AR-CFs now have same sampling rate as raw seismograms, new attribute getXCF
This commit is contained in:
		
							parent
							
								
									16c07da6e4
								
							
						
					
					
						commit
						acd8f70369
					
				@ -17,12 +17,13 @@ autoregressive prediction: application ot local and regional distances, Geophys.
 | 
			
		||||
"""
 | 
			
		||||
import numpy as np
 | 
			
		||||
from obspy.core import Stream
 | 
			
		||||
import pdb
 | 
			
		||||
 | 
			
		||||
class CharacteristicFunction(object):
 | 
			
		||||
    '''
 | 
			
		||||
    SuperClass for different types of characteristic functions.
 | 
			
		||||
    '''
 | 
			
		||||
    def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=0.001):
 | 
			
		||||
    def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None):
 | 
			
		||||
        '''
 | 
			
		||||
        Initialize data type object with information from the original
 | 
			
		||||
        Seismogram.
 | 
			
		||||
@ -117,12 +118,12 @@ class CharacteristicFunction(object):
 | 
			
		||||
 | 
			
		||||
    def getTimeArray(self):
 | 
			
		||||
        if self.getTime1():
 | 
			
		||||
           incr = self.getARdetStep()[0]
 | 
			
		||||
           self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0] \
 | 
			
		||||
                           + self.getTime1() + self.getTime2()  
 | 
			
		||||
           shift = self.getTime2()
 | 
			
		||||
        else:
 | 
			
		||||
           incr = self.getIncrement()
 | 
			
		||||
           self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]  
 | 
			
		||||
           shift = 0
 | 
			
		||||
        incr = self.getIncrement()
 | 
			
		||||
        self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0] \
 | 
			
		||||
                         + shift
 | 
			
		||||
        return self.TimeArray
 | 
			
		||||
 | 
			
		||||
    def getFnoise(self):
 | 
			
		||||
@ -134,6 +135,9 @@ class CharacteristicFunction(object):
 | 
			
		||||
    def getCF(self):
 | 
			
		||||
        return self.cf
 | 
			
		||||
 | 
			
		||||
    def getXCF(self):
 | 
			
		||||
        return self.xcf
 | 
			
		||||
 | 
			
		||||
    def getDataArray(self, cut=None):
 | 
			
		||||
        '''
 | 
			
		||||
        If cut times are given, time series is cut from cut[0] (start time)
 | 
			
		||||
@ -226,9 +230,8 @@ class AICcf(CharacteristicFunction):
 | 
			
		||||
        cumsumcf = np.cumsum(np.power(xnp, 2))
 | 
			
		||||
        i = np.where(cumsumcf == 0)
 | 
			
		||||
        cumsumcf[i] = np.finfo(np.float64).eps
 | 
			
		||||
        cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
 | 
			
		||||
                 np.log((cumsumcf[datlen - 1] -
 | 
			
		||||
                        cumsumcf[k - 1]) / (datlen - k + 1)))
 | 
			
		||||
        cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) * \
 | 
			
		||||
                 np.log((cumsumcf[datlen - 1] - cumsumcf[k - 1]) / (datlen - k + 1)))
 | 
			
		||||
        cf[0] = cf[1]
 | 
			
		||||
        inf = np.isinf(cf)
 | 
			
		||||
        ff = np.where(inf == True)
 | 
			
		||||
@ -236,6 +239,7 @@ class AICcf(CharacteristicFunction):
 | 
			
		||||
            cf[ff] = 0
 | 
			
		||||
 | 
			
		||||
        self.cf = cf - np.mean(cf)
 | 
			
		||||
        self.xcf = xnp
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class HOScf(CharacteristicFunction):
 | 
			
		||||
@ -287,6 +291,7 @@ class HOScf(CharacteristicFunction):
 | 
			
		||||
        if len(nn) > 1:
 | 
			
		||||
           LTA[nn] = 0
 | 
			
		||||
        self.cf = LTA
 | 
			
		||||
        self.xcf = xnp
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ARZcf(CharacteristicFunction):
 | 
			
		||||
@ -308,24 +313,24 @@ class ARZcf(CharacteristicFunction):
 | 
			
		||||
        ldet = int(round(self.getTime1() / self.getIncrement()))    #length of AR-determination window [samples]
 | 
			
		||||
        lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
 | 
			
		||||
 | 
			
		||||
        cf = []
 | 
			
		||||
        cf = np.zeros(len(xnp))
 | 
			
		||||
        loopstep = self.getARdetStep()
 | 
			
		||||
        for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, loopstep[1]):
 | 
			
		||||
            #determination of AR coefficients
 | 
			
		||||
            self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
 | 
			
		||||
        arcalci = ldet + self.getOrder() - 1 #AR-calculation index
 | 
			
		||||
        for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
 | 
			
		||||
            if i == arcalci:
 | 
			
		||||
                #determination of AR coefficients
 | 
			
		||||
                #to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
 | 
			
		||||
                self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
 | 
			
