WALL-E: Einmal aufräumen und zurück!
This commit is contained in:
parent
a2640e3126
commit
d7cfd0d176
77
autoPyLoT.py
77
autoPyLoT.py
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import argparse
|
||||
import glob
|
||||
@ -55,9 +56,9 @@ def autoPyLoT(inputfile):
|
||||
|
||||
if parameter.hasParam('datastructure'):
|
||||
datastructure = DATASTRUCTURE[parameter.getParam('datastructure')]()
|
||||
dsfields = {'root' :parameter.getParam('rootpath'),
|
||||
'dpath' :parameter.getParam('datapath'),
|
||||
'dbase' :parameter.getParam('database')}
|
||||
dsfields = {'root': parameter.getParam('rootpath'),
|
||||
'dpath': parameter.getParam('datapath'),
|
||||
'dbase': parameter.getParam('database')}
|
||||
|
||||
exf = ['root', 'dpath', 'dbase']
|
||||
|
||||
@ -86,7 +87,7 @@ def autoPyLoT(inputfile):
|
||||
ttpat = parameter.getParam('ttpatter')
|
||||
# pattern of NLLoc-output file
|
||||
nllocoutpatter = parameter.getParam('outpatter')
|
||||
maxnumit = 3 # maximum number of iterations for re-picking
|
||||
maxnumit = 3 # maximum number of iterations for re-picking
|
||||
else:
|
||||
locflag = 0
|
||||
print(" !!! ")
|
||||
@ -94,7 +95,6 @@ def autoPyLoT(inputfile):
|
||||
print("!!No source parameter estimation possible!!")
|
||||
print(" !!! ")
|
||||
|
||||
|
||||
# multiple event processing
|
||||
# read each event in database
|
||||
datapath = datastructure.expandDataPath()
|
||||
@ -115,7 +115,7 @@ def autoPyLoT(inputfile):
|
||||
picksExport(picks, 'NLLoc', phasefile)
|
||||
|
||||
# For locating the event the NLLoc-control file has to be modified!
|
||||
evID = event[string.rfind(event, "/") + 1 : len(events) - 1]
|
||||
evID = event[string.rfind(event, "/") + 1: len(events) - 1]
|
||||
nllocout = '%s_%s' % (evID, nllocoutpatter)
|
||||
# create comment line for NLLoc-control file
|
||||
modifyInputFile(ctrf, nllocroot, nllocout, phasef, ttpat)
|
||||
@ -129,8 +129,8 @@ def autoPyLoT(inputfile):
|
||||
# get stations with bad onsets
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
|
||||
@ -140,10 +140,10 @@ def autoPyLoT(inputfile):
|
||||
# get latest NLLoc-location file if several are available
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
else:
|
||||
print("autoPyLoT: No NLLoc-location file available!")
|
||||
print("No source parameter estimation possible!")
|
||||
@ -173,24 +173,24 @@ def autoPyLoT(inputfile):
|
||||
# check for bad picks
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter, \
|
||||
len(badpicks)))
|
||||
len(badpicks)))
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No more bad onsets found, stop iterative picking!")
|
||||
nlloccounter = maxnumit
|
||||
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
# get network moment magntiude
|
||||
netMw = []
|
||||
for key in finalpicks.getpicdic():
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
netMw = np.median(netMw)
|
||||
print("Network moment magnitude: %4.1f" % netMw)
|
||||
else:
|
||||
@ -218,8 +218,8 @@ def autoPyLoT(inputfile):
|
||||
# single event processing
|
||||
else:
|
||||
data.setWFData(glob.glob(os.path.join(datapath, parameter.getParam('eventID'), '*')))
|
||||
print("Working on event "), parameter.getParam('eventID')
|
||||
print data
|
||||
print("Working on event {0}".format(parameter.getParam('eventID')))
|
||||
print(data)
|
||||
|
||||
wfdat = data.getWFData() # all available streams
|
||||
##########################################################
|
||||
@ -245,8 +245,8 @@ def autoPyLoT(inputfile):
|
||||
# get stations with bad onsets
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No bad onsets found, thus no iterative picking necessary!")
|
||||
@ -256,10 +256,10 @@ def autoPyLoT(inputfile):
|
||||
# get latest NLLOc-location file if several are available
|
||||
nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
else:
|
||||
print("autoPyLoT: No NLLoc-location file available!")
|
||||
print("No source parameter estimation possible!")
|
||||
@ -289,24 +289,24 @@ def autoPyLoT(inputfile):
|
||||
# check for bad picks
|
||||
badpicks = []
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
|
||||
badpicks.append([key, picks[key]['P']['mpp']])
|
||||
print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter, \
|
||||
len(badpicks)))
|
||||
len(badpicks)))
|
||||
if len(badpicks) == 0:
|
||||
print("autoPyLoT: No more bad onsets found, stop iterative picking!")
|
||||
nlloccounter = maxnumit
|
||||
|
||||
# calculating seismic moment Mo and moment magnitude Mw
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
finalpicks = M0Mw(wfdat, None, None, parameter.getParam('iplot'), \
|
||||
nllocfile, picks, parameter.getParam('rho'), \
|
||||
parameter.getParam('vp'), parameter.getParam('Qp'), \
|
||||
parameter.getParam('invdir'))
|
||||
# get network moment magntiude
|
||||
netMw = []
|
||||
for key in finalpicks.getpicdic():
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
if finalpicks.getpicdic()[key]['P']['Mw'] is not None:
|
||||
netMw.append(finalpicks.getpicdic()[key]['P']['Mw'])
|
||||
netMw = np.median(netMw)
|
||||
print("Network moment magnitude: %4.1f" % netMw)
|
||||
else:
|
||||
@ -338,6 +338,7 @@ def autoPyLoT(inputfile):
|
||||
************************************'''.format(version=_getVersionString())
|
||||
print(endsp)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parse arguments
|
||||
parser = argparse.ArgumentParser(
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
from __future__ import print_function
|
||||
|
||||
"""
|
||||
makePyLoT -- build and install PyLoT
|
||||
|
||||
@ -123,7 +125,7 @@ USAGE
|
||||
except KeyboardInterrupt:
|
||||
cleanUp(verbose)
|
||||
return 0
|
||||
except Exception, e:
|
||||
except Exception as e:
|
||||
if DEBUG or TESTRUN:
|
||||
raise e
|
||||
indent = len(program_name) * " "
|
||||
@ -139,7 +141,7 @@ def buildPyLoT(verbosity=None):
|
||||
"\n"
|
||||
" Current working directory: {1}\n"
|
||||
).format(system, os.getcwd())
|
||||
print msg
|
||||
print(msg)
|
||||
if system.startswith(('win', 'microsoft')):
|
||||
raise CLIError(
|
||||
"building on Windows system not tested yet; implementation pending")
|
||||
|
@ -4,8 +4,9 @@ import numpy as np
|
||||
from pylot.core.active import seismicshot
|
||||
from pylot.core.active.surveyUtils import cleanUp
|
||||
|
||||
|
||||
class Survey(object):
|
||||
def __init__(self, path, sourcefile, receiverfile, useDefaultParas = False):
|
||||
def __init__(self, path, sourcefile, receiverfile, useDefaultParas=False):
|
||||
'''
|
||||
The Survey Class contains all shots [type: seismicshot] of a survey
|
||||
as well as the aquisition geometry and the topography.
|
||||
@ -37,7 +38,7 @@ class Survey(object):
|
||||
|
||||
shot_dict = {}
|
||||
shotlist = self.getShotlist()
|
||||
for shotnumber in shotlist: # loop over data files
|
||||
for shotnumber in shotlist: # loop over data files
|
||||
# generate filenames and read manual picks to a list
|
||||
obsfile = self._obsdir + str(shotnumber) + '_pickle.dat'
|
||||
if obsfile not in shot_dict.keys():
|
||||
@ -47,7 +48,7 @@ class Survey(object):
|
||||
|
||||
self.data = shot_dict
|
||||
print ("Generated Survey object for %d shots" % len(shotlist))
|
||||
print ("Total number of traces: %d \n" %self.countAllTraces())
|
||||
print ("Total number of traces: %d \n" % self.countAllTraces())
|
||||
|
||||
def _removeAllEmptyTraces(self):
|
||||
filename = 'removeEmptyTraces.out'
|
||||
@ -58,11 +59,11 @@ class Survey(object):
|
||||
if count == 0: outfile = open(filename, 'w')
|
||||
count += 1
|
||||
outfile.writelines('shot: %s, removed empty traces: %s\n'
|
||||
%(shot.getShotnumber(), removed))
|
||||
print ("\nremoveEmptyTraces: Finished! Removed %d traces" %count)
|
||||
% (shot.getShotnumber(), removed))
|
||||
print ("\nremoveEmptyTraces: Finished! Removed %d traces" % count)
|
||||
if count > 0:
|
||||
print ("See %s for more information "
|
||||
"on removed traces."%(filename))
|
||||
"on removed traces." % (filename))
|
||||
outfile.close()
|
||||
|
||||
def _updateShots(self):
|
||||
@ -70,7 +71,8 @@ class Survey(object):
|
||||
Removes traces that do not exist in the dataset for any reason.
|
||||
'''
|
||||
filename = 'updateShots.out'
|
||||
count = 0; countTraces = 0
|
||||
count = 0;
|
||||
countTraces = 0
|
||||
for shot in self.data.values():
|
||||
del_traceIDs = shot.updateTraceList()
|
||||
if len(del_traceIDs) > 0:
|
||||
@ -79,13 +81,13 @@ class Survey(object):
|
||||
countTraces += len(del_traceIDs)
|
||||
outfile.writelines("shot: %s, removed traceID(s) %s because "
|
||||
"they were not found in the corresponding stream\n"
|
||||
%(shot.getShotnumber(), del_traceIDs))
|
||||
% (shot.getShotnumber(), del_traceIDs))
|
||||
|
||||
print ("\nupdateShots: Finished! Updated %d shots and removed "
|
||||
"%d traces" %(count, countTraces))
|
||||
"%d traces" % (count, countTraces))
|
||||
if count > 0:
|
||||
print ("See %s for more information "
|
||||
"on removed traces."%(filename))
|
||||
"on removed traces." % (filename))
|
||||
outfile.close()
|
||||
|
||||
def setArtificialPick(self, traceID, pick):
|
||||
@ -96,9 +98,9 @@ class Survey(object):
|
||||
for shot in self.data.values():
|
||||
shot.setPick(traceID, pick)
|
||||
|
||||
def setParametersForShots(self, cutwindow = (0, 0.2), tmovwind = 0.3, tsignal = 0.03, tgap = 0.0007):
|
||||
def setParametersForShots(self, cutwindow=(0, 0.2), tmovwind=0.3, tsignal=0.03, tgap=0.0007):
|
||||
if (cutwindow == (0, 0.2) and tmovwind == 0.3 and
|
||||
tsignal == 0.03 and tgap == 0.0007):
|
||||
tsignal == 0.03 and tgap == 0.0007):
|
||||
print ("Warning: Standard values used for "
|
||||
"setParamters. This might not be clever.")
|
||||
# CHANGE this later. Parameters only needed for survey, not for each shot.
|
||||
@ -107,12 +109,12 @@ class Survey(object):
|
||||
shot.setTmovwind(tmovwind)
|
||||
shot.setTsignal(tsignal)
|
||||
shot.setTgap(tgap)
|
||||
shot.setOrder(order = 4)
|
||||
shot.setOrder(order=4)
|
||||
print ("setParametersForShots: Parameters set to:\n"
|
||||
"cutwindow = %s, tMovingWindow = %f, tsignal = %f, tgap = %f"
|
||||
%(cutwindow, tmovwind, tsignal, tgap))
|
||||
% (cutwindow, tmovwind, tsignal, tgap))
|
||||
|
||||
def setManualPicksFromFiles(self, directory = 'picks'):
|
||||
def setManualPicksFromFiles(self, directory='picks'):
|
||||
'''
|
||||
Read manual picks from *.pck files in a directory.
|
||||
The * must be identical with the shotnumber.
|
||||
@ -135,7 +137,10 @@ class Survey(object):
|
||||
|
||||
def plotDiffs(self):
|
||||
import matplotlib.pyplot as plt
|
||||
diffs = []; dists = []; mpicks = []; picks = []
|
||||
diffs = [];
|
||||
dists = [];
|
||||
mpicks = [];
|
||||
picks = []
|
||||
diffsDic = self.getDiffsFromManual()
|
||||
for shot in self.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
@ -151,15 +156,15 @@ class Survey(object):
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
sc_a = ax.scatter(dists, picks, c = '0.5', s=10, edgecolors='none', label = labela, alpha = 0.3)
|
||||
sc = ax.scatter(dists, mpicks, c = diffs, s=5, edgecolors='none', label = labelm)
|
||||
sc_a = ax.scatter(dists, picks, c='0.5', s=10, edgecolors='none', label=labela, alpha=0.3)
|
||||
sc = ax.scatter(dists, mpicks, c=diffs, s=5, edgecolors='none', label=labelm)
|
||||
cbar = plt.colorbar(sc, fraction=0.05)
|
||||
cbar.set_label(labelm)
|
||||
ax.set_xlabel('Distance [m]')
|
||||
ax.set_ylabel('Time [s]')
|
||||
ax.text(0.5, 0.95, 'Plot of all MANUAL picks', transform=ax.transAxes, horizontalalignment='center')
|
||||
|
||||
def plotHist(self, nbins = 20, ax = None):
|
||||
def plotHist(self, nbins=20, ax=None):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
diffs = []
|
||||
@ -170,48 +175,51 @@ class Survey(object):
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if shot.getPickFlag(traceID) == 1 and shot.getManualPickFlag(traceID) == 1:
|
||||
diffs.append(self.getDiffsFromManual()[shot][traceID])
|
||||
hist = plt.hist(diffs, nbins, histtype = 'step', normed = True, stacked = True)
|
||||
hist = plt.hist(diffs, nbins, histtype='step', normed=True, stacked=True)
|
||||
plt.title('Histogram of the differences between automatic and manual pick')
|
||||
plt.xlabel('Difference in time (auto - manual) [s]')
|
||||
return diffs
|
||||
|
||||
def pickAllShots(self, windowsize, HosAic = 'hos', vmin = 333, vmax = 5500, folm = 0.6):
|
||||
def pickAllShots(self, windowsize, HosAic='hos', vmin=333, vmax=5500, folm=0.6):
|
||||
'''
|
||||
Automatically pick all traces of all shots of the survey.
