Cosmetics, changed print commands to keep compatibility to Python 3.
This commit is contained in:
		
							parent
							
								
									bf1194ec3b
								
							
						
					
					
						commit
						60b9f176f0
					
				@ -7,7 +7,6 @@
 | 
			
		||||
 | 
			
		||||
   :author: Ludger Kueperkoch / MAGS2 EP3 working group
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import scipy as sc
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
@ -44,7 +43,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
 | 
			
		||||
    LPick = None
 | 
			
		||||
    EPick = None
 | 
			
		||||
    PickError = None
 | 
			
		||||
    print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
 | 
			
		||||
    print ("earllatepicker: Get earliest and latest possible pick relative to most likely pick ...")
 | 
			
		||||
 | 
			
		||||
    x = X[0].data
 | 
			
		||||
    t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
 | 
			
		||||
@ -60,8 +59,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
 | 
			
		||||
    ilup, = np.where(x[isignal] > nlevel)
 | 
			
		||||
    ildown, = np.where(x[isignal] < -nlevel)
 | 
			
		||||
    if not ilup.size and not ildown.size:
 | 
			
		||||
    	print 'earllatepicker: Signal lower than noise level!'
 | 
			
		||||
        print 'Skip this trace!'
 | 
			
		||||
    	print ("earllatepicker: Signal lower than noise level!")
 | 
			
		||||
        print ("Skip this trace!")
 | 
			
		||||
        return LPick, EPick, PickError
 | 
			
		||||
    il = min(np.min(ilup) if ilup.size else float('inf'),
 | 
			
		||||
             np.min(ildown) if ildown.size else float('inf'))
 | 
			
		||||
@ -143,7 +142,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
 | 
			
		||||
 | 
			
		||||
    FM = None
 | 
			
		||||
    if Pick is not None:
 | 
			
		||||
        print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
 | 
			
		||||
        print ("fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...")
 | 
			
		||||
 | 
			
		||||
        xraw = Xraw[0].data
 | 
			
		||||
        xfilt = Xfilt[0].data
 | 
			
		||||
@ -182,15 +181,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
 | 
			
		||||
        else:
 | 
			
		||||
            li1 = index1[0]
 | 
			
		||||
        if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
 | 
			
		||||
            print 'fmpicker: Onset on unfiltered trace too emergent for first motion determination!'
 | 
			
		||||
            print ("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
 | 
			
		||||
            P1 = None
 | 
			
		||||
        else:
 | 
			
		||||
            imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
 | 
			
		||||
            if imax1 == 0:
 | 
			
		||||
            	imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
 | 
			
		||||
                if imax1 == 0:
 | 
			
		||||
                	print 'fmpicker: Zero crossings too close!'
 | 
			
		||||
                        print 'Skip first motion determination!'
 | 
			
		||||
                	print ("fmpicker: Zero crossings too close!")
 | 
			
		||||
                        print ("Skip first motion determination!")
 | 
			
		||||
                        return FM
 | 
			
		||||
 | 
			
		||||
            islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
 | 
			
		||||
@ -224,15 +223,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
 | 
			
		||||
        else:
 | 
			
		||||
            li2 = index2[0]
 | 
			
		||||
        if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
 | 
			
		||||
            print 'fmpicker: Onset on filtered trace too emergent for first motion determination!'
 | 
			
		||||
            print ("fmpicker: Onset on filtered trace too emergent for first motion determination!")
 | 
			
		||||
            P2 = None
 | 
			
		||||
        else:
 | 
			
		||||
            imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
 | 
			
		||||
            if imax2 == 0:
 | 
			
		||||
            	imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
 | 
			
		||||
                if imax2 == 0:
 | 
			
		||||
                	print 'fmpicker: Zero crossings too close!'
 | 
			
		||||
                        print 'Skip first motion determination!'
 | 
			
		||||
                	print ("fmpicker: Zero crossings too close!")
 | 
			
		||||
                        print ("Skip first motion determination!")
 | 
			
		||||
                        return FM
 | 
			
		||||
 | 
			
		||||
            islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
 | 
			
		||||
@ -256,7 +255,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
 | 
			
		||||
            elif P1[0] > 0 and P2[0] <= 0:
 | 
			
		||||
                FM = '+'
 | 
			
		||||
 | 
			
		||||
        print 'fmpicker: Found polarity %s' % FM
 | 
			
		||||
        print ("fmpicker: Found polarity %s" % FM)
 | 
			
		||||
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
        plt.figure(iplot)
 | 
			
		||||
@ -331,10 +330,10 @@ def getSNR(X, TSNR, t1):
 | 
			
		||||
    # get signal window
 | 
			
		||||
    isignal = getsignalwin(t, t1, TSNR[2])
 | 
			
		||||
    if np.size(inoise) < 1:
 | 
			
		||||
        print 'getSNR: Empty array inoise, check noise window!'
 | 
			
		||||
        print ("getSNR: Empty array inoise, check noise window!")
 | 
			
		||||
        return
 | 
			
		||||
    elif np.size(isignal) < 1:
 | 
			
		||||
        print 'getSNR: Empty array isignal, check signal window!'
 | 
			
		||||
        print ("getSNR: Empty array isignal, check signal window!")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # demean over entire waveform
 | 
			