		||||
                arcalci = arcalci + loopstep[1]
 | 
			
		||||
            #AR prediction of waveform using calculated AR coefficients
 | 
			
		||||
            self.arPredZ(xnp, self.arpara, i + 1, lpred)
 | 
			
		||||
            #prediction error = CF
 | 
			
		||||
            err = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
 | 
			
		||||
            cf.append(err)
 | 
			
		||||
        
 | 
			
		||||
        #convert list to numpy array
 | 
			
		||||
        cf = np.asarray(cf)
 | 
			
		||||
            cf[i] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
 | 
			
		||||
        nn = np.isnan(cf)
 | 
			
		||||
        if len(nn) > 1:
 | 
			
		||||
           cf[nn] = 0
 | 
			
		||||
        self.cf = cf
 | 
			
		||||
 | 
			
		||||
        self.xcf = xnp
 | 
			
		||||
 | 
			
		||||
    def arDetZ(self, data, order, rind, ldet):
 | 
			
		||||
        '''
 | 
			
		||||
@ -430,23 +435,25 @@ class ARHcf(CharacteristicFunction):
 | 
			
		||||
        ldet = int(round(self.getTime1() / self.getIncrement()))    #length of AR-determination window [samples]
 | 
			
		||||
        lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
 | 
			
		||||
              
 | 
			
		||||
        cf = []
 | 
			
		||||
        cf = np.zeros(tend - lpred + 1)
 | 
			
		||||
        loopstep = self.getARdetStep()
 | 
			
		||||
        for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, loopstep[1]):
 | 
			
		||||
            self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
 | 
			
		||||
        arcalci = ldet + self.getOrder() - 1 #AR-calculation index
 | 
			
		||||
        for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
 | 
			
		||||
            if i == arcalci:
 | 
			
		||||
                #determination of AR coefficients
 | 
			
		||||
                #to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
 | 
			
		||||
                self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
 | 
			
		||||
                arcalci = arcalci + loopstep[1]
 | 
			
		||||
            #AR prediction of waveform using calculated AR coefficients
 | 
			
		||||
            self.arPredH(xnp, self.arpara, i + 1, lpred)
 | 
			
		||||
            #prediction error = CF
 | 
			
		||||
            err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
 | 
			
		||||
            cf[i] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
 | 
			
		||||
            + np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (2 * lpred))
 | 
			
		||||
            cf.append(err)
 | 
			
		||||
 | 
			
		||||
        #convert list to numpy array
 | 
			
		||||
        cf = np.asarray(cf)
 | 
			
		||||
        nn = np.isnan(cf)
 | 
			
		||||
        if len(nn) > 1:
 | 
			
		||||
           cf[nn] = 0
 | 
			
		||||
        self.cf = cf
 | 
			
		||||
        self.xcf = xnp
 | 
			
		||||
 | 
			
		||||
    def arDetH(self, data, order, rind, ldet):
 | 
			
		||||
        '''
 | 
			
		||||
@ -560,24 +567,27 @@ class AR3Ccf(CharacteristicFunction):
 | 
			
		||||
        ldet = int(round(self.getTime1() / self.getIncrement()))    #length of AR-determination window [samples]
 | 
			
		||||
        lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
 | 
			
		||||
              
 | 
			
		||||
        cf = []
 | 
			
		||||
        cf = np.zeros(tend - lpred + 1)
 | 
			
		||||
        loopstep = self.getARdetStep()
 | 
			
		||||
        for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, loopstep[1]):
 | 
			
		||||
            self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
 | 
			
		||||
        arcalci = ldet + self.getOrder() - 1 #AR-calculation index
 | 
			
		||||
        for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
 | 
			
		||||
            if i == arcalci:
 | 
			
		||||
                #determination of AR coefficients
 | 
			
		||||
                #to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
 | 
			
		||||
                self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
 | 
			
		||||
                arcalci = arcalci + loopstep[1]
 | 
			
		||||
 | 
			
		||||
            #AR prediction of waveform using calculated AR coefficients
 | 
			
		||||
            self.arPred3C(xnp, self.arpara, i + 1, lpred)
 | 
			
		||||
            #prediction error = CF
 | 
			
		||||
            err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
 | 
			
		||||
            cf[i] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
 | 
			
		||||
            + np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
 | 
			
		||||
            + np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (3 * lpred))
 | 
			
		||||
            cf.append(err)
 | 
			
		||||
 | 
			
		||||
        #convert list to numpy array
 | 
			
		||||
        cf = np.asarray(cf)
 | 
			
		||||
        nn = np.isnan(cf)
 | 
			
		||||
        if len(nn) > 1:
 | 
			
		||||
           cf[nn] = 0
 | 
			
		||||
        self.cf = cf
 | 
			
		||||
        self.xcf = xnp
 | 
			
		||||
 | 
			
		||||
    def arDet3C(self, data, order, rind, ldet):
 | 
			
		||||
        '''
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user