|
||||
'''
|
||||
from datetime import datetime
|
||||
starttime = datetime.now()
|
||||
count = 0; tpicksum = starttime - starttime
|
||||
count = 0;
|
||||
tpicksum = starttime - starttime
|
||||
|
||||
for shot in self.data.values():
|
||||
tstartpick = datetime.now(); count += 1
|
||||
tstartpick = datetime.now();
|
||||
count += 1
|
||||
for traceID in shot.getTraceIDlist():
|
||||
distance = shot.getDistance(traceID) # receive distance
|
||||
distance = shot.getDistance(traceID) # receive distance
|
||||
|
||||
pickwin_used = shot.getCut()
|
||||
cutwindow = shot.getCut()
|
||||
|
||||
# for higher distances use a linear vmin/vmax to cut out late/early regions with high noise
|
||||
if distance > 5.:
|
||||
pwleft = distance/vmax ################## TEST
|
||||
pwright = distance/vmin
|
||||
pwleft = distance / vmax ################## TEST
|
||||
pwright = distance / vmin
|
||||
if pwright > cutwindow[1]:
|
||||
pwright = cutwindow[1]
|
||||
pickwin_used = (pwleft, pwright)
|
||||
|
||||
shot.setPickwindow(traceID, pickwin_used)
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
|
||||
shot.setSNR(traceID)
|
||||
#if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
# if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
shot.removePick(traceID)
|
||||
|
||||
# set epp and lpp if SNR > 1 (else earllatepicker cant set values)
|
||||
if shot.getSNR(traceID)[0] > 1:
|
||||
shot.setEarllatepick(traceID)
|
||||
|
||||
tpicksum += (datetime.now() - tstartpick); tpick = tpicksum/count
|
||||
tpicksum += (datetime.now() - tstartpick);
|
||||
tpick = tpicksum / count
|
||||
tremain = (tpick * (len(self.getShotDict()) - count))
|
||||
tend = datetime.now() + tremain
|
||||
progress = float(count) / float(len(self.getShotDict())) * 100
|
||||
@ -220,7 +228,7 @@ class Survey(object):
|
||||
ntraces = self.countAllTraces()
|
||||
pickedtraces = self.countAllPickedTraces()
|
||||
print('Picked %s / %s traces (%d %%)\n'
|
||||
%(pickedtraces, ntraces, float(pickedtraces)/float(ntraces)*100.))
|
||||
% (pickedtraces, ntraces, float(pickedtraces) / float(ntraces) * 100.))
|
||||
|
||||
def cleanBySPE(self, maxSPE):
|
||||
for shot in self.data.values():
|
||||
@ -237,7 +245,7 @@ class Survey(object):
|
||||
if shot.getPickFlag(traceID) == 1:
|
||||
spe.append(shot.getSymmetricPickError(traceID))
|
||||
spe.sort()
|
||||
plt.plot(spe, label = 'SPE')
|
||||
plt.plot(spe, label='SPE')
|
||||
plt.ylabel('Symmetric Pickerror')
|
||||
plt.legend()
|
||||
|
||||
@ -255,7 +263,7 @@ class Survey(object):
|
||||
shot.removePick(traceID)
|
||||
else:
|
||||
numpicks += 1
|
||||
print('Recovered %d picks'%numpicks)
|
||||
print('Recovered %d picks' % numpicks)
|
||||
|
||||
def setArtificialPick(self, traceID, pick):
|
||||
for shot in self.data.values():
|
||||
@ -265,13 +273,13 @@ class Survey(object):
|
||||
def countAllTraces(self):
|
||||
numtraces = 0
|
||||
for shot in self.getShotlist():
|
||||
for rec in self.getReceiverlist(): ### shot.getReceiverlist etc.
|
||||
for rec in self.getReceiverlist(): ### shot.getReceiverlist etc.
|
||||
numtraces += 1
|
||||
return numtraces
|
||||
|
||||
def getShotlist(self):
|
||||
filename = self.getPath() + self.getSourcefile()
|
||||
srcfile = open(filename,'r')
|
||||
srcfile = open(filename, 'r')
|
||||
shotlist = []
|
||||
for line in srcfile.readlines():
|
||||
line = line.split()
|
||||
@ -281,7 +289,7 @@ class Survey(object):
|
||||
|
||||
def getReceiverlist(self):
|
||||
filename = self.getPath() + self.getReceiverfile()
|
||||
recfile = open(filename,'r')
|
||||
recfile = open(filename, 'r')
|
||||
reclist = []
|
||||
for line in recfile.readlines():
|
||||
line = line.split()
|
||||
@ -318,8 +326,8 @@ class Survey(object):
|
||||
pickedTraces += 1
|
||||
info_dict[shot.getShotnumber()] = {'numtraces': numtraces,
|
||||
'picked traces': [pickedTraces,
|
||||
'%2.2f %%'%(float(pickedTraces) /
|
||||
float(numtraces) * 100)],
|
||||
'%2.2f %%' % (float(pickedTraces) /
|
||||
float(numtraces) * 100)],
|
||||
'mean SNR': np.mean(snrlist),
|
||||
'mean distance': np.mean(dist)}
|
||||
|
||||
@ -330,7 +338,7 @@ class Survey(object):
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
return shot
|
||||
|
||||
def exportFMTOMO(self, directory = 'FMTOMO_export', sourcefile = 'input_sf.in', ttFileExtension = '.tt'):
|
||||
def exportFMTOMO(self, directory='FMTOMO_export', sourcefile='input_sf.in', ttFileExtension='.tt'):
|
||||
def getAngle(distance):
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
@ -338,18 +346,22 @@ class Survey(object):
|
||||
return angle
|
||||
|
||||
count = 0
|
||||
fmtomo_factor = 1000 # transforming [m/s] -> [km/s]
|
||||
LatAll = []; LonAll = []; DepthAll = []
|
||||
fmtomo_factor = 1000 # transforming [m/s] -> [km/s]
|
||||
LatAll = [];
|
||||
LonAll = [];
|
||||
DepthAll = []
|
||||
srcfile = open(directory + '/' + sourcefile, 'w')
|
||||
srcfile.writelines('%10s\n' %len(self.data)) # number of sources
|
||||
srcfile.writelines('%10s\n' % len(self.data)) # number of sources
|
||||
for shotnumber in self.getShotlist():
|
||||
shot = self.getShotForShotnumber(shotnumber)
|
||||
ttfilename = str(shotnumber) + ttFileExtension
|
||||
(x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
|
||||
srcfile.writelines('%10s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z)) # lat, lon, depth
|
||||
LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
|
||||
srcfile.writelines('%10s\n' %1) #
|
||||
srcfile.writelines('%10s %10s %10s\n' %(1, 1, ttfilename))
|
||||
(x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
|
||||
srcfile.writelines('%10s %10s %10s\n' % (getAngle(y), getAngle(x), (-1) * z)) # lat, lon, depth
|
||||
LatAll.append(getAngle(y));
|
||||
LonAll.append(getAngle(x));
|
||||
DepthAll.append((-1) * z)
|
||||
srcfile.writelines('%10s\n' % 1) #
|
||||
srcfile.writelines('%10s %10s %10s\n' % (1, 1, ttfilename))
|
||||
ttfile = open(directory + '/' + ttfilename, 'w')
|
||||
traceIDlist = shot.getTraceIDlist()
|
||||
traceIDlist.sort()
|
||||
@ -359,8 +371,10 @@ class Survey(object):
|
||||
pick = shot.getPick(traceID) * fmtomo_factor
|
||||
delta = shot.getSymmetricPickError(traceID) * fmtomo_factor
|
||||
(x, y, z) = shot.getRecLoc(traceID)
|
||||
ttfile.writelines('%20s %20s %20s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z, pick, delta))
|
||||
LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
|
||||
ttfile.writelines('%20s %20s %20s %10s %10s\n' % (getAngle(y), getAngle(x), (-1) * z, pick, delta))
|
||||
LatAll.append(getAngle(y));
|
||||
LonAll.append(getAngle(x));
|
||||
DepthAll.append((-1) * z)
|
||||
count += 1
|
||||
ttfile.close()
|
||||
srcfile.close()
|
||||
@ -393,7 +407,7 @@ class Survey(object):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def plotAllShots(self, rows = 3, columns = 4, mode = '3d'):
|
||||
def plotAllShots(self, rows=3, columns=4, mode='3d'):
|
||||
'''
|
||||
Plots all shots as Matrices with the color corresponding to the traveltime for each receiver.
|
||||
IMPORTANT NOTE: Topography (z - coordinate) is not considered in the diagrams!
|
||||
@ -408,8 +422,8 @@ class Survey(object):
|
||||
figPerSubplot = columns * rows
|
||||
|
||||
index = 1
|
||||
#shotnames = []
|
||||
#shotnumbers = []
|
||||
# shotnames = []
|
||||
# shotnumbers = []
|
||||
|
||||
# for shot in self.data.values():
|
||||
# shotnames.append(shot.getShotname())
|
||||
@ -419,24 +433,24 @@ class Survey(object):
|
||||
|
||||
for shotnumber in self.getShotlist():
|
||||
if index <= figPerSubplot:
|
||||
#ax = fig.add_subplot(3,3,i, projection = '3d', title = 'shot:'
|
||||
#+str(shot_dict[shotnumber].getShotnumber()), xlabel = 'X', ylabel = 'Y', zlabel = 'traveltime')
|
||||
#shot_dict[shotnumber].plot3dttc(ax = ax, plotpicks = True)
|
||||
# ax = fig.add_subplot(3,3,i, projection = '3d', title = 'shot:'
|
||||
# +str(shot_dict[shotnumber].getShotnumber()), xlabel = 'X', ylabel = 'Y', zlabel = 'traveltime')
|
||||
# shot_dict[shotnumber].plot3dttc(ax = ax, plotpicks = True)
|
||||
ax = fig.add_subplot(rows, columns, index)
|
||||
if mode == '3d':
|
||||
self.getShot(shotnumber).matshow(ax = ax, colorbar = False, annotations = True, legend = False)
|
||||
self.getShot(shotnumber).matshow(ax=ax, colorbar=False, annotations=True, legend=False)
|
||||
elif mode == '2d':
|
||||
self.getShot(shotnumber).plot2dttc(ax)
|
||||
self.getShot(shotnumber).plotmanual2dttc(ax)
|
||||
index += 1
|
||||
if index > figPerSubplot:
|
||||
fig.subplots_adjust(left = 0, bottom = 0, right = 1, top = 1, wspace = 0, hspace = 0)
|
||||
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
|
||||
fig = plt.figure()
|
||||
index = 1
|
||||
|
||||
fig.subplots_adjust(left = 0, bottom = 0, right = 1, top = 1, wspace = 0, hspace = 0)
|
||||
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
|
||||
|
||||
def plotAllPicks(self, plotRemoved = False, colorByVal = 'log10SNR', ax = None, cbar = None, refreshPlot = False):
|
||||
def plotAllPicks(self, plotRemoved=False, colorByVal='log10SNR', ax=None, cbar=None, refreshPlot=False):
|
||||
'''
|
||||
Plots all picks over the distance between source and receiver. Returns (ax, region).
