noise window
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
SNR = None
noiselevel = None
# get signal window
isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
return
for tr in st:
x = tr.data
t = np.arange(0, tr.stats.npts / tr.stats.sampling_rate,
tr.stats.delta)
# get noise window
inoise = getnoisewin(t, t0, TSNR[0], TSNR[1])
# get signal window
isignal = getsignalwin(t, t0, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
return
# demean over entire waveform
x = x - np.mean(x[inoise])
# calculate ratios
new_noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
newSNR = signallevel / new_noiselevel
if not SNR or newSNR > SNR:
SNR = newSNR
noiselevel = new_noiselevel
if not SNR or not noiselevel:
raise ValueError('signal to noise ratio could not be calculated:\n'
'noiselevel: {0}\n'
'SNR: {1}'.format(noiselevel, SNR))
# demean over entire waveform
x = x - np.mean(x[inoise])
# calculate ratios
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
SNR = signallevel / noiselevel
SNRdB = 10 * np.log10(SNR)
return SNR, SNRdB, noiselevel
@ -392,7 +369,7 @@ def getnoisewin(t, t1, tnoise, tgap):
# get noise window
inoise, = np.where((t <= max([t1 - tgap, 0])) \
& (t >= max([t1 - tnoise - tgap, 0])))
& (t >= max([t1 - tnoise - tgap, 0])))
if np.size(inoise) < 1:
print 'getnoisewin: Empty array inoise, check noise window!'
@ -416,7 +393,7 @@ def getsignalwin(t, t1, tsignal):
# get signal window
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
& (t >= t1))
& (t >= t1))
if np.size(isignal) < 1:
print 'getsignalwin: Empty array isignal, check signal window!'
@ -457,7 +434,7 @@ def getResolutionWindow(snr):
else:
time_resolution = res_wins['HRW']
return time_resolution / 2
return time_resolution/2
def wadaticheck(pickdic, dttolerance, iplot):
@ -485,21 +462,22 @@ def wadaticheck(pickdic, dttolerance, iplot):
SPtimes = []
for key in pickdic:
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
# calculate S-P time
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
# add S-P time to dictionary
pickdic[key]['SPt'] = spt
# add P onsets and corresponding S-P times to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
Ppicks.append(UTCPpick.timestamp)
Spicks.append(UTCSpick.timestamp)
SPtimes.append(spt)
# calculate S-P time
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
# add S-P time to dictionary
pickdic[key]['SPt'] = spt
# add P onsets and corresponding S-P times to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
Ppicks.append(UTCPpick.timestamp)
Spicks.append(UTCSpick.timestamp)
SPtimes.append(spt)
if len(SPtimes) >= 3:
# calculate slope
p1 = np.polyfit(Ppicks, SPtimes, 1)
wdfit = np.polyval(p1, Ppicks)
# calculate slope
p1 = np.polyfit(Ppicks, SPtimes, 1)
wdfit = np.polyval(p1, Ppicks)
wfitflag = 0
# calculate vp/vs ratio before check
@ -523,50 +501,48 @@ def wadaticheck(pickdic, dttolerance, iplot):
pickdic[key]['S']['weight'] = 9
else:
marker = 'goodWadatiCheck'
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
checkedPpicks.append(checkedPpick.timestamp)
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
checkedSpicks.append(checkedSpick.timestamp)
checkedSPtime = pickdic[key]['S']['mpp'] - \
pickdic[key]['P']['mpp']
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
checkedSPtimes.append(checkedSPtime)
pickdic[key]['S']['marked'] = marker
if len(checkedPpicks) >= 3:
# calculate new slope
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
wdfit2 = np.polyval(p2, checkedPpicks)
# calculate new slope
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
wdfit2 = np.polyval(p2, checkedPpicks)
# calculate vp/vs ratio after check
cvpvsr = p2[0] + 1
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
# calculate vp/vs ratio after check
cvpvsr = p2[0] + 1
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
else:
print 'wadatacheck: Not enough checked S-P times available!'
print 'Skip Wadati check!'
print 'wadatacheck: Not enough checked S-P times available!'
print 'Skip Wadati check!'
checkedonsets = pickdic
else:
print 'wadaticheck: Not enough S-P times available for reliable regression!'
print 'wadaticheck: Not enough S-P times available for reliable regression!'
print 'Skip wadati check!'
