[refs #195] realized an object oriented implementation of comparison

comparing pdf represented picks should be easy, thus objects returning everything needed are implemented; histograms and other plots are planned next
This commit is contained in:
Sebastian Wehling-Benatelli 2016-04-05 22:19:55 +02:00
parent a475b366d4
commit 5f9a9242d1

View File

@ -1,6 +1,8 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import copy
from obspy import read_events from obspy import read_events
from pylot.core.read.io import picks_from_evt from pylot.core.read.io import picks_from_evt
@ -11,51 +13,124 @@ __version__ = _getVersionString()
__author__ = 'sebastianw' __author__ = 'sebastianw'
def read_data(fn, type='exp'): class Comparison(object):
""" """
Reads pick data from QuakeML files named FN and returns a dictionary A Comparison object contains information on the evaluated picks' probability
containing a ProbabilityDensityFunction object for each pick. density function and compares these in terms of building the difference of
:param fn: name of the QuakeML file which contains the picks compared pick sets. The results can be displayed as histograms showing its
:type fn: str properties.
:return: a dictionary containing the picks represented as pdfs
""" """
pdf_picks = picks_from_evt(read_events(fn)[0]) def __init__(self, **kwargs):
names = list()
self._pdfs = dict()
for name, fn in kwargs:
self._pdfs[name] = PDFDictionary.from_quakeml(fn)
names.append(name)
if len(names) > 2:
raise ValueError('Comparison is only defined for two '
'arguments!')
self._names = names
for station, phases in pdf_picks.items(): def __nonzero__(self):
for phase, values in phases.items(): if not len(self.names) == 2 or not self._pdfs:
phases[phase] = ProbabilityDensityFunction.fromPick(values['epp'], return False
values['mpp'], return True
values['lpp'],
type=type)
return pdf_picks def get(self, name):
return self._pdfs[name]
@property
def names(self):
return self._names
@names.setter
def names(self, names):
assert isinstance(names, list) and len(names) == 2, 'variable "names"' \
' is either not a' \
' list or its ' \
'length is not 2:' \
'names : {names}'.format(names=names)
self._names = names
def compare_picksets(self):
"""
Compare two picksets A and B and return a dictionary compiling the results.
Comparison is carried out with the help of pdf representation of the picks
and a probabilistic approach to the time difference of two onset
measurements.
:param a: filename for pickset A
:type a: str
:param b: filename for pickset B
:type b: str
:return: dictionary containing the resulting comparison pdfs for all picks
:rtype: dict
"""
compare_pdfs = dict()
pdf_a = self.get(self.names[0])
pdf_b = self.get(self.names[1])
for station, phases in pdf_a.items():
if station in pdf_b.keys():
compare_pdf = dict()
for phase in phases:
if phase in pdf_b[station].keys():
compare_pdf[phase] = phases[phase] - pdf_b[station][
phase]
if compare_pdf is not None:
compare_pdfs[station] = compare_pdf
return compare_pdfs
def compare_picksets(a, b): class PDFDictionary(object):
""" """
Compare two picksets A and B and return a dictionary compiling the results. A PDFDictionary is a dictionary like object containing structured data on
Comparison is carried out with the help of pdf representation of the picks the probability density function of seismic phase onsets.
and a probabilistic approach to the time difference of two onset
measurements.
:param a: filename for pickset A
:type a: str
:param b: filename for pickset B
:type b: str
:return: dictionary containing the resulting comparison pdfs for all picks
:rtype: dict
""" """
pdf_a = read_data(a) def __init__(self, data):
pdf_b = read_data(b) self._pickdata = data
compare_pdfs = dict() def __nonzero__(self):
if len(self.pick_data) < 1:
return False
else:
return True
for station, phases in pdf_a.items(): @property
if station in pdf_b.keys(): def pick_data(self):
compare_pdf = dict() return self._pickdata
for phase in phases:
if phase in pdf_b[station].keys(): @pick_data.setter
compare_pdf[phase] = phases[phase] - pdf_b[station][phase] def pick_data(self, data):
if compare_pdf is not None: self._pickdata = data
compare_pdfs[station] = compare_pdf
@classmethod
def from_quakeml(self, fn):
cat = read_events(fn)
if len(cat) > 1:
raise NotImplementedError('reading more than one event at the same '
'time is not implemented yet! Sorry!')
self.pick_data = picks_from_evt(cat[0])
def pdf_data(self, type='exp'):
"""
Returns probabiliy density function dictionary containing the
representation of the actual pick_data.
:param type: type of the returned
`~pylot.core.util.pdf.ProbabilityDensityFunction` object
:type type: str
:return: a dictionary containing the picks represented as pdfs
"""
pdf_picks = copy.deepcopy(self.pick_data)
for station, phases in pdf_picks.items():
for phase, values in phases.items():
phases[phase] = ProbabilityDensityFunction.fromPick(values['epp'],
values['mpp'],
values['lpp'],
type=type)
return pdf_picks
return compare_pdfs