|
||||
Picks can be checked and removed by using region class (pylot.core.active.surveyPlotTools.regions)
|
||||
@ -488,8 +502,8 @@ class Survey(object):
|
||||
spe.append(shot.getSymmetricPickError(traceID))
|
||||
|
||||
color = {'log10SNR': snrlog,
|
||||
'pickerror': pickerror,
|
||||
'spe': spe}
|
||||
'pickerror': pickerror,
|
||||
'spe': spe}
|
||||
self.color = color
|
||||
if refreshPlot is False:
|
||||
ax, cbar = self.createPlot(dist, pick, color[colorByVal], label='%s' % colorByVal)
|
||||
@ -501,7 +515,7 @@ class Survey(object):
|
||||
ax.legend()
|
||||
return ax
|
||||
|
||||
def createPlot(self, dist, pick, inkByVal, label, ax = None, cbar = None):
|
||||
def createPlot(self, dist, pick, inkByVal, label, ax=None, cbar=None):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
cm = plt.cm.jet
|
||||
@ -526,19 +540,19 @@ class Survey(object):
|
||||
|
||||
def _update_progress(self, shotname, tend, progress):
|
||||
sys.stdout.write('Working on shot %s. ETC is %02d:%02d:%02d [%2.2f %%]\r' % (shotname,
|
||||
tend.hour,
|
||||
tend.minute,
|
||||
tend.second,
|
||||
progress))
|
||||
tend.hour,
|
||||
tend.minute,
|
||||
tend.second,
|
||||
progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
def saveSurvey(self, filename = 'survey.pickle'):
|
||||
def saveSurvey(self, filename='survey.pickle'):
|
||||
import cPickle
|
||||
cleanUp(self)
|
||||
outfile = open(filename, 'wb')
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved Survey to file %s'%(filename))
|
||||
print('saved Survey to file %s' % (filename))
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
|
@ -1,13 +1,15 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
|
||||
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'abs', inputfileref = 'vgridsref.in'):
|
||||
|
||||
def vgrids2VTK(inputfile='vgrids.in', outputfile='vgrids.vtk', absOrRel='abs', inputfileref='vgridsref.in'):
|
||||
'''
|
||||
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
|
||||
|
||||
:param: absOrRel, can be "abs" or "rel" for absolute or relative velocities. if "rel" inputfileref must be given
|
||||
:type: str
|
||||
'''
|
||||
|
||||
def getDistance(angle):
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
@ -23,7 +25,7 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
nPhi = int(vglines[1].split()[2])
|
||||
|
||||
print('readNumberOf Points: Awaiting %d grid points in %s'
|
||||
%(nR*nTheta*nPhi, filename))
|
||||
% (nR * nTheta * nPhi, filename))
|
||||
fin.close()
|
||||
return nR, nTheta, nPhi
|
||||
|
||||
@ -53,7 +55,8 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
'''
|
||||
Reads in velocity from vgrids file and returns a list containing all values in the same order
|
||||
'''
|
||||
vel = []; count = 0
|
||||
vel = [];
|
||||
count = 0
|
||||
fin = open(filename, 'r')
|
||||
vglines = fin.readlines()
|
||||
|
||||
@ -62,10 +65,10 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
if count > 4:
|
||||
vel.append(float(line.split()[0]))
|
||||
|
||||
print("Read %d points out of file: %s" %(count - 4, filename))
|
||||
print("Read %d points out of file: %s" % (count - 4, filename))
|
||||
return vel
|
||||
|
||||
R = 6371. # earth radius
|
||||
R = 6371. # earth radius
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
# Theta, Phi in radians, R in km
|
||||
@ -74,7 +77,9 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
sR, sTheta, sPhi = readStartpoints(inputfile)
|
||||
vel = readVelocity(inputfile)
|
||||
|
||||
nX = nPhi; nY = nTheta; nZ = nR
|
||||
nX = nPhi;
|
||||
nY = nTheta;
|
||||
nZ = nR
|
||||
|
||||
sZ = sR - R
|
||||
sX = getDistance(np.rad2deg(sPhi))
|
||||
@ -94,28 +99,28 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET STRUCTURED_POINTS\n')
|
||||
|
||||
outfile.writelines('DIMENSIONS %d %d %d\n' %(nX, nY, nZ))
|
||||
outfile.writelines('ORIGIN %f %f %f\n' %(sX, sY, sZ))
|
||||
outfile.writelines('SPACING %f %f %f\n' %(dX, dY, dZ))
|
||||
outfile.writelines('DIMENSIONS %d %d %d\n' % (nX, nY, nZ))
|
||||
outfile.writelines('ORIGIN %f %f %f\n' % (sX, sY, sZ))
|
||||
outfile.writelines('SPACING %f %f %f\n' % (dX, dY, dZ))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
if absOrRel == 'abs':
|
||||
outfile.writelines('SCALARS velocity float %d\n' %(1))
|
||||
outfile.writelines('SCALARS velocity float %d\n' % (1))
|
||||
elif absOrRel == 'rel':
|
||||
outfile.writelines('SCALARS velChangePercent float %d\n' %(1))
|
||||
outfile.writelines('SCALARS velChangePercent float %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write velocity
|
||||
if absOrRel == 'abs':
|
||||
print("Writing velocity values to VTK file...")
|
||||
for velocity in vel:
|
||||
outfile.writelines('%10f\n' %velocity)
|
||||
outfile.writelines('%10f\n' % velocity)
|
||||
elif absOrRel == 'rel':
|
||||
velref = readVelocity(inputfileref)
|
||||
if not len(velref) == len(vel):
|
||||
print('ERROR: Number of gridpoints mismatch for %s and %s'%(inputfile, inputfileref))
|
||||
print('ERROR: Number of gridpoints mismatch for %s and %s' % (inputfile, inputfileref))
|
||||
return
|
||||
#velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
||||
# velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
||||
velrel = []
|
||||
for velocities in zip(vel, velref):
|
||||
v, vref = velocities
|
||||
@ -126,18 +131,19 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
|
||||
nR_ref, nTheta_ref, nPhi_ref = readNumberOfPoints(inputfileref)
|
||||
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
|
||||
print('ERROR: Dimension mismatch of grids %s and %s'%(inputfile, inputfileref))
|
||||
print('ERROR: Dimension mismatch of grids %s and %s' % (inputfile, inputfileref))
|
||||
return
|
||||
print("Writing velocity values to VTK file...")
|
||||
for velocity in velrel:
|
||||
outfile.writelines('%10f\n' %velocity)
|
||||
print('Pertubations: min: %s, max: %s'%(min(velrel), max(velrel)))
|
||||
outfile.writelines('%10f\n' % velocity)
|
||||
print('Pertubations: min: %s, max: %s' % (min(velrel), max(velrel)))
|
||||
|
||||
outfile.close()
|
||||
print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
|
||||
print("Wrote velocity grid for %d points to file: %s" % (nPoints, outputfile))
|
||||
return
|
||||
|
||||
def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
|
||||
def rays2VTK(fnin, fdirout='./vtk_files/', nthPoint=50):
|
||||
'''
|
||||
Writes VTK file(s) for FMTOMO rays from rays.dat. There is one file created for each ray.
|
||||
|
||||
@ -147,6 +153,7 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
:param: nthPoint, plot every nth point of the ray
|
||||
:type: integer
|
||||
'''
|
||||
|
||||
def getDistance(angle):
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
@ -164,12 +171,12 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
while True:
|
||||
raynumber += 1
|
||||
firstline = infile.readline()
|
||||
if firstline == '': break # break at EOF
|
||||
if firstline == '': break # break at EOF
|
||||
raynumber = int(firstline.split()[0])
|
||||
shotnumber = int(firstline.split()[1])
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
if rayValid == 0:
|
||||
print('Invalid ray number %d for shot number %d'%(raynumber, shotnumber))
|
||||
print('Invalid ray number %d for shot number %d' % (raynumber, shotnumber))
|
||||
continue
|
||||
nRayPoints = int(infile.readline().split()[0])
|
||||
if not shotnumber in rays.keys():
|
||||
@ -178,14 +185,15 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
for index in range(nRayPoints):
|
||||
if index % nthPoint is 0 or index == (nRayPoints - 1):
|
||||
rad, lat, lon = infile.readline().split()
|
||||
rays[shotnumber][raynumber].append([getDistance(np.rad2deg(float(lon))), getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
||||
rays[shotnumber][raynumber].append(
|
||||
[getDistance(np.rad2deg(float(lon))), getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
||||
else:
|
||||
dummy = infile.readline()
|
||||
|
||||
infile.close()
|
||||
|
||||
for shotnumber in rays.keys():
|
||||
fnameout = fdirout + 'rays%03d.vtk'%(shotnumber)
|
||||
fnameout = fdirout + 'rays%03d.vtk' % (shotnumber)
|
||||
outfile = open(fnameout, 'w')
|
||||
|
||||
nPoints = 0
|
||||
@ -194,43 +202,42 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
nPoints += 1
|
||||
|
||||
# write header
|
||||
#print("Writing header for VTK file...")
|
||||
print("Writing shot %d to file %s" %(shotnumber, fnameout))
|
||||
# print("Writing header for VTK file...")
|
||||
print("Writing shot %d to file %s" % (shotnumber, fnameout))
|
||||
outfile.writelines('# vtk DataFile Version 3.1\n')
|
||||
outfile.writelines('FMTOMO rays\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
#print("Writing coordinates to VTK file...")
|
||||
# print("Writing coordinates to VTK file...")
|
||||
|
||||
for raynumber in rays[shotnumber].keys():
|
||||
for raypoint in rays[shotnumber][raynumber]:
|
||||
outfile.writelines('%10f %10f %10f \n' %(raypoint[0], raypoint[1], raypoint[2]))
|
||||
outfile.writelines('%10f %10f %10f \n' % (raypoint[0], raypoint[1], raypoint[2]))
|
||||
|
||||
outfile.writelines('LINES %15d %15d\n' %(len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
||||
outfile.writelines('LINES %15d %15d\n' % (len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
||||
|
||||
# write indices
|
||||
#print("Writing indices to VTK file...")
|
||||
# print("Writing indices to VTK file...")
|
||||
|
||||
count = 0
|
||||
for raynumber in rays[shotnumber].keys():
|
||||
outfile.writelines('%d ' %(len(rays[shotnumber][raynumber])))
|
||||
outfile.writelines('%d ' % (len(rays[shotnumber][raynumber])))
|
||||
for index in range(len(rays[shotnumber][raynumber])):
|
||||
outfile.writelines('%d ' %(count))
|
||||
outfile.writelines('%d ' % (count))
|
||||
count += 1
|
||||
outfile.writelines('\n')
|
||||
|
||||
# outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
# outfile.writelines('SCALARS rays float %d\n' %(1))
|
||||
# outfile.writelines('LOOKUP_TABLE default\n')
|
||||
# outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
# outfile.writelines('SCALARS rays float %d\n' %(1))
|
||||
# outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# # write velocity
|
||||
# print("Writing velocity values to VTK file...")
|
||||
# for velocity in vel:
|
||||
# outfile.writelines('%10f\n' %velocity)
|
||||
|
||||
# outfile.close()
|
||||
# print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
|
||||
# # write velocity
|
||||
# print("Writing velocity values to VTK file...")
|
||||
# for velocity in vel:
|
||||
# outfile.writelines('%10f\n' %velocity)
|
||||
|
||||
# outfile.close()
|
||||
# print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
|
||||
|
@ -2,11 +2,12 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'abs', inputfileref = 'vgridsref.in'):
|
||||
|
||||
def vgrids2VTK(inputfile='vgrids.in', outputfile='vgrids.vtk', absOrRel='abs', inputfileref='vgridsref.in'):
|
||||
'''
|
||||
Generate a vtk-file readable by e.g. paraview from FMTOMO output vgrids.in
|
||||
'''
|
||||
R = 6371. # earth radius
|
||||
R = 6371. # earth radius
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
number, delta, start, vel = _readVgrid(inputfile)
|
||||
@ -19,7 +20,9 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
|
||||
nPoints = nR * nTheta * nPhi
|
||||
|
||||
nX = nPhi; nY = nTheta; nZ = nR
|
||||
nX = nPhi;
|
||||
nY = nTheta;
|
||||
nZ = nR
|
||||
|
||||
sZ = sR - R
|
||||
sX = _getDistance(sPhi)
|
||||
@ -36,29 +39,29 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET STRUCTURED_POINTS\n')
|
||||
|
||||
outfile.writelines('DIMENSIONS %d %d %d\n' %(nX, nY, nZ))
|
||||
outfile.writelines('ORIGIN %f %f %f\n' %(sX, sY, sZ))
|
||||
outfile.writelines('SPACING %f %f %f\n' %(dX, dY, dZ))
|
||||
outfile.writelines('DIMENSIONS %d %d %d\n' % (nX, nY, nZ))
|
||||
outfile.writelines('ORIGIN %f %f %f\n' % (sX, sY, sZ))
|
||||
outfile.writelines('SPACING %f %f %f\n' % (dX, dY, dZ))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
if absOrRel == 'abs':
|
||||
outfile.writelines('SCALARS velocity float %d\n' %(1))
|
||||
outfile.writelines('SCALARS velocity float %d\n' % (1))
|
||||
elif absOrRel == 'rel':
|
||||
outfile.writelines('SCALARS velChangePercent float %d\n' %(1))
|
||||
outfile.writelines('SCALARS velChangePercent float %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write velocity
|
||||
if absOrRel == 'abs':
|
||||
print("Writing velocity values to VTK file...")
|
||||
for velocity in vel:
|
||||
outfile.writelines('%10f\n' %velocity)
|
||||
outfile.writelines('%10f\n' % velocity)
|
||||
elif absOrRel == 'rel':
|
||||
nref, dref, sref, velref = _readVgrid(inputfileref)
|
||||
nR_ref, nTheta_ref, nPhi_ref = nref
|
||||
if not len(velref) == len(vel):
|
||||
print('ERROR: Number of gridpoints mismatch for %s and %s'%(inputfile, inputfileref))
|
||||
print('ERROR: Number of gridpoints mismatch for %s and %s' % (inputfile, inputfileref))
|
||||
return
|
||||
#velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
||||
# velrel = [((vel - velref) / velref * 100) for vel, velref in zip(vel, velref)]
|
||||
velrel = []
|
||||
for velocities in zip(vel, velref):
|
||||
v, vref = velocities
|
||||
@ -68,18 +71,19 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk', absOrRel = 'a
|
||||
velrel.append(0)
|
||||
|
||||
if not nR_ref == nR and nTheta_ref == nTheta and nPhi_ref == nPhi:
|
||||
print('ERROR: Dimension mismatch of grids %s and %s'%(inputfile, inputfileref))
|
||||
print('ERROR: Dimension mismatch of grids %s and %s' % (inputfile, inputfileref))
|
||||
return
|
||||
print("Writing velocity values to VTK file...")
|
||||
for velocity in velrel:
|
||||
outfile.writelines('%10f\n' %velocity)
|
||||
print('Pertubations: min: %s %%, max: %s %%'%(min(velrel), max(velrel)))
|
||||
outfile.writelines('%10f\n' % velocity)
|
||||
print('Pertubations: min: %s %%, max: %s %%' % (min(velrel), max(velrel)))
|
||||
|
||||
outfile.close()
|
||||
print("Wrote velocity grid for %d points to file: %s" %(nPoints, outputfile))
|
||||
print("Wrote velocity grid for %d points to file: %s" % (nPoints, outputfile))
|
||||
return
|
||||
|
||||
def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
|
||||
def rays2VTK(fnin, fdirout='./vtk_files/', nthPoint=50):
|
||||
'''
|
||||
Writes VTK file(s) for FMTOMO rays from rays.dat
|
||||
|
||||
@ -96,12 +100,12 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
while True:
|
||||
raynumber += 1
|
||||
firstline = infile.readline()
|
||||
if firstline == '': break # break at EOF
|
||||
if firstline == '': break # break at EOF
|
||||
raynumber = int(firstline.split()[0])
|
||||
shotnumber = int(firstline.split()[1])
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
rayValid = int(firstline.split()[4]) # is zero if the ray is invalid
|
||||
if rayValid == 0:
|
||||
print('Invalid ray number %d for shot number %d'%(raynumber, shotnumber))
|
||||
print('Invalid ray number %d for shot number %d' % (raynumber, shotnumber))
|
||||
continue
|
||||
nRayPoints = int(infile.readline().split()[0])
|
||||
if not shotnumber in rays.keys():
|
||||
@ -110,14 +114,15 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
for index in range(nRayPoints):
|
||||
if index % nthPoint is 0 or index == (nRayPoints - 1):
|
||||
rad, lat, lon = infile.readline().split()
|
||||
rays[shotnumber][raynumber].append([_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
||||
rays[shotnumber][raynumber].append(
|
||||
[_getDistance(np.rad2deg(float(lon))), _getDistance(np.rad2deg(float(lat))), float(rad) - R])
|
||||
else:
|
||||
dummy = infile.readline()
|
||||
|
||||
infile.close()
|
||||
|
||||
for shotnumber in rays.keys():
|
||||
fnameout = fdirout + 'rays%03d.vtk'%(shotnumber)
|
||||
fnameout = fdirout + 'rays%03d.vtk' % (shotnumber)
|
||||
outfile = open(fnameout, 'w')
|
||||
|
||||
nPoints = 0
|
||||
@ -126,32 +131,33 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
nPoints += 1
|
||||
|
||||
# write header
|
||||
#print("Writing header for VTK file...")