wfitflag = 1
iplot = 2
iplot=2
# plot results
if iplot > 1:
plt.figure(iplot)
f1, = plt.plot(Ppicks, SPtimes, 'ro')
plt.figure(iplot)
f1, = plt.plot(Ppicks, SPtimes, 'ro')
if wfitflag == 0:
f2, = plt.plot(Ppicks, wdfit, 'k')
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
'Reliable S-Picks', 'Wadati 2'],
loc='best')
f2, = plt.plot(Ppicks, wdfit, 'k')
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
'Reliable S-Picks', 'Wadati 2'], loc='best')
else:
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
plt.ylabel('S-P Times [s]')
plt.xlabel('P Times [s]')
@ -626,12 +602,12 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
# calculate minimum adjusted signal level
minsiglevel = max(e[inoise]) * nfac
# minimum adjusted number of samples over minimum signal level
minnum = len(isignal) * minpercent / 100
minnum = len(isignal) * minpercent/100
# get number of samples above minimum adjusted signal level
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
if numoverthr >= minnum:
print 'checksignallength: Signal reached required length.'
print 'checksignallength: Signal reached required length.'
returnflag = 1
else:
print 'checksignallength: Signal shorter than required minimum signal length!'
@ -640,18 +616,17 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
if iplot == 2:
plt.figure(iplot)
p1, = plt.plot(t, x, 'k')
p1, = plt.plot(t,x, 'k')
p2, = plt.plot(t[inoise], e[inoise], 'c')
p3, = plt.plot(t[isignal], e[isignal], 'r')
p3, = plt.plot(t[isignal],e[isignal], 'r')
p2, = plt.plot(t[inoise], e[inoise])
p3, = plt.plot(t[isignal], e[isignal], 'r')
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]], \
[minsiglevel, minsiglevel], 'g')
p3, = plt.plot(t[isignal],e[isignal], 'r')
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
[minsiglevel, minsiglevel], 'g')
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
'Envelope Signal Window',
'Minimum Signal Level', \
'Onset'], loc='best')
'Envelope Signal Window', 'Minimum Signal Level', \
'Onset'], loc='best')
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
plt.ylabel('Counts')
plt.title('Check for Signal Length, Station %s' % X[0].stats.station)
@ -665,7 +640,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
def checkPonsets(pickdic, dttolerance, iplot):
'''
Function to check statistics of P-onset times: Control deviation from
Function to check statistics of P-onset times: Control deviation from
median (maximum adjusted deviation = dttolerance) and apply pseudo-
bootstrapping jackknife.
@ -687,14 +662,14 @@ def checkPonsets(pickdic, dttolerance, iplot):
stations = []
for key in pickdic:
if pickdic[key]['P']['weight'] < 4:
# add P onsets to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
Ppicks.append(UTCPpick.timestamp)
stations.append(key)
# add P onsets to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
Ppicks.append(UTCPpick.timestamp)
stations.append(key)
# apply jackknife bootstrapping on variance of P onsets
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
# get pseudo variances smaller than average variances
# these picks passed jackknife test
ij = np.where(PHI_pseudo <= xjack)
@ -713,41 +688,40 @@ def checkPonsets(pickdic, dttolerance, iplot):
badstations = np.array(stations)[ibad]
print 'checkPonset: Skipped %d P onsets out of %d' % (len(badstations) \
+ len(badjkstations),
len(stations))
+ len(badjkstations), len(stations))
goodmarker = 'goodPonsetcheck'
badmarker = 'badPonsetcheck'
badjkmarker = 'badjkcheck'
for i in range(0, len(goodstations)):
# mark P onset as checked and keep P weight
pickdic[goodstations[i]]['P']['marked'] = goodmarker
pickdic[goodstations[i]]['P']['marked'] = goodmarker
for i in range(0, len(badstations)):
# mark P onset and downgrade P weight to 9
# (not used anymore)
pickdic[badstations[i]]['P']['marked'] = badmarker
pickdic[badstations[i]]['P']['weight'] = 9
# mark P onset and downgrade P weight to 9
# (not used anymore)
pickdic[badstations[i]]['P']['marked'] = badmarker
pickdic[badstations[i]]['P']['weight'] = 9
for i in range(0, len(badjkstations)):
# mark P onset and downgrade P weight to 9
# (not used anymore)
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
pickdic[badjkstations[i]]['P']['weight'] = 9
# mark P onset and downgrade P weight to 9
# (not used anymore)
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
pickdic[badjkstations[i]]['P']['weight'] = 9
checkedonsets = pickdic
iplot = 2
if iplot > 1:
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \
linewidth=2)
linewidth=2)
for i in range(0, len(Ppicks)):
plt.text(i, Ppicks[i] + 0.2, stations[i])
plt.text(i, Ppicks[i] + 0.2, stations[i])
plt.xlabel('Number of P Picks')
plt.xlabel('Number of P Picks')
plt.ylabel('Onset Time [s] from 1.1.1970')
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'], \
loc='best')
loc='best')
plt.title('Check P Onsets')
plt.show()
raw_input()
@ -773,7 +747,7 @@ def jackknife(X, phi, h):
: param: h, size of subgroups, optinal, default = 1
: type: integer
'''
PHI_jack = None
PHI_pseudo = None
PHI_sub = None
@ -782,44 +756,145 @@ def jackknife(X, phi, h):
g = len(X) / h
if type(g) is not int:
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
print 'Choose another size for subgroups!'
