Merge remote-tracking branch 'origin/develop' into develop
This commit is contained in:
commit
a8577ac80a
@ -173,21 +173,14 @@ class AICPicker(AutoPicker):
|
||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
||||
else:
|
||||
aicsmooth[i] = np.mean(aic[1: i])
|
||||
# remove offset
|
||||
# remove offset in AIC function
|
||||
offset = abs(min(aic) - min(aicsmooth))
|
||||
aicsmooth = aicsmooth - offset
|
||||
# get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
||||
diffcf = np.diff(aicsmooth)
|
||||
# find NaN's
|
||||
nn = np.isnan(diffcf)
|
||||
if len(nn) > 1:
|
||||
diffcf[nn] = 0
|
||||
# taper CF to get rid off side maxima
|
||||
tap = np.hanning(len(diffcf))
|
||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||
icfmax = np.argmax(diffcf)
|
||||
# get maximum of HOS/AR-CF as startimg point for searching
|
||||
# minimum in AIC function
|
||||
icfmax = np.argmax(self.Data[0].data)
|
||||
|
||||
# find minimum in AIC-CF front of maximum
|
||||
# find minimum in AIC-CF front of maximum of HOS/AR-CF
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||
@ -196,6 +189,14 @@ class AICPicker(AutoPicker):
|
||||
# if no minimum could be found:
|
||||
# search in 1st derivative of AIC-CF
|
||||
if self.Pick is None:
|
||||
diffcf = np.diff(aicsmooth)
|
||||
# find NaN's
|
||||
nn = np.isnan(diffcf)
|
||||
if len(nn) > 1:
|
||||
diffcf[nn] = 0
|
||||
# taper CF to get rid off side maxima
|
||||
tap = np.hanning(len(diffcf))
|
||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if diffcf[i - 1] >= diffcf[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
|
@ -9,7 +9,6 @@
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
@ -404,6 +403,8 @@ def getnoisewin(t, t1, tnoise, tgap):
|
||||
# get noise window
|
||||
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||
if np.size(inoise) < 1:
|
||||
inoise, = np.where((t>=t[0]) & (t<=t1))
|
||||
if np.size(inoise) < 1:
|
||||
print ("getnoisewin: Empty array inoise, check noise window!")
|
||||
|
||||
@ -599,7 +600,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
wfitflag = 1
|
||||
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
if iplot > 0:
|
||||
plt.figure()#iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
if wfitflag == 0:
|
||||
@ -743,11 +744,12 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
# get pseudo variances smaller than average variances
|
||||
# (times safety factor), these picks passed jackknife test
|
||||
ij = np.where(PHI_pseudo <= 2 * xjack)
|
||||
ij = np.where(PHI_pseudo <= 5 * xjack)
|
||||
# these picks did not pass jackknife test
|
||||
badjk = np.where(PHI_pseudo > 2 * xjack)
|
||||
badjk = np.where(PHI_pseudo > 5 * xjack)
|
||||
badjkstations = np.array(stations)[badjk]
|
||||
print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
|
||||
print(badjkstations)
|
||||
|
||||
# calculate median from these picks
|
||||
pmedian = np.median(np.array(Ppicks)[ij])
|
||||
@ -782,19 +784,22 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
if iplot > 1:
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
|
||||
if iplot > 0:
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'ro', markersize=14)
|
||||
if len(badstations) < 1 and len(badjkstations) < 1:
|
||||
p2, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'go', markersize=14)
|
||||
else:
|
||||
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'go', markersize=14)
|
||||
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g',
|
||||
linewidth=2)
|
||||
for i in range(0, len(Ppicks)):
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
plt.text(i, Ppicks[i] + 0.01, '{0}'.format(stations[i]))
|
||||
|
||||
plt.xlabel('Number of P Picks')
|
||||
plt.ylabel('Onset Time [s] from 1.1.1970')
|
||||
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'],
|
||||
loc='best')
|
||||
plt.title('Check P Onsets')
|
||||
plt.title('Jackknifing and Median Tests on P Onsets')
|
||||
|
||||
return checkedonsets
|
||||
|
||||
@ -928,8 +933,18 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
isignal = getsignalwin(tz, pick, checkwin)
|
||||
|
||||
# calculate energy levels
|
||||
try:
|
||||
zcodalevel = max(absz[isignal])
|
||||
except:
|
||||
ii = np.where(isignal <= len(absz))
|
||||
isignal = isignal[ii]
|
||||
zcodalevel = max(absz[isignal - 1])
|
||||
try:
|
||||
encodalevel = max(absen[isignal])
|
||||
except:
|
||||
ii = np.where(isignal <= len(absen))
|
||||
isignal = isignal[ii]
|
||||
encodalevel = max(absen[isignal - 1])
|
||||
|
||||
# calculate threshold
|
||||
minsiglevel = encodalevel * zfac
|
||||
|
Loading…
Reference in New Issue
Block a user