|
||||
print("Writing shot %d to file %s" %(shotnumber, fnameout))
|
||||
# print("Writing header for VTK file...")
|
||||
print("Writing shot %d to file %s" % (shotnumber, fnameout))
|
||||
outfile.writelines('# vtk DataFile Version 3.1\n')
|
||||
outfile.writelines('FMTOMO rays\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
#print("Writing coordinates to VTK file...")
|
||||
# print("Writing coordinates to VTK file...")
|
||||
for raynumber in rays[shotnumber].keys():
|
||||
for raypoint in rays[shotnumber][raynumber]:
|
||||
outfile.writelines('%10f %10f %10f \n' %(raypoint[0], raypoint[1], raypoint[2]))
|
||||
outfile.writelines('%10f %10f %10f \n' % (raypoint[0], raypoint[1], raypoint[2]))
|
||||
|
||||
outfile.writelines('LINES %15d %15d\n' %(len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
||||
outfile.writelines('LINES %15d %15d\n' % (len(rays[shotnumber]), len(rays[shotnumber]) + nPoints))
|
||||
|
||||
# write indices
|
||||
#print("Writing indices to VTK file...")
|
||||
# print("Writing indices to VTK file...")
|
||||
count = 0
|
||||
for raynumber in rays[shotnumber].keys():
|
||||
outfile.writelines('%d ' %(len(rays[shotnumber][raynumber])))
|
||||
outfile.writelines('%d ' % (len(rays[shotnumber][raynumber])))
|
||||
for index in range(len(rays[shotnumber][raynumber])):
|
||||
outfile.writelines('%d ' %(count))
|
||||
outfile.writelines('%d ' % (count))
|
||||
count += 1
|
||||
outfile.writelines('\n')
|
||||
|
||||
|
||||
def _readVgrid(filename):
|
||||
def readNumberOfPoints(filename):
|
||||
fin = open(filename, 'r')
|
||||
@ -162,7 +168,7 @@ def _readVgrid(filename):
|
||||
nPhi = int(vglines[1].split()[2])
|
||||
|
||||
print('readNumberOf Points: Awaiting %d grid points in %s'
|
||||
%(nR*nTheta*nPhi, filename))
|
||||
% (nR * nTheta * nPhi, filename))
|
||||
fin.close()
|
||||
return nR, nTheta, nPhi
|
||||
|
||||
@ -192,7 +198,8 @@ def _readVgrid(filename):
|
||||
'''
|
||||
Reads in velocity from vgrids file and returns a list containing all values in the same order
|
||||
'''
|
||||
vel = []; count = 0
|
||||
vel = [];
|
||||
count = 0
|
||||
fin = open(filename, 'r')
|
||||
vglines = fin.readlines()
|
||||
|
||||
@ -201,7 +208,7 @@ def _readVgrid(filename):
|
||||
if count > 4:
|
||||
vel.append(float(line.split()[0]))
|
||||
|
||||
print("Read %d points out of file: %s" %(count - 4, filename))
|
||||
print("Read %d points out of file: %s" % (count - 4, filename))
|
||||
return vel
|
||||
|
||||
# Theta, Phi in radians, R in km
|
||||
@ -218,6 +225,7 @@ def _readVgrid(filename):
|
||||
start = (sR, sTheta, sPhi)
|
||||
return number, delta, start, vel
|
||||
|
||||
|
||||
def _generateGrids(number, delta, start):
|
||||
nR, nTheta, nPhi = number
|
||||
dR, dTheta, dPhi = delta
|
||||
@ -227,14 +235,15 @@ def _generateGrids(number, delta, start):
|
||||
ePhi = sPhi + (nPhi - 1) * dPhi
|
||||
eTheta = sTheta + (nTheta - 1) * dTheta
|
||||
|
||||
thetaGrid = np.linspace(sTheta, eTheta, num = nTheta)
|
||||
phiGrid = np.linspace(sPhi, ePhi, num = nPhi)
|
||||
rGrid = np.linspace(sR, eR, num = nR)
|
||||
thetaGrid = np.linspace(sTheta, eTheta, num=nTheta)
|
||||
phiGrid = np.linspace(sPhi, ePhi, num=nPhi)
|
||||
rGrid = np.linspace(sR, eR, num=nR)
|
||||
|
||||
return (thetaGrid, phiGrid, rGrid)
|
||||
|
||||
def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
outputfile = 'vgrids_cb.in', ampmethod = 'linear', rect = (None, None)):
|
||||
|
||||
def addCheckerboard(spacing=10., pertubation=0.1, inputfile='vgrids.in',
|
||||
outputfile='vgrids_cb.in', ampmethod='linear', rect=(None, None)):
|
||||
'''
|
||||
Add a checkerboard to an existing vgrids.in velocity model.
|
||||
|
||||
@ -244,13 +253,14 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
:param: pertubation, pertubation (default: 0.1 = 10%)
|
||||
type: float
|
||||
'''
|
||||
def correctSpacing(spacing, delta, disttype = None):
|
||||
|
||||
def correctSpacing(spacing, delta, disttype=None):
|
||||
if spacing > delta:
|
||||
spacing_corr = round(spacing / delta) * delta
|
||||
elif spacing < delta:
|
||||
spacing_corr = delta
|
||||
print('The spacing of the checkerboard of %s (%s) was corrected to '
|
||||
'a value of %s to fit the grid spacing of %s.' %(spacing, disttype, spacing_corr, delta))
|
||||
'a value of %s to fit the grid spacing of %s.' % (spacing, disttype, spacing_corr, delta))
|
||||
return spacing_corr
|
||||
|
||||
def linearAmp(InCell):
|
||||
@ -265,7 +275,7 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
else:
|
||||
return 0
|
||||
|
||||
def ampFunc(InCell, method = 'linear', rect = None):
|
||||
def ampFunc(InCell, method='linear', rect=None):
|
||||
if method == 'linear':
|
||||
return linearAmp(InCell)
|
||||
if method == 'rect' and rect is not None:
|
||||
@ -273,7 +283,7 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
else:
|
||||
print('ampFunc: Could not amplify cb pattern')
|
||||
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
number, delta, start, vel = _readVgrid(inputfile)
|
||||
@ -287,10 +297,10 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
nPoints = nR * nTheta * nPhi
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
outfile.writelines('%10s %10s \n' % (1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
|
||||
spacR = correctSpacing(spacing, dR, '[meter], R')
|
||||
spacTheta = correctSpacing(_getAngle(spacing), dTheta, '[degree], Theta')
|
||||
@ -298,7 +308,8 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
|
||||
count = 0
|
||||
evenOdd = 1
|
||||
even = 0; odd = 0
|
||||
even = 0;
|
||||
odd = 0
|
||||
|
||||
# In the following loop it is checked whether the positive distance from the border of the model
|
||||
# for a point on the grid divided by the spacing is even or odd and then pertubated.
|
||||
@ -309,21 +320,21 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
# The amplification factor ampFactor comes from a linear relationship and ranges between 0 (cell border)
|
||||
# and 1 (cell middle)
|
||||
for radius in rGrid:
|
||||
rInCell = (radius - sR - dR/2) / spacR
|
||||
rInCell = (radius - sR - dR / 2) / spacR
|
||||
ampR = ampFunc(rInCell, ampmethod, rect)
|
||||
if np.floor(rInCell) % 2:
|
||||
evenOddR = 1
|
||||
else:
|
||||
evenOddR = -1
|
||||
for theta in thetaGrid:
|
||||
thetaInCell = (theta - sTheta - dTheta/2) / spacTheta
|
||||
thetaInCell = (theta - sTheta - dTheta / 2) / spacTheta
|
||||
ampTheta = ampFunc(thetaInCell, ampmethod, rect)
|
||||
if np.floor(thetaInCell) % 2:
|
||||
evenOddT = 1
|
||||
else:
|
||||
evenOddT = -1
|
||||
for phi in phiGrid:
|
||||
phiInCell = (phi - sPhi - dPhi/2) / spacPhi
|
||||
phiInCell = (phi - sPhi - dPhi / 2) / spacPhi
|
||||
ampPhi = ampFunc(phiInCell, ampmethod, rect)
|
||||
if np.floor(phiInCell) % 2:
|
||||
evenOddP = 1
|
||||
@ -334,19 +345,20 @@ def addCheckerboard(spacing = 10., pertubation = 0.1, inputfile = 'vgrids.in',
|
||||
evenOdd = evenOddR * evenOddT * evenOddP * ampFactor
|
||||
velocity += evenOdd * pertubation * velocity
|
||||
|
||||
outfile.writelines('%10s %10s\n'%(velocity, decm))
|
||||
outfile.writelines('%10s %10s\n' % (velocity, decm))
|
||||
count += 1
|
||||
|
||||
progress = float(count) / float(nPoints) * 100
|
||||
_update_progress(progress)
|
||||
|
||||
print('Added checkerboard to the grid in file %s with a spacing of %s and a pertubation of %s %%. '
|
||||
'Outputfile: %s.'%(inputfile, spacing, pertubation*100, outputfile))
|
||||
'Outputfile: %s.' % (inputfile, spacing, pertubation * 100, outputfile))
|
||||
outfile.close()
|
||||
|
||||
def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
boxvelocity = 1.0, inputfile = 'vgrids.in',
|
||||
outputfile = 'vgrids_box.in'):
|
||||
|
||||
def addBox(x=(None, None), y=(None, None), z=(None, None),
|
||||
boxvelocity=1.0, inputfile='vgrids.in',
|
||||
outputfile='vgrids_box.in'):
|
||||
'''
|
||||
Add a box with constant velocity to an existing vgrids.in velocity model.
|
||||
|
||||
@ -363,7 +375,7 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
type: float
|
||||
'''
|
||||
R = 6371.
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(outputfile, 'w')
|
||||
|
||||
theta1 = _getAngle(y[0])
|
||||
@ -375,7 +387,7 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
|
||||
print('Adding box to grid with theta = (%s, %s), phi = (%s, %s), '
|
||||
'r = (%s, %s), velocity = %s [km/s]'
|
||||
%(theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
|
||||
% (theta1, theta2, phi1, phi2, r1, r2, boxvelocity))
|
||||
|
||||
number, delta, start, vel = _readVgrid(inputfile)
|
||||
|
||||
@ -388,10 +400,10 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
nPoints = nR * nTheta * nPhi
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
outfile.writelines('%10s %10s \n' % (1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (dR, np.deg2rad(dTheta), np.deg2rad(dPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' % (sR, np.deg2rad(sTheta), np.deg2rad(sPhi)))
|
||||
|
||||
count = 0
|
||||
for radius in rGrid:
|
||||
@ -413,20 +425,22 @@ def addBox(x = (None, None), y = (None, None), z = (None, None),
|
||||
if rFlag * thetaFlag * phiFlag is not 0:
|
||||
velocity = boxvelocity
|
||||
|
||||
outfile.writelines('%10s %10s\n'%(velocity, decm))
|
||||
outfile.writelines('%10s %10s\n' % (velocity, decm))
|
||||
count += 1
|
||||
|
||||
progress = float(count) / float(nPoints) * 100
|
||||
_update_progress(progress)
|
||||
|
||||
print('Added box to the grid in file %s. '
|
||||
'Outputfile: %s.'%(inputfile, outputfile))
|
||||
'Outputfile: %s.' % (inputfile, outputfile))
|
||||
outfile.close()
|
||||
|
||||
|
||||
def _update_progress(progress):
|
||||
sys.stdout.write("%d%% done \r" % (progress) )
|
||||
sys.stdout.write("%d%% done \r" % (progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
|
||||
def _getAngle(distance):
|
||||
'''
|
||||
Function returns the angle on a Sphere of the radius R = 6371 [km] for a distance [km].
|
||||
@ -436,9 +450,9 @@ def _getAngle(distance):
|
||||
angle = distance * 180. / (PI * R)
|
||||
return angle
|
||||
|
||||
|
||||
def _getDistance(angle):
|
||||
PI = np.pi
|
||||
R = 6371.
|
||||
distance = angle / 180 * (PI * R)
|
||||
return distance
|
||||
|
||||
|
@ -3,6 +3,7 @@ import sys
|
||||
import numpy as np
|
||||
from scipy.interpolate import griddata
|
||||
|
||||
|
||||
class SeisArray(object):
|
||||
'''
|
||||
Can be used to interpolate missing values of a receiver grid, if only support points were measured.
|
||||
@ -15,6 +16,7 @@ class SeisArray(object):
|
||||
Supports vtk output for sources and receivers.
|
||||
Note: Source and Receiver files for FMTOMO will be generated by the Survey object (because traveltimes will be added directly).