		||||
@ -372,7 +371,7 @@ def getnoisewin(t, t1, tnoise, tgap):
 | 
			
		||||
    inoise, = np.where((t <= max([t1 - tgap, 0])) \
 | 
			
		||||
                      & (t >= max([t1 - tnoise - tgap, 0])))
 | 
			
		||||
    if np.size(inoise) < 1:
 | 
			
		||||
        print 'getnoisewin: Empty array inoise, check noise window!'
 | 
			
		||||
        print ("getnoisewin: Empty array inoise, check noise window!")
 | 
			
		||||
 | 
			
		||||
    return inoise
 | 
			
		||||
 | 
			
		||||
@ -396,7 +395,7 @@ def getsignalwin(t, t1, tsignal):
 | 
			
		||||
    isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
 | 
			
		||||
                       & (t >= t1))
 | 
			
		||||
    if np.size(isignal) < 1:
 | 
			
		||||
        print 'getsignalwin: Empty array isignal, check signal window!'
 | 
			
		||||
        print ("getsignalwin: Empty array isignal, check signal window!")
 | 
			
		||||
 | 
			
		||||
    return isignal
 | 
			
		||||
 | 
			
		||||
@ -483,8 +482,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
 | 
			
		||||
 | 
			
		||||
        # calculate vp/vs ratio before check
 | 
			
		||||
        vpvsr = p1[0] + 1
 | 
			
		||||
        print '###############################################'
 | 
			
		||||
        print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
 | 
			
		||||
        print ("###############################################")
 | 
			
		||||
        print ("wadaticheck: Average Vp/Vs ratio before check:", vpvsr)
 | 
			
		||||
 | 
			
		||||
        checkedPpicks = []
 | 
			
		||||
        checkedSpicks = []
 | 
			
		||||
@ -521,18 +520,18 @@ def wadaticheck(pickdic, dttolerance, iplot):
 | 
			
		||||
 | 
			
		||||
        	# calculate vp/vs ratio after check
 | 
			
		||||
        	cvpvsr = p2[0] + 1
 | 
			
		||||
        	print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
 | 
			
		||||
                print 'wadatacheck: Skipped %d S pick(s).' % ibad
 | 
			
		||||
        	print ("wadaticheck: Average Vp/Vs ratio after check:", cvpvsr)
 | 
			
		||||
                print ("wadatacheck: Skipped %d S pick(s)." % ibad)
 | 
			
		||||
        else:
 | 
			
		||||
                print '###############################################'
 | 
			
		||||
        	print 'wadatacheck: Not enough checked S-P times available!'
 | 
			
		||||
                print 'Skip Wadati check!'
 | 
			
		||||
                print ("###############################################")
 | 
			
		||||
        	print ("wadatacheck: Not enough checked S-P times available!")
 | 
			
		||||
                print ("Skip Wadati check!")
 | 
			
		||||
 | 
			
		||||
        checkedonsets = pickdic
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
    	print 'wadaticheck: Not enough S-P times available for reliable regression!'
 | 
			
		||||
        print 'Skip wadati check!'
 | 
			
		||||
    	print ("wadaticheck: Not enough S-P times available for reliable regression!")
 | 
			
		||||
        print ("Skip wadati check!")
 | 
			
		||||
        wfitflag = 1
 | 
			
		||||
 | 
			
		||||
    # plot results
 | 
			
		||||
@ -592,7 +591,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
 | 
			
		||||
    assert isinstance(X, Stream), "%s is not a stream object" % str(X)
 | 
			
		||||
 | 
			
		||||
    print 'Checking signal length ...'
 | 
			
		||||
    print ("Checking signal length ...")
 | 
			
		||||
 | 
			
		||||
    x = X[0].data
 | 
			
		||||
    t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
 | 
			
		||||
@ -601,8 +600,8 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
    # generate envelope function from Hilbert transform
 | 
			
		||||
    y = np.imag(sc.signal.hilbert(x))
 | 
			
		||||
    e = np.sqrt(np.power(x, 2) + np.power(y, 2))
 | 
			
		||||
    # get noise window
 | 
			
		||||
    inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
 | 
			
		||||
    # get noise window in front of pick plus saftey gap
 | 
			
		||||
    inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1])
 | 
			
		||||
    # get signal window
 | 
			
		||||
    isignal = getsignalwin(t, pick, TSNR[2])
 | 
			
		||||
    # calculate minimum adjusted signal level
 | 
			
		||||
@ -613,12 +612,12 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
    numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
 | 
			
		||||
 | 
			
		||||
    if numoverthr >= minnum:
 | 
			
		||||
    	print 'checksignallength: Signal reached required length.'
 | 
			
		||||
    	print ("checksignallength: Signal reached required length.")
 | 
			
		||||
        returnflag = 1
 | 
			
		||||
    else:
 | 
			
		||||
        print 'checksignallength: Signal shorter than required minimum signal length!'
 | 
			