return PHI_jack, PHI_pseudo, PHI_sub
else:
# estimator of undisturbed spot check
if phi == 'MEA':
phi_sc = np.mean(X)
# estimator of undisturbed spot check
if phi == 'MEA':
phi_sc = np.mean(X)
elif phi == 'VAR':
phi_sc = np.var(X)
phi_sc = np.var(X)
elif phi == 'MED':
phi_sc = np.median(X)
phi_sc = np.median(X)
# estimators of subgroups
# estimators of subgroups
PHI_pseudo = []
PHI_sub = []
for i in range(0, g - 1):
# subgroup i, remove i-th sample
xx = X[:]
del xx[i]
# calculate estimators of disturbed spot check
if phi == 'MEA':
phi_sub = np.mean(xx)
elif phi == 'VAR':
phi_sub = np.var(xx)
elif phi == 'MED':
phi_sub = np.median(xx)
PHI_sub.append(phi_sub)
# pseudo values
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
PHI_pseudo.append(phi_pseudo)
# subgroup i, remove i-th sample
xx = X[:]
del xx[i]
# calculate estimators of disturbed spot check
if phi == 'MEA':
phi_sub = np.mean(xx)
elif phi == 'VAR':
phi_sub = np.var(xx)
elif phi == 'MED':
phi_sub = np.median(xx)
PHI_sub.append(phi_sub)
# pseudo values
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
PHI_pseudo.append(phi_pseudo)
# jackknife estimator
PHI_jack = np.mean(PHI_pseudo)
return PHI_jack, PHI_pseudo, PHI_sub
def checkZ4S(X, pick, zfac, checkwin, iplot):
'''
Function to compare energy content of vertical trace with
energy content of horizontal traces to detect spuriously
picked S onsets instead of P onsets. Usually, P coda shows
larger longitudal energy on vertical trace than on horizontal
traces, where the transversal energy is larger within S coda.
Be careful: there are special circumstances, where this is not
the case!
: param: X, fitered(!) time series, three traces
: type: `~obspy.core.stream.Stream`
: param: pick, initial (AIC) P onset time
: type: float
: param: zfac, factor for threshold determination,
vertical energy must exceed coda level times zfac
to declare a pick as P onset
: type: float
: param: checkwin, window length [s] for calculating P-coda
energy content
: type: float
: param: iplot, if iplot > 1, energy content and threshold
are shown
: type: int
'''
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print 'Check for spuriously picked S onset instead of P onset ...'
returnflag = 0
# split components
zdat = X.select(component="Z")
edat = X.select(component="E")
if len(edat) == 0: # check for other components
edat = X.select(component="2")
ndat = X.select(component="N")
if len(ndat) == 0: # check for other components
ndat = X.select(component="1")
z = zdat[0].data
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
zdat[0].stats.delta)
# calculate RMS trace from vertical component
absz = np.sqrt(np.power(z, 2))
# calculate RMS trace from both horizontal traces
# make sure, both traces have equal lengths
lene = len(edat[0].data)
lenn = len(ndat[0].data)
minlen = min([lene, lenn])
absen = np.sqrt(np.power(edat[0].data[0:minlen - 1], 2) \
+ np.power(ndat[0].data[0:minlen - 1], 2))
# get signal window
isignal = getsignalwin(tz, pick, checkwin)
# calculate energy levels
zcodalevel = max(absz[isignal])
encodalevel = max(absen[isignal])
# calculate threshold
minsiglevel = encodalevel * zfac
# vertical P-coda level must exceed horizontal P-coda level
# zfac times encodalevel
if zcodalevel < minsiglevel:
print 'checkZ4S: Maybe S onset? Skip this P pick!'
else:
print 'checkZ4S: P onset passed checkZ4S test!'
returnflag = 1
if iplot > 1:
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
edat[0].stats.delta)
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
ndat[0].stats.delta)
plt.plot(tz, z / max(z), 'k')
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
plt.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k')
plt.plot(tn[isignal], ndat[0].data[isignal] / max(ndat[0].data) + 2, 'r')
plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]], \
[minsiglevel / max(z), minsiglevel / max(z)], 'g', \
linewidth=2)
plt.xlabel('Time [s] since %s' % zdat[0].stats.starttime)
plt.ylabel('Normalized Counts')
plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel, \
ndat[0].stats.channel])
plt.title('CheckZ4S, Station %s' % zdat[0].stats.station)
plt.show()
raw_input()
return returnflag
if __name__ == '__main__':
import doctest
doctest.testmod()