|
||||
'''
|
||||
|
||||
def __init__(self, recfile):
|
||||
self.recfile = recfile
|
||||
self._receiverlines = {}
|
||||
@ -35,7 +37,7 @@ class SeisArray(object):
|
||||
'''
|
||||
for receiver in self._receiverlist:
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
lineID = int(receiver.split()[1])
|
||||
if not lineID in self._receiverlines.keys():
|
||||
self._receiverlines[lineID] = []
|
||||
self._receiverlines[lineID].append(traceID)
|
||||
@ -132,7 +134,7 @@ class SeisArray(object):
|
||||
if traceID2 < traceID1:
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" % (traceID1, traceID2)
|
||||
|
||||
def _checkCoordDirection(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
@ -144,14 +146,15 @@ class SeisArray(object):
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" % (traceID1, traceID2)
|
||||
|
||||
def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
Returns the mean distance between two traceID's depending on the number of geophones in between
|
||||
'''
|
||||
num_spaces = abs(self._getGeophoneNumber(traceID1) - self._getGeophoneNumber(traceID2))
|
||||
mean_distance = abs(self._getReceiverValue(traceID1, coordinate) - self._getReceiverValue(traceID2, coordinate))/num_spaces
|
||||
mean_distance = abs(
|
||||
self._getReceiverValue(traceID1, coordinate) - self._getReceiverValue(traceID2, coordinate)) / num_spaces
|
||||
return mean_distance
|
||||
|
||||
def interpolateValues(self, coordinate):
|
||||
@ -159,22 +162,22 @@ class SeisArray(object):
|
||||
Interpolates and sets all values (linear) for coordinate = 'X', 'Y' or 'Z'
|
||||
'''
|
||||
for lineID in self._getReceiverlines().keys():
|
||||
number_measured = len(self._getReceiverlines()[lineID])
|
||||
for index, traceID1 in enumerate(self._getReceiverlines()[lineID]):
|
||||
if index + 1 < number_measured:
|
||||
traceID2 = self._getReceiverlines()[lineID][index + 1]
|
||||
number_measured = len(self._getReceiverlines()[lineID])
|
||||
for index, traceID1 in enumerate(self._getReceiverlines()[lineID]):
|
||||
if index + 1 < number_measured:
|
||||
traceID2 = self._getReceiverlines()[lineID][index + 1]
|
||||
|
||||
traceID_dir = self._checkTraceIDdirection(traceID1, traceID2)
|
||||
traceID_interp = traceID1 + traceID_dir
|
||||
traceID_dir = self._checkTraceIDdirection(traceID1, traceID2)
|
||||
traceID_interp = traceID1 + traceID_dir
|
||||
|
||||
coord_dir = self._checkCoordDirection(traceID1, traceID2, coordinate)
|
||||
mean_distance = self._interpolateMeanDistances(traceID1, traceID2, coordinate)
|
||||
coord_dir = self._checkCoordDirection(traceID1, traceID2, coordinate)
|
||||
mean_distance = self._interpolateMeanDistances(traceID1, traceID2, coordinate)
|
||||
|
||||
while (traceID_dir * traceID_interp) < (traceID_dir * traceID2):
|
||||
self._setValue(traceID_interp, coordinate,
|
||||
(self._getReceiverValue(traceID_interp - traceID_dir, coordinate)
|
||||
+ coord_dir * (mean_distance)))
|
||||
traceID_interp += traceID_dir
|
||||
while (traceID_dir * traceID_interp) < (traceID_dir * traceID2):
|
||||
self._setValue(traceID_interp, coordinate,
|
||||
(self._getReceiverValue(traceID_interp - traceID_dir, coordinate)
|
||||
+ coord_dir * (mean_distance)))
|
||||
traceID_interp += traceID_dir
|
||||
|
||||
def addMeasuredTopographyPoints(self, filename):
|
||||
'''
|
||||
@ -206,7 +209,7 @@ class SeisArray(object):
|
||||
z = float(line[3])
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
|
||||
def interpZcoords4rec(self, method = 'linear'):
|
||||
def interpZcoords4rec(self, method='linear'):
|
||||
'''
|
||||
Interpolates z values for all receivers.
|
||||
'''
|
||||
@ -214,7 +217,8 @@ class SeisArray(object):
|
||||
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
if type(self.getReceiverCoordinates()[traceID]) is not tuple:
|
||||
z = griddata((measured_x, measured_y), measured_z, (self._getXreceiver(traceID), self._getYreceiver(traceID)), method = method)
|
||||
z = griddata((measured_x, measured_y), measured_z,
|
||||
(self._getXreceiver(traceID), self._getYreceiver(traceID)), method=method)
|
||||
self._setZvalue(traceID, float(z))
|
||||
|
||||
def _getAngle(self, distance):
|
||||
@ -239,7 +243,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all measured receivers known to SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for traceID in self.getMeasuredReceivers().keys():
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
y.append(self.getMeasuredReceivers()[traceID][1])
|
||||
@ -250,7 +256,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all measured topography points known to the SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for pointID in self.getMeasuredTopo().keys():
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
y.append(self.getMeasuredTopo()[pointID][1])
|
||||
@ -261,7 +269,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all measured source locations known to SeisArray.
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for pointID in self.getSourceLocations().keys():
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
y.append(self.getSourceLocations()[pointID][1])
|
||||
@ -285,7 +295,9 @@ class SeisArray(object):
|
||||
'''
|
||||
Returns a list of all receivers (measured and interpolated).
|
||||
'''
|
||||
x = []; y =[]; z = []
|
||||
x = [];
|
||||
y = [];
|
||||
z = []
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
x.append(self.getReceiverCoordinates()[traceID][0])
|
||||
y.append(self.getReceiverCoordinates()[traceID][1])
|
||||
@ -303,7 +315,7 @@ class SeisArray(object):
|
||||
self._interpolateXY4rec()
|
||||
self.interpZcoords4rec()
|
||||
|
||||
def interpolateTopography(self, nTheta, nPhi, thetaSN, phiWE, elevation = 0.25, method = 'linear'):
|
||||
def interpolateTopography(self, nTheta, nPhi, thetaSN, phiWE, elevation=0.25, method='linear'):
|
||||
'''
|
||||
Interpolate Z values on a regular grid with cushion nodes e.g. to use it as FMTOMO topography interface.
|
||||
Returns a surface in form of a list of points [[x1, y1, z1], [x2, y2, y2], ...] (cartesian).
|
||||
@ -325,7 +337,7 @@ class SeisArray(object):
|
||||
'''
|
||||
return self.interpolateOnRegularGrid(nTheta, nPhi, thetaSN, phiWE, elevation, method)
|
||||
|
||||
def interpolateOnRegularGrid(self, nTheta, nPhi, thetaSN, phiWE, elevation, method = 'linear'):
|
||||
def interpolateOnRegularGrid(self, nTheta, nPhi, thetaSN, phiWE, elevation, method='linear'):
|
||||
'''
|
||||
Interpolate Z values on a regular grid with cushion nodes e.g. to use it as FMTOMO topography interface.
|
||||
Returns a surface in form of a list of points [[x1, y1, z1], [x2, y2, y2], ...] (cartesian).
|
||||
@ -349,8 +361,8 @@ class SeisArray(object):
|
||||
surface = []
|
||||
|
||||
print "Interpolating interface on regular grid with the dimensions:"
|
||||
print "nTheta = %s, nPhi = %s, thetaSN = %s, phiWE = %s"%(nTheta, nPhi, thetaSN, phiWE)
|
||||
print "method = %s, elevation = %s" %(method, elevation)
|
||||
print "nTheta = %s, nPhi = %s, thetaSN = %s, phiWE = %s" % (nTheta, nPhi, thetaSN, phiWE)
|
||||
print "method = %s, elevation = %s" % (method, elevation)
|
||||
|
||||
thetaS, thetaN = thetaSN
|
||||
phiW, phiE = phiWE
|
||||
@ -361,18 +373,19 @@ class SeisArray(object):
|
||||
deltaTheta = (thetaN - thetaS) / (nTheta - 1)
|
||||
deltaPhi = (phiE - phiW) / (nPhi - 1)
|
||||
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num = nPhi + 2) # +2 cushion nodes
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num=nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num=nPhi + 2) # +2 cushion nodes
|
||||
|
||||
nTotal = len(thetaGrid) * len(phiGrid); count = 0
|
||||
nTotal = len(thetaGrid) * len(phiGrid);
|
||||
count = 0
|
||||
for theta in thetaGrid:
|
||||
for phi in phiGrid:
|
||||
xval = self._getDistance(phi)
|
||||
yval = self._getDistance(theta)
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method = method)
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method=method)
|
||||
# in case the point lies outside, nan will be returned. Find nearest:
|
||||
if np.isnan(z) == True:
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method = 'nearest')
|
||||
z = griddata((measured_x, measured_y), measured_z, (xval, yval), method='nearest')
|
||||
z = float(z) + elevation
|
||||
surface.append((xval, yval, z))
|
||||
count += 1
|
||||
@ -382,8 +395,8 @@ class SeisArray(object):
|
||||
return surface
|
||||
|
||||
def generateFMTOMOinputFromArray(self, nPointsPropgrid, nPointsInvgrid,
|
||||
zBotTop, cushionfactor, interpolationMethod = 'linear',
|
||||
customgrid = 'mygrid.in', writeVTK = True):
|
||||
zBotTop, cushionfactor, interpolationMethod='linear',
|
||||
customgrid='mygrid.in', writeVTK=True):
|
||||
'''
|
||||
Generate FMTOMO input files from the SeisArray dimensions.
|
||||
Generates: vgrids.in, interfaces.in, propgrid.in
|
||||
@ -406,10 +419,10 @@ class SeisArray(object):
|
||||
|
||||
print('\n------------------------------------------------------------')
|
||||
print('Automatically generating input for FMTOMO from array size.')
|
||||
print('Propgrid: nR = %s, nTheta = %s, nPhi = %s'%(nRP, nThetaP, nPhiP))
|
||||
print('Interpolation Grid and Interfaces Grid: nR = %s, nTheta = %s, nPhi = %s'%(nRI, nThetaI, nPhiI))
|
||||
print('Bottom and Top of model: (%s, %s)'%(zBotTop[0], zBotTop[1]))
|
||||
print('Method: %s, customgrid = %s'%(interpolationMethod, customgrid))
|
||||
print('Propgrid: nR = %s, nTheta = %s, nPhi = %s' % (nRP, nThetaP, nPhiP))
|
||||
print('Interpolation Grid and Interfaces Grid: nR = %s, nTheta = %s, nPhi = %s' % (nRI, nThetaI, nPhiI))
|
||||
print('Bottom and Top of model: (%s, %s)' % (zBotTop[0], zBotTop[1]))
|
||||
print('Method: %s, customgrid = %s' % (interpolationMethod, customgrid))
|
||||
print('------------------------------------------------------------')
|
||||
|
||||
def getZmin(surface):
|
||||
@ -418,31 +431,31 @@ class SeisArray(object):
|
||||
z.append(point[2])
|
||||
return min(z)
|
||||
|
||||
self.generatePropgrid(nThetaP, nPhiP, nRP, zBotTop, cushionfactor = cushionfactor,
|
||||
cushionpropgrid = 0.05)
|
||||
surface = self.generateVgrid(nThetaI, nPhiI, nRI, zBotTop, method = interpolationMethod,
|
||||
cushionfactor = cushionfactor, infilename = customgrid,
|
||||
returnTopo = True)
|
||||
self.generatePropgrid(nThetaP, nPhiP, nRP, zBotTop, cushionfactor=cushionfactor,
|
||||
cushionpropgrid=0.05)
|
||||
surface = self.generateVgrid(nThetaI, nPhiI, nRI, zBotTop, method=interpolationMethod,
|
||||
cushionfactor=cushionfactor, infilename=customgrid,
|
||||
returnTopo=True)
|
||||
|
||||
depthmax = abs(zBotTop[0] - getZmin(surface)) - 1.0 # cushioning for the bottom interface
|
||||
depthmax = abs(zBotTop[0] - getZmin(surface)) - 1.0 # cushioning for the bottom interface
|
||||
|
||||
interf1, interf2 = self.generateInterfaces(nThetaI, nPhiI, depthmax, cushionfactor = cushionfactor,
|
||||
returnInterfaces = True, method = interpolationMethod)
|
||||
interf1, interf2 = self.generateInterfaces(nThetaI, nPhiI, depthmax, cushionfactor=cushionfactor,
|
||||
returnInterfaces=True, method=interpolationMethod)
|
||||
|
||||
if writeVTK == True:
|
||||
from pylot.core.active import fmtomoUtils
|
||||
self.surface2VTK(interf1, filename = 'interface1.vtk')
|
||||
self.surface2VTK(interf2, filename = 'interface2.vtk')
|
||||
self.surface2VTK(interf1, filename='interface1.vtk')
|
||||
self.surface2VTK(interf2, filename='interface2.vtk')
|
||||
self.receivers2VTK()
|
||||
self.sources2VTK()
|
||||
fmtomoUtils.vgrids2VTK()
|
||||
|
||||
def generateReceiversIn(self, outfilename = 'receivers.in'):
|
||||
def generateReceiversIn(self, outfilename='receivers.in'):
|
||||
outfile = open(outfilename, 'w')
|
||||
|
||||
recx, recy, recz = self.getReceiverLists()
|
||||
nsrc = len(self.getSourceLocations())
|
||||
outfile.writelines('%s\n'%(len(zip(recx, recy, recz)) * nsrc))
|
||||
outfile.writelines('%s\n' % (len(zip(recx, recy, recz)) * nsrc))
|
||||
|
||||
for index in range(nsrc):
|
||||
for point in zip(recx, recy, recz):
|
||||
@ -450,17 +463,16 @@ class SeisArray(object):
|
||||
rad = - rz
|
||||
lat = self._getAngle(ry)
|
||||
lon = self._getAngle(rx)
|
||||
outfile.writelines('%15s %15s %15s\n'%(rad, lat, lon))
|
||||
outfile.writelines('%15s\n'%(1))
|
||||
outfile.writelines('%15s\n'%(index + 1))
|
||||
outfile.writelines('%15s\n'%(1))
|
||||
outfile.writelines('%15s %15s %15s\n' % (rad, lat, lon))
|
||||
outfile.writelines('%15s\n' % (1))
|
||||
outfile.writelines('%15s\n' % (index + 1))
|
||||
outfile.writelines('%15s\n' % (1))
|
||||
|
||||
outfile.close()
|
||||
|
||||
|
||||
def generateInterfaces(self, nTheta, nPhi, depthmax, cushionfactor = 0.1,
|
||||
outfilename = 'interfaces.in', method = 'linear',
|
||||
returnInterfaces = False):
|
||||
def generateInterfaces(self, nTheta, nPhi, depthmax, cushionfactor=0.1,
|
||||
outfilename='interfaces.in', method='linear',
|
||||
returnInterfaces=False):
|
||||
'''
|
||||
Create an interfaces.in file for FMTOMO from the SeisArray boundaries.