		||||
        print 'Presumably picked noise peak, pick is rejected!'
 | 
			
		||||
        print '(min. signal length required:', minsiglength, 's)' 
 | 
			
		||||
        print ("checksignallength: Signal shorter than required minimum signal length!")
 | 
			
		||||
        print ("Presumably picked noise peak, pick is rejected!")
 | 
			
		||||
        print ("(min. signal length required:', minsiglength, 's)'")
 | 
			
		||||
        returnflag = 0
 | 
			
		||||
 | 
			
		||||
    if iplot == 2:
 | 
			
		||||
@ -629,7 +628,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
 | 
			
		||||
        p2, = plt.plot(t[inoise], e[inoise])
 | 
			
		||||
        p3, = plt.plot(t[isignal],e[isignal], 'r')
 | 
			
		||||
        p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
 | 
			
		||||
                        [minsiglevel, minsiglevel], 'g')
 | 
			
		||||
                        [minsiglevel, minsiglevel], 'g', linewidth=2)
 | 
			
		||||
        p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
 | 
			
		||||
        plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
 | 
			
		||||
                    'Envelope Signal Window', 'Minimum Signal Level', \
 | 
			
		||||
@ -675,8 +674,8 @@ def checkPonsets(pickdic, dttolerance, iplot):
 | 
			
		||||
           stations.append(key)
 | 
			
		||||
 | 
			
		||||
    # apply jackknife bootstrapping on variance of P onsets
 | 
			
		||||
    print '###############################################'
 | 
			
		||||
    print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
 | 
			
		||||
    print ("###############################################")
 | 
			
		||||
    print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
 | 
			
		||||
    [xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
 | 
			
		||||
    # get pseudo variances smaller than average variances
 | 
			
		||||
    # (times safety factor), these picks passed jackknife test
 | 
			
		||||
@ -684,7 +683,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
 | 
			
		||||
    # these picks did not pass jackknife test
 | 
			
		||||
    badjk = np.where(PHI_pseudo > 2 * xjack)
 | 
			
		||||
    badjkstations = np.array(stations)[badjk]
 | 
			
		||||
    print 'checkPonsets: %d pick(s) did not pass jackknife test!' % len(badjkstations)
 | 
			
		||||
    print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
 | 
			
		||||
 | 
			
		||||
    # calculate median from these picks
 | 
			
		||||
    pmedian = np.median(np.array(Ppicks)[ij])
 | 
			
		||||
@ -696,9 +695,9 @@ def checkPonsets(pickdic, dttolerance, iplot):
 | 
			
		||||
    goodstations = np.array(stations)[igood]
 | 
			
		||||
    badstations = np.array(stations)[ibad]
 | 
			
		||||
 | 
			
		||||
    print 'checkPonsets: %d pick(s) deviate too much from median!' % len(ibad)
 | 
			
		||||
    print 'checkPonsets: Skipped %d P pick(s) out of %d' % (len(badstations) \
 | 
			
		||||
            + len(badjkstations), len(stations))
 | 
			
		||||
    print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
 | 
			
		||||
    print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
 | 
			
		||||
            + len(badjkstations), len(stations)))
 | 
			
		||||
 | 
			
		||||
    goodmarker = 'goodPonsetcheck'
 | 
			
		||||
    badmarker = 'badPonsetcheck'
 | 
			
		||||
@ -765,8 +764,8 @@ def jackknife(X, phi, h):
 | 
			
		||||
    g = len(X) / h
 | 
			
		||||
 | 
			
		||||
    if type(g) is not int:
 | 
			
		||||
    	print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
 | 
			
		||||
        print 'Choose another size for subgroups!'
 | 
			
		||||
    	print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
 | 
			
		||||
        print ("Choose another size for subgroups!")
 | 
			
		||||
        return PHI_jack, PHI_pseudo, PHI_sub
 | 
			
		||||
    else:
 | 
			
		||||
    	# estimator of undisturbed spot check
 | 
			
		||||
@ -834,7 +833,7 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
 | 
			
		||||
 | 
			
		||||
    assert isinstance(X, Stream), "%s is not a stream object" % str(X)
 | 
			
		||||
 | 
			
		||||
    print 'Check for spuriously picked S onset instead of P onset ...'
 | 
			
		||||
    print ("Check for spuriously picked S onset instead of P onset ...")
 | 
			
		||||
 | 
			
		||||
    returnflag = 0
 | 
			
		||||
 | 
			
		||||
@ -875,9 +874,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
 | 
			
		||||
    # vertical P-coda level must exceed horizontal P-coda level
 | 
			
		||||
    # zfac times encodalevel
 | 
			
		||||
    if zcodalevel < minsiglevel:
 | 
			
		||||
    	print 'checkZ4S: Maybe S onset? Skip this P pick!'
 | 
			
		||||
    	print ("checkZ4S: Maybe S onset? Skip this P pick!")
 | 
			
		||||
    else:
 | 
			
		||||
        print 'checkZ4S: P onset passes checkZ4S test!'
 | 
			
		||||
        print ("checkZ4S: P onset passes checkZ4S test!")
 | 
			
		||||
        returnflag = 1
 | 
			
		||||
 | 
			
		||||
    if iplot > 1:
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user