|
||||
:param: nTheta, number of points in Theta
|
||||
@ -494,22 +506,22 @@ class SeisArray(object):
|
||||
deltaPhi = abs(phiE - phiW) / float((nPhi - 1))
|
||||
|
||||
# write header for interfaces grid file (in RADIANS)
|
||||
outfile.writelines('%10s\n' %(nInterfaces))
|
||||
outfile.writelines('%10s %10s\n' %(nTheta + 2, nPhi + 2)) # +2 cushion nodes
|
||||
outfile.writelines('%10s %10s\n' %(np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines('%10s %10s\n' %(np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
outfile.writelines('%10s\n' % (nInterfaces))
|
||||
outfile.writelines('%10s %10s\n' % (nTheta + 2, nPhi + 2)) # +2 cushion nodes
|
||||
outfile.writelines('%10s %10s\n' % (np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines('%10s %10s\n' % (np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
|
||||
interface1 = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method)
|
||||
interface2 = self.interpolateOnRegularGrid(nTheta, nPhi, thetaSN, phiWE, -depthmax, method = method)
|
||||
interface1 = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method=method)
|
||||
interface2 = self.interpolateOnRegularGrid(nTheta, nPhi, thetaSN, phiWE, -depthmax, method=method)
|
||||
|
||||
for point in interface1:
|
||||
z = point[2]
|
||||
outfile.writelines('%10s\n'%(z + R))
|
||||
outfile.writelines('%10s\n' % (z + R))
|
||||
|
||||
outfile.writelines('\n')
|
||||
for point in interface2:
|
||||
z = point[2]
|
||||
outfile.writelines('%10s\n'%(z + R))
|
||||
outfile.writelines('%10s\n' % (z + R))
|
||||
|
||||
outfile.close()
|
||||
|
||||
@ -519,7 +531,7 @@ class SeisArray(object):
|
||||
print('Finished generating interfaces.')
|
||||
print('------------------------------------------------------------')
|
||||
|
||||
def getThetaPhiFromArray(self, cushionfactor = 0.1):
|
||||
def getThetaPhiFromArray(self, cushionfactor=0.1):
|
||||
'''
|
||||
Determine and returns PhiWE (tuple: (West, East)) and thetaSN (tuple (South, North)) from the SeisArray boundaries.
|
||||
|
||||
@ -535,8 +547,8 @@ class SeisArray(object):
|
||||
thetaSN = (theta_min - cushionTheta, theta_max + cushionTheta)
|
||||
return thetaSN, phiWE
|
||||
|
||||
def generatePropgrid(self, nTheta, nPhi, nR, Rbt, cushionfactor, cushionpropgrid = 0.05,
|
||||
refinement = (5, 5), outfilename = 'propgrid.in'):
|
||||
def generatePropgrid(self, nTheta, nPhi, nR, Rbt, cushionfactor, cushionpropgrid=0.05,
|
||||
refinement=(5, 5), outfilename='propgrid.in'):
|
||||
'''
|
||||
Create a propergation grid file for FMTOMO using SeisArray boundaries
|
||||
|
||||
@ -567,9 +579,9 @@ class SeisArray(object):
|
||||
print('\n------------------------------------------------------------')
|
||||
print('Generating Propagation Grid for nTheta = %s, nPhi'
|
||||
' = %s, nR = %s and a cushioning of %s'
|
||||
%(nTheta, nPhi, nR, cushionpropgrid))
|
||||
% (nTheta, nPhi, nR, cushionpropgrid))
|
||||
print('Bottom of the grid: %s, top of the grid %s'
|
||||
%(Rbt[0], Rbt[1]))
|
||||
% (Rbt[0], Rbt[1]))
|
||||
|
||||
thetaSN, phiWE = self.getThetaPhiFromArray(cushionfactor)
|
||||
|
||||
@ -584,20 +596,20 @@ class SeisArray(object):
|
||||
deltaPhi = abs(phiE - phiW) / float(nPhi - 1)
|
||||
deltaR = abs(rbot - rtop) / float(nR - 1)
|
||||
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(deltaR, deltaTheta, deltaPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' %(rtop, thetaS, phiW))
|
||||
outfile.writelines('%10s %10s\n' %refinement)
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR, nTheta, nPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (deltaR, deltaTheta, deltaPhi))
|
||||
outfile.writelines('%10s %10s %10s\n' % (rtop, thetaS, phiW))
|
||||
outfile.writelines('%10s %10s\n' % refinement)
|
||||
|
||||
outfile.close()
|
||||
|
||||
print('Created Propagation Grid and saved it to %s' %outfilename)
|
||||
print('Created Propagation Grid and saved it to %s' % outfilename)
|
||||
print('------------------------------------------------------------')
|
||||
|
||||
def generateVgrid(self, nTheta, nPhi, nR, Rbt, thetaSN = None,
|
||||
phiWE = None, cushionfactor = 0.1,
|
||||
outfilename = 'vgrids.in', method = 'linear',
|
||||
infilename = 'mygrid.in', returnTopo = False):
|
||||
def generateVgrid(self, nTheta, nPhi, nR, Rbt, thetaSN=None,
|
||||
phiWE=None, cushionfactor=0.1,
|
||||
outfilename='vgrids.in', method='linear',
|
||||
infilename='mygrid.in', returnTopo=False):
|
||||
'''
|
||||
Generate a velocity grid for fmtomo regarding topography with a linear gradient starting at the topography with 0.34 [km/s].
|
||||
|
||||
@ -641,11 +653,14 @@ class SeisArray(object):
|
||||
return nlayers
|
||||
|
||||
def readMygrid(filename):
|
||||
ztop = []; zbot = []; vtop = []; vbot = []
|
||||
ztop = [];
|
||||
zbot = [];
|
||||
vtop = [];
|
||||
vbot = []
|
||||
infile = open(filename, 'r')
|
||||
nlayers = readMygridNlayers(filename)
|
||||
|
||||
print('\nreadMygrid: Reading file %s.'%filename)
|
||||
print('\nreadMygrid: Reading file %s.' % filename)
|
||||
for index in range(nlayers):
|
||||
line1 = infile.readline()
|
||||
line2 = infile.readline()
|
||||
@ -655,11 +670,11 @@ class SeisArray(object):
|
||||
vbot.append(float(line2.split()[1]))
|
||||
print('Layer %s:\n[Top: v = %s [km/s], z = %s [m]]'
|
||||
'\n[Bot: v = %s [km/s], z = %s [m]]'
|
||||
%(index + 1, vtop[index], ztop[index],
|
||||
vbot[index], zbot[index]))
|
||||
% (index + 1, vtop[index], ztop[index],
|
||||
vbot[index], zbot[index]))
|
||||
|
||||
if not ztop[0] == 0:
|
||||
print('ERROR: there must be a velocity set for z = 0 in the file %s'%filename)
|
||||
print('ERROR: there must be a velocity set for z = 0 in the file %s' % filename)
|
||||
print('e.g.:\n0 0.33\n-5 1.0\netc.')
|
||||
|
||||
infile.close()
|
||||
@ -667,7 +682,7 @@ class SeisArray(object):
|
||||
|
||||
R = 6371.
|
||||
vmin = 0.34
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
decm = 0.3 # diagonal elements of the covariance matrix (grid3dg's default value is 0.3)
|
||||
outfile = open(outfilename, 'w')
|
||||
|
||||
# generate dimensions of the grid from array
|
||||
@ -685,28 +700,29 @@ class SeisArray(object):
|
||||
deltaR = abs(rbot - rtop) / float((nR - 1))
|
||||
|
||||
# create a regular grid including +2 cushion nodes in every direction
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num = nPhi + 2) # +2 cushion nodes
|
||||
rGrid = np.linspace(rbot - deltaR, rtop + deltaR, num = nR + 2) # +2 cushion nodes
|
||||
thetaGrid = np.linspace(thetaS - deltaTheta, thetaN + deltaTheta, num=nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - deltaPhi, phiE + deltaPhi, num=nPhi + 2) # +2 cushion nodes
|
||||
rGrid = np.linspace(rbot - deltaR, rtop + deltaR, num=nR + 2) # +2 cushion nodes
|
||||
|
||||
nTotal = len(rGrid) * len(thetaGrid) * len(phiGrid)
|
||||
print("Total number of grid nodes: %s"%nTotal)
|
||||
print("Total number of grid nodes: %s" % nTotal)
|
||||
|
||||
# write header for velocity grid file (in RADIANS)
|
||||
outfile.writelines('%10s %10s \n' %(1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' %(nR + 2, nTheta + 2, nPhi + 2))
|
||||
outfile.writelines('%10s %10s %10s\n' %(deltaR, np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines('%10s %10s %10s\n' %(rbot - deltaR, np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
outfile.writelines('%10s %10s \n' % (1, 1))
|
||||
outfile.writelines('%10s %10s %10s\n' % (nR + 2, nTheta + 2, nPhi + 2))
|
||||
outfile.writelines('%10s %10s %10s\n' % (deltaR, np.deg2rad(deltaTheta), np.deg2rad(deltaPhi)))
|
||||
outfile.writelines(
|
||||
'%10s %10s %10s\n' % (rbot - deltaR, np.deg2rad(thetaS - deltaTheta), np.deg2rad(phiW - deltaPhi)))
|
||||
|
||||
surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method = method)
|
||||
surface = self.interpolateTopography(nTheta, nPhi, thetaSN, phiWE, method=method)
|
||||
|
||||
nlayers = readMygridNlayers(infilename)
|
||||
ztop, zbot, vtop, vbot = readMygrid(infilename)
|
||||
|
||||
print("\nGenerating velocity grid for FMTOMO. "
|
||||
"Output filename = %s, interpolation method = %s"%(outfilename, method))
|
||||
"Output filename = %s, interpolation method = %s" % (outfilename, method))
|
||||
print("nTheta = %s, nPhi = %s, nR = %s, "
|
||||
"thetaSN = %s, phiWE = %s, Rbt = %s"%(nTheta, nPhi, nR, thetaSN, phiWE, Rbt))
|
||||
"thetaSN = %s, phiWE = %s, Rbt = %s" % (nTheta, nPhi, nR, thetaSN, phiWE, Rbt))
|
||||
count = 0
|
||||
|
||||
for radius in rGrid:
|
||||
@ -721,32 +737,36 @@ class SeisArray(object):
|
||||
depth = -(R + topo - radius)
|
||||
if depth > 1:
|
||||
vel = 0.0
|
||||
elif 1 >= depth > 0: # cushioning around topography
|
||||
elif 1 >= depth > 0: # cushioning around topography
|
||||
vel = vtop[0]
|
||||
else:
|
||||
for index in range(nlayers):
|
||||
if (ztop[index]) >= depth > (zbot[index]):
|
||||
vel = (depth - ztop[index]) / (zbot[index] - ztop[index]) * (vbot[index] - vtop[index]) + vtop[index]
|
||||
vel = (depth - ztop[index]) / (zbot[index] - ztop[index]) * (
|
||||
vbot[index] - vtop[index]) + vtop[index]
|
||||
break
|
||||
if not (ztop[index]) >= depth > (zbot[index]):
|
||||
print('ERROR in grid inputfile, could not find velocity for a z-value of %s in the inputfile'%(depth-topo))
|
||||
print(
|
||||
'ERROR in grid inputfile, could not find velocity for a z-value of %s in the inputfile' % (
|
||||
depth - topo))
|
||||
return
|
||||
count += 1
|
||||
if vel < 0:
|
||||
print('ERROR, vel <0; z, topo, zbot, vbot, vtop:', depth, topo, zbot[index], vbot[index], vtop[index])
|
||||
outfile.writelines('%10s %10s\n'%(vel, decm))
|
||||
print(
|
||||
'ERROR, vel <0; z, topo, zbot, vbot, vtop:', depth, topo, zbot[index], vbot[index], vtop[index])
|
||||
outfile.writelines('%10s %10s\n' % (vel, decm))
|
||||
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
print('\nWrote %d points to file %s for %d layers'%(count, outfilename, nlayers))
|
||||
print('\nWrote %d points to file %s for %d layers' % (count, outfilename, nlayers))
|
||||
print('------------------------------------------------------------')
|
||||
outfile.close()
|
||||
|
||||
if returnTopo == True:
|
||||
return surface
|
||||
|
||||
def exportAll(self, filename = 'interpolated_receivers.out'):
|
||||
def exportAll(self, filename='interpolated_receivers.out'):
|
||||
'''
|
||||
Exports all receivers to an input file for ActiveSeismoPick3D.
|
||||
'''
|
||||
@ -755,11 +775,11 @@ class SeisArray(object):
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
count += 1
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" %(count, filename)
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' % (traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" % (count, filename)
|
||||
recfile_out.close()
|
||||
|
||||
def plotArray2D(self, plot_topo = False, highlight_measured = False, annotations = True, pointsize = 10):
|
||||
def plotArray2D(self, plot_topo=False, highlight_measured=False, annotations=True, pointsize=10):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
fig = plt.figure()
|
||||
@ -770,36 +790,36 @@ class SeisArray(object):
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
|
||||
if len(xrc) > 0:
|
||||
ax.plot(xrc, yrc, 'k.', markersize = pointsize, label = 'all receivers')
|
||||
ax.plot(xrc, yrc, 'k.', markersize=pointsize, label='all receivers')
|
||||
if len(xsc) > 0:
|
||||
ax.plot(xsc, ysc, 'b*', markersize = pointsize, label = 'shot locations')
|
||||
ax.plot(xsc, ysc, 'b*', markersize=pointsize, label='shot locations')
|
||||
|
||||
if plot_topo == True:
|
||||
ax.plot(xmt, ymt, 'b.', markersize = pointsize, label = 'measured topo points')
|
||||
ax.plot(xmt, ymt, 'b.', markersize=pointsize, label='measured topo points')
|
||||
if highlight_measured == True:
|
||||
ax.plot(xmr, ymr, 'r.', markersize = pointsize, label = 'measured receivers')
|
||||
ax.plot(xmr, ymr, 'r.', markersize=pointsize, label='measured receivers')
|
||||
|
||||
plt.title('2D plot of seismic array %s'%self.recfile)
|
||||
plt.title('2D plot of seismic array %s' % self.recfile)
|
||||
ax.set_xlabel('X [m]')
|
||||
ax.set_ylabel('Y [m]')
|
||||
ax.set_aspect('equal')
|
||||
plt.legend()
|
||||
if annotations == True:
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
ax.annotate((' ' + str(traceID)), xy = (self._getXreceiver(traceID), self._getYreceiver(traceID)), fontsize = 'x-small', color = 'k')
|
||||
ax.annotate((' ' + str(traceID)), xy=(self._getXreceiver(traceID), self._getYreceiver(traceID)),
|
||||
fontsize='x-small', color='k')
|
||||
for shotnumber in self.getSourceLocations().keys():
|
||||
ax.annotate((' ' + str(shotnumber)), xy = (self._getXshot(shotnumber), self._getYshot(shotnumber)), fontsize = 'x-small', color = 'b')
|
||||
ax.annotate((' ' + str(shotnumber)), xy=(self._getXshot(shotnumber), self._getYshot(shotnumber)),
|
||||
fontsize='x-small', color='b')
|
||||
|
||||
|
||||
|
||||
def plotArray3D(self, ax = None):
|
||||
def plotArray3D(self, ax=None):
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
plt.interactive(True)
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
@ -808,20 +828,21 @@ class SeisArray(object):
|
||||
|
||||
plt.title('3D plot of seismic array.')
|
||||
if len(xmt) > 0:
|
||||
ax.plot(xmt, ymt, zmt, 'b.', markersize = 10, label = 'measured topo points')
|
||||
ax.plot(xmt, ymt, zmt, 'b.', markersize=10, label='measured topo points')
|
||||
if len(xrc) > 0:
|
||||
ax.plot(xrc, yrc, zrc, 'k.', markersize = 10, label = 'all receivers')
|
||||
ax.plot(xrc, yrc, zrc, 'k.', markersize=10, label='all receivers')
|
||||
if len(xmr) > 0:
|
||||
ax.plot(xmr, ymr, zmr, 'ro', label = 'measured receivers')
|
||||
ax.plot(xmr, ymr, zmr, 'ro', label='measured receivers')
|
||||
if len(xsc) > 0:
|
||||
ax.plot(xsc, ysc, zsc, 'b*', label = 'shot locations')
|
||||
ax.set_xlabel('X [m]'); ax.set_ylabel('Y [m]'); ax.set_zlabel('Z [m]')
|
||||
ax.plot(xsc, ysc, zsc, 'b*', label='shot locations')
|
||||
ax.set_xlabel('X [m]');
|
||||
ax.set_ylabel('Y [m]');
|
||||
ax.set_zlabel('Z [m]')
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
|
||||
def plotSurface3D(self, ax = None, step = 0.5, method = 'linear', exag = False):
|
||||
def plotSurface3D(self, ax=None, step=0.5, method='linear', exag=False):
|
||||
from matplotlib import cm
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
@ -829,7 +850,7 @@ class SeisArray(object):
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
@ -838,31 +859,33 @@ class SeisArray(object):
|
||||
y = ymt + ymr
|
||||
z = zmt + zmr
|
||||
|
||||
xaxis = np.arange(min(x)+1, max(x), step)
|
||||
yaxis = np.arange(min(y)+1, max(y), step)
|
||||
xaxis = np.arange(min(x) + 1, max(x), step)
|
||||
yaxis = np.arange(min(y) + 1, max(y), step)
|
||||
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method = method)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method=method)
|
||||
|
||||
surf = ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z))
|
||||
surf = ax.plot_surface(xgrid, ygrid, zgrid, linewidth=0, cmap=cm.jet, vmin=min(z), vmax=max(z))
|
||||
cbar = plt.colorbar(surf)
|
||||
cbar.set_label('Elevation [m]')
|
||||
|
||||
if exag == False:
|
||||
ax.set_zlim(-(max(x) - min(x)/2),(max(x) - min(x)/2))
|
||||
ax.set_zlim(-(max(x) - min(x) / 2), (max(x) - min(x) / 2))
|
||||
ax.set_aspect('equal')
|
||||
|
||||
ax.set_xlabel('X [m]'); ax.set_ylabel('Y [m]'); ax.set_zlabel('Z [m]')
|
||||
ax.set_xlabel('X [m]');
|
||||
ax.set_ylabel('Y [m]');
|
||||
ax.set_zlabel('Z [m]')
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
def _update_progress(self, progress):
|
||||
sys.stdout.write("%d%% done \r" % (progress) )
|
||||
sys.stdout.write("%d%% done \r" % (progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
def surface2VTK(self, surface, filename = 'surface.vtk'):
|
||||
def surface2VTK(self, surface, filename='surface.vtk'):
|
||||
'''
|
||||
Generates a vtk file from all points of a surface as generated by interpolateTopography.
|
||||
'''
|
||||
@ -876,7 +899,7 @@ class SeisArray(object):
|
||||
outfile.writelines('Surface Points\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
@ -885,14 +908,14 @@ class SeisArray(object):
|
||||
y = point[1]
|
||||
z = point[2]
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
outfile.writelines('%10f %10f %10f \n' % (x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
outfile.writelines('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
outfile.writelines('%10d %10d\n' % (1, index))
|
||||
|
||||
# outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
# outfile.writelines('SCALARS traceIDs int %d\n' %(1))
|
||||
@ -904,10 +927,10 @@ class SeisArray(object):
|
||||
# outfile.writelines('%10d\n' %traceID)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote %d points to file: %s" %(nPoints, filename))
|
||||
print("Wrote %d points to file: %s" % (nPoints, filename))
|
||||
return
|
||||
|
||||
def receivers2VTK(self, filename = 'receivers.vtk'):
|
||||
def receivers2VTK(self, filename='receivers.vtk'):
|
||||
'''
|
||||
Generates a vtk file from all receivers of the SeisArray object.
|
||||
'''
|
||||
@ -925,7 +948,7 @@ class SeisArray(object):
|
||||
outfile.writelines('Receivers with traceIDs\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
@ -934,29 +957,29 @@ class SeisArray(object):
|
||||
y = self._getYreceiver(traceID)
|
||||
z = self._getZreceiver(traceID)
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
outfile.writelines('%10f %10f %10f \n' % (x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
outfile.writelines('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
outfile.writelines('%10d %10d\n' % (1, index))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('SCALARS traceIDs int %d\n' %(1))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
outfile.writelines('SCALARS traceIDs int %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write traceIDs
|
||||
print("Writing traceIDs to VTK file...")
|
||||
for traceID in traceIDs:
|
||||
outfile.writelines('%10d\n' %traceID)
|
||||
outfile.writelines('%10d\n' % traceID)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote %d receiver for to file: %s" %(nPoints, filename))
|
||||
print("Wrote %d receiver for to file: %s" % (nPoints, filename))
|
||||
return
|
||||
|
||||
def sources2VTK(self, filename = 'sources.vtk'):
|
||||
def sources2VTK(self, filename='sources.vtk'):
|
||||
'''
|
||||
Generates a vtk-file for all source locations in the SeisArray object.
|
||||
'''
|
||||
@ -974,7 +997,7 @@ class SeisArray(object):
|
||||
outfile.writelines('Shots with shotnumbers\n')
|
||||
outfile.writelines('ASCII\n')
|
||||
outfile.writelines('DATASET POLYDATA\n')
|
||||
outfile.writelines('POINTS %15d float\n' %(nPoints))
|
||||
outfile.writelines('POINTS %15d float\n' % (nPoints))
|
||||
|
||||
# write coordinates
|
||||
print("Writing coordinates to VTK file...")
|
||||
@ -983,35 +1006,34 @@ class SeisArray(object):
|
||||
y = self._getYshot(shotnumber)
|
||||
z = self._getZshot(shotnumber)
|
||||
|
||||
outfile.writelines('%10f %10f %10f \n' %(x, y, z))
|
||||
outfile.writelines('%10f %10f %10f \n' % (x, y, z))
|
||||
|
||||
outfile.writelines('VERTICES %15d %15d\n' %(nPoints, 2 * nPoints))
|
||||
outfile.writelines('VERTICES %15d %15d\n' % (nPoints, 2 * nPoints))
|
||||
|
||||
# write indices
|
||||
print("Writing indices to VTK file...")
|
||||
for index in range(nPoints):
|
||||
outfile.writelines('%10d %10d\n' %(1, index))
|
||||
outfile.writelines('%10d %10d\n' % (1, index))
|
||||
|
||||
outfile.writelines('POINT_DATA %15d\n' %(nPoints))
|
||||
outfile.writelines('SCALARS shotnumbers int %d\n' %(1))
|
||||
outfile.writelines('POINT_DATA %15d\n' % (nPoints))
|
||||
outfile.writelines('SCALARS shotnumbers int %d\n' % (1))
|
||||
outfile.writelines('LOOKUP_TABLE default\n')
|
||||
|
||||
# write shotnumber
|
||||
print("Writing shotnumbers to VTK file...")
|
||||
for shotnumber in shotnumbers:
|
||||
outfile.writelines('%10d\n' %shotnumber)
|
||||
outfile.writelines('%10d\n' % shotnumber)
|
||||
|
||||
outfile.close()
|
||||
print("Wrote %d sources to file: %s" %(nPoints, filename))
|
||||
print("Wrote %d sources to file: %s" % (nPoints, filename))
|
||||
return
|
||||
|
||||
|
||||
def saveSeisArray(self, filename = 'seisArray.pickle'):
|
||||
def saveSeisArray(self, filename='seisArray.pickle'):
|
||||
import cPickle
|
||||
outfile = open(filename, 'wb')
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved SeisArray to file %s'%(filename))
|
||||
print('saved SeisArray to file %s' % (filename))
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
|
@ -11,12 +11,15 @@ from pylot.core.pick.charfuns import AICcf
|
||||
from pylot.core.pick.utils import getSNR
|
||||
from pylot.core.pick.utils import earllatepicker
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.interactive('True')
|
||||
|
||||
|
||||
class SeismicShot(object):
|
||||
'''
|
||||
SuperClass for a seismic shot object.
|
||||
'''
|
||||
|
||||
def __init__(self, obsfile):
|
||||
'''
|
||||
Initialize seismic shot object giving an inputfile.
|
||||
@ -29,8 +32,8 @@ class SeismicShot(object):
|
||||
self.srcCoordlist = None
|
||||
self.traceIDs = None
|
||||
self.picks = {}
|
||||
self.pwindow= {}
|
||||
self.manualpicks= {}
|
||||
self.pwindow = {}
|
||||
self.manualpicks = {}
|
||||
self.snr = {}
|
||||
self.snrthreshold = {}
|
||||
self.timeArray = {}
|
||||
@ -61,10 +64,10 @@ class SeismicShot(object):
|
||||
if traceID == trace.stats.channel:
|
||||
self.traces.remove(trace)
|
||||
|
||||
# for traceID in TraceIDs:
|
||||
# traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
|
||||
# if len(traces) is not 1:
|
||||
# self.traces.remove(trace)
|
||||
# for traceID in TraceIDs:
|
||||
# traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
|
||||
# if len(traces) is not 1:
|
||||
# self.traces.remove(trace)
|
||||
|
||||
def updateTraceList(self):
|
||||
'''
|
||||
@ -87,22 +90,22 @@ class SeismicShot(object):
|
||||
self.setParameters('tmovwind', tmovwind)
|
||||
|
||||
def setOrder(self, order):
|
||||
self.setParameters('order', order)
|
||||
self.setParameters('order', order)
|
||||
|
||||
def setTsignal(self, tsignal):
|
||||
self.setParameters('tsignal', tsignal)
|
||||
self.setParameters('tsignal', tsignal)
|
||||
|
||||
def setTgap(self, tgap):
|
||||
self.setParameters('tgap', tgap)
|
||||
self.setParameters('tgap', tgap)
|
||||
|
||||
def setShotnumber(self, shotname):
|
||||
self.setParameters('shotname', shotname)
|
||||
self.setParameters('shotname', shotname)
|
||||
|
||||
def setRecfile(self, recfile):
|
||||
self.setParameters('recfile', recfile)
|
||||
self.setParameters('recfile', recfile)
|
||||
|
||||
def setSourcefile(self, sourcefile):
|
||||
self.setParameters('sourcefile', sourcefile)
|
||||
self.setParameters('sourcefile', sourcefile)
|
||||
|
||||
def getParas(self):
|
||||
return self.paras
|
||||
@ -144,15 +147,15 @@ class SeismicShot(object):
|
||||
def getManualLatest(self, traceID):
|
||||
return self.manualpicks[traceID]['lpp']
|
||||
|
||||
def getPick(self, traceID, returnRemoved = False):
|
||||
def getPick(self, traceID, returnRemoved=False):
|
||||
if not self.getPickFlag(traceID) == 0:
|
||||
return self.picks[traceID]['mpp']
|
||||
if returnRemoved == True:
|
||||
#print('getPick: Returned removed pick for shot %d, traceID %d' %(self.getShotnumber(), traceID))
|
||||
# print('getPick: Returned removed pick for shot %d, traceID %d' %(self.getShotnumber(), traceID))
|
||||
return self.picks[traceID]['mpp']
|
||||
|
||||
def getPickIncludeRemoved(self, traceID):
|
||||
return self.getPick(traceID, returnRemoved = True)
|
||||
return self.getPick(traceID, returnRemoved=True)
|
||||
|
||||
def getEarliest(self, traceID):
|
||||
return self.picks[traceID]['epp']
|
||||
@ -163,13 +166,13 @@ class SeismicShot(object):
|
||||
def getSymmetricPickError(self, traceID):
|
||||
pickerror = self.picks[traceID]['spe']
|
||||
if np.isnan(pickerror) == True:
|
||||
print "SPE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID)
|
||||
print "SPE is NaN for shot %s, traceID %s" % (self.getShotnumber(), traceID)
|
||||
return pickerror
|
||||
|
||||
def getPickError(self, traceID):
|
||||
pickerror = abs(self.getEarliest(traceID) - self.getLatest(traceID)) / 2
|
||||
if np.isnan(pickerror) == True:
|
||||
print("PE is NaN for shot %s, traceID %s"%(self.getShotnumber(), traceID))
|
||||
print("PE is NaN for shot %s, traceID %s" % (self.getShotnumber(), traceID))
|
||||
return pickerror
|
||||
|
||||
def getStreamTraceIDs(self):
|
||||
@ -207,15 +210,15 @@ class SeismicShot(object):
|
||||
|
||||
def getRecCoordlist(self):
|
||||
if self.recCoordlist is None:
|
||||
coordlist = open(self.getRecfile(),'r').readlines()
|
||||
#print 'Reading receiver coordinates from %s' %(self.getRecfile())
|
||||
coordlist = open(self.getRecfile(), 'r').readlines()
|
||||
# print 'Reading receiver coordinates from %s' %(self.getRecfile())
|
||||
self.recCoordlist = coordlist
|
||||
return self.recCoordlist
|
||||
|
||||
def getSrcCoordlist(self):
|
||||
if self.srcCoordlist is None:
|
||||
coordlist = open(self.getSourcefile(),'r').readlines()
|
||||
#print 'Reading shot coordinates from %s' %(self.getSourcefile())
|
||||
coordlist = open(self.getSourcefile(), 'r').readlines()
|
||||
# print 'Reading shot coordinates from %s' %(self.getSourcefile())
|
||||
self.srcCoordlist = coordlist
|
||||
return self.srcCoordlist
|
||||
|
||||
@ -239,7 +242,7 @@ class SeismicShot(object):
|
||||
:type: int
|
||||
'''
|
||||
return HOScf(self.getSingleStream(traceID), self.getCut(),
|
||||
self.getTmovwind(), self.getOrder(), stealthMode = True)
|
||||
self.getTmovwind(), self.getOrder(), stealthMode=True)
|
||||
|
||||
def getAICcf(self, traceID):
|
||||
'''
|
||||
@ -262,7 +265,7 @@ class SeismicShot(object):
|
||||
tr_cf = Trace()
|
||||
tr_cf.data = self.getHOScf(traceID).getCF()
|
||||
st_cf += tr_cf
|
||||
return AICcf(st_cf, self.getCut(), self.getTmovwind(), stealthMode = True)
|
||||
return AICcf(st_cf, self.getCut(), self.getTmovwind(), stealthMode=True)
|
||||
|
||||
def getSingleStream(self, traceID): ########## SEG2 / SEGY ? ##########
|
||||
'''
|
||||
@ -271,16 +274,16 @@ class SeismicShot(object):
|
||||
:param: traceID
|
||||
:type: int
|
||||
'''
|
||||
#traces = [trace for trace in self.traces if int(trace.stats.seg2['CHANNEL_NUMBER']) == traceID]
|
||||
# traces = [trace for trace in self.traces if int(trace.stats.seg2['CHANNEL_NUMBER']) == traceID]
|
||||
traces = [trace for trace in self.traces if int(trace.stats.channel) == traceID]
|
||||
if len(traces) == 1:
|
||||
return Stream(traces)
|
||||
self.setPick(traceID, None)
|
||||
print 'Warning: ambigious or empty traceID: %s' % traceID
|
||||
|
||||
#raise ValueError('ambigious or empty traceID: %s' % traceID)
|
||||
# raise ValueError('ambigious or empty traceID: %s' % traceID)
|
||||
|
||||
def pickTraces(self, traceID, windowsize, folm, HosAic = 'hos'): ########## input variables ##########
|
||||
def pickTraces(self, traceID, windowsize, folm, HosAic='hos'): ########## input variables ##########
|
||||
# LOCALMAX NOT IMPLEMENTED!
|
||||
'''
|
||||
Intitiate picking for a trace.
|
||||
@ -306,7 +309,7 @@ class SeismicShot(object):
|
||||
:param: HosAic, get hos or aic pick (can be 'hos'(default) or 'aic')
|
||||
:type: 'string'
|
||||
'''
|
||||
hoscf = self.getHOScf(traceID) ### determination of both, HOS and AIC (need to change threshold-picker) ###
|
||||
hoscf = self.getHOScf(traceID) ### determination of both, HOS and AIC (need to change threshold-picker) ###
|
||||
aiccf = self.getAICcf(traceID)
|
||||
|
||||
self.folm = folm
|
||||
@ -318,7 +321,7 @@ class SeismicShot(object):
|
||||
|
||||
self.setPick(traceID, setHosAic[HosAic])
|
||||
|
||||
def setEarllatepick(self, traceID, nfac = 1.5):
|
||||
def setEarllatepick(self, traceID, nfac=1.5):
|
||||
tgap = self.getTgap()
|
||||
tsignal = self.getTsignal()
|
||||
tnoise = self.getPickIncludeRemoved(traceID) - tgap
|
||||
@ -326,17 +329,17 @@ class SeismicShot(object):
|
||||
(self.picks[traceID]['epp'],
|
||||
self.picks[traceID]['lpp'],
|
||||
self.picks[traceID]['spe']) = earllatepicker(self.getSingleStream(traceID),
|
||||
nfac, (tnoise, tgap, tsignal),
|
||||
self.getPickIncludeRemoved(traceID),
|
||||
stealthMode = True)
|
||||
nfac, (tnoise, tgap, tsignal),
|
||||
self.getPickIncludeRemoved(traceID),
|
||||
stealthMode=True)
|
||||
|
||||
if self.picks[traceID]['epp'] < 0:
|
||||
self.picks[traceID]['epp']
|
||||
#print('setEarllatepick: Set epp to 0 because it was < 0')
|
||||
# print('setEarllatepick: Set epp to 0 because it was < 0')
|
||||
|
||||
# TEST OF 1/2 PICKERROR
|
||||
# self.picks[traceID]['spe'] *= 0.5
|
||||
# TEST OF 1/2 PICKERROR
|
||||
# TEST OF 1/2 PICKERROR
|
||||
# self.picks[traceID]['spe'] *= 0.5
|
||||
# TEST OF 1/2 PICKERROR
|
||||
|
||||
def threshold(self, hoscf, aiccf, windowsize, pickwindow, folm):
|
||||
'''
|
||||
@ -365,10 +368,11 @@ class SeismicShot(object):
|
||||
leftb = int(pickwindow[0] / self.getCut()[1] * len(hoscflist))
|
||||
rightb = int(pickwindow[1] / self.getCut()[1] * len(hoscflist))
|
||||
|
||||
#threshold = folm * max(hoscflist[leftb : rightb]) # combination of local maximum and threshold
|
||||
# threshold = folm * max(hoscflist[leftb : rightb]) # combination of local maximum and threshold
|
||||
|
||||
### TEST TEST
|
||||
threshold = folm * (max(hoscflist[leftb : rightb]) - min(hoscflist[leftb : rightb])) + min(hoscflist[leftb : rightb]) # combination of local maximum and threshold
|
||||
threshold = folm * (max(hoscflist[leftb: rightb]) - min(hoscflist[leftb: rightb])) + min(
|
||||
hoscflist[leftb: rightb]) # combination of local maximum and threshold
|
||||
### TEST TEST
|
||||
|
||||
m = leftb
|
||||
@ -378,8 +382,8 @@ class SeismicShot(object):
|
||||
|
||||
hoscftime = list(hoscf.getTimeArray())[m]
|
||||
|
||||
lb = max(0, m - windowsize[0]) # if window exceeds t = 0
|
||||
aiccfcut = list(aiccf.getCF())[lb : m + windowsize[1]]
|
||||
lb = max(0, m - windowsize[0]) # if window exceeds t = 0
|
||||
aiccfcut = list(aiccf.getCF())[lb: m + windowsize[1]]
|
||||
if len(aiccfcut) > 0:
|
||||
n = aiccfcut.index(min(aiccfcut))
|
||||
else:
|
||||
@ -401,13 +405,13 @@ class SeismicShot(object):
|
||||
'''
|
||||
shotX, shotY, shotZ = self.getSrcLoc()
|
||||
recX, recY, recZ = self.getRecLoc(traceID)
|
||||
dist = np.sqrt((shotX-recX)**2 + (shotY-recY)**2 + (shotZ-recZ)**2)
|
||||
dist = np.sqrt((shotX - recX) ** 2 + (shotY - recY) ** 2 + (shotZ - recZ) ** 2)
|
||||
|
||||
if np.isnan(dist) == True:
|
||||
raise ValueError("Distance is NaN for traceID %s" %traceID)
|
||||
raise ValueError("Distance is NaN for traceID %s" % traceID)
|
||||
|
||||
return dist
|
||||
#return abs(float(self.getSrcLoc(traceID))-float(self.getRecLoc(traceID)))
|
||||
# return abs(float(self.getSrcLoc(traceID))-float(self.getRecLoc(traceID)))
|
||||
|
||||
def getRecLoc(self, traceID): ########## input FILENAME ##########
|
||||
'''
|
||||
@ -417,7 +421,7 @@ class SeismicShot(object):
|
||||
:param: traceID
|
||||
:type: int
|
||||
'''
|
||||
if traceID == 0: # artificial traceID 0 with pick at t = 0
|
||||
if traceID == 0: # artificial traceID 0 with pick at t = 0
|
||||
return self.getSrcLoc()
|
||||
|
||||
coordlist = self.getRecCoordlist()
|
||||
@ -428,9 +432,9 @@ class SeismicShot(object):
|
||||
z = coordlist[i].split()[3]
|
||||
return float(x), float(y), float(z)
|
||||
|
||||
#print "WARNING: traceID %s not found" % traceID
|
||||
# print "WARNING: traceID %s not found" % traceID
|
||||
raise ValueError("traceID %s not found" % traceID)
|
||||
#return float(self.getSingleStream(traceID)[0].stats.seg2['RECEIVER_LOCATION'])
|
||||
# return float(self.getSingleStream(traceID)[0].stats.seg2['RECEIVER_LOCATION'])
|
||||
|
||||
def getSrcLoc(self): ########## input FILENAME ##########
|
||||
'''
|
||||
@ -444,9 +448,10 @@ class SeismicShot(object):
|
||||
y = coordlist[i].split()[2]
|
||||
z = coordlist[i].split()[3]
|
||||
return float(x), float(y), float(z)
|
||||
#return float(self.getSingleStream(traceID)[0].stats.seg2['SOURCE_LOCATION'])
|
||||
# return float(self.getSingleStream(traceID)[0].stats.seg2['SOURCE_LOCATION'])
|
||||
|
||||
def getTraceIDs4Dist(self, distance = 0, distancebin = (0, 0)): ########## nur fuer 2D benutzt, 'distance bins' ##########
|
||||
def getTraceIDs4Dist(self, distance=0,
|
||||
distancebin=(0, 0)): ########## nur fuer 2D benutzt, 'distance bins' ##########
|
||||
'''
|
||||
Returns the traceID(s) for a certain distance between source and receiver.
|
||||
Used for 2D Tomography. TO BE IMPROVED.
|
||||
@ -460,39 +465,39 @@ class SeismicShot(object):
|
||||
|
||||
traceID_list = []
|
||||
for trace in self.traces:
|
||||
#traceID = int(trace.stats.seg2['CHANNEL_NUMBER'])
|
||||
traceID = int(trace.stats.channel)
|
||||
if distance != 0:
|
||||
if self.getDistance(traceID) == distance:
|
||||
traceID_list.append(traceID)
|
||||
if distancebin[0] >= 0 and distancebin[1] > 0:
|
||||
if distancebin[0] < self.getDistance(traceID) < distancebin[1]:
|
||||
traceID_list.append(traceID)
|
||||
# traceID = int(trace.stats.seg2['CHANNEL_NUMBER'])
|
||||
traceID = int(trace.stats.channel)
|
||||
if distance != 0:
|
||||
if self.getDistance(traceID) == distance:
|
||||
traceID_list.append(traceID)
|
||||
if distancebin[0] >= 0 and distancebin[1] > 0:
|
||||
if distancebin[0] < self.getDistance(traceID) < distancebin[1]:
|
||||
traceID_list.append(traceID)
|
||||
|
||||
if len(traceID_list) > 0:
|
||||
return traceID_list
|
||||
|
||||
# def setManualPicks(self, traceID, picklist): ########## picklist momentan nicht allgemein, nur testweise benutzt ##########
|
||||
# '''
|
||||
# Sets the manual picks for a receiver with the ID == traceID for comparison.
|
||||
# def setManualPicks(self, traceID, picklist): ########## picklist momentan nicht allgemein, nur testweise benutzt ##########
|
||||
# '''
|
||||
# Sets the manual picks for a receiver with the ID == traceID for comparison.
|
||||
|
||||
# :param: traceID
|
||||
# :type: int
|
||||
# :param: traceID
|
||||
# :type: int
|
||||
|
||||
# :param: picklist, list containing the manual picks (mostlikely, earliest, latest).
|
||||
# :type: list
|
||||
# '''
|
||||
# picks = picklist[traceID - 1].split()
|
||||
# mostlikely = float(picks[1])
|
||||
# earliest = float(picks[2])
|
||||
# latest = float(picks[3])
|
||||
# :param: picklist, list containing the manual picks (mostlikely, earliest, latest).
|
||||
# :type: list
|
||||
# '''
|
||||
# picks = picklist[traceID - 1].split()
|
||||
# mostlikely = float(picks[1])
|
||||
# earliest = float(picks[2])
|
||||
# latest = float(picks[3])
|
||||
|
||||
# if not self.manualpicks.has_key(traceID):
|
||||
# self.manualpicks[traceID] = (mostlikely, earliest, latest)
|
||||
#else:
|
||||
# raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID)
|
||||
# if not self.manualpicks.has_key(traceID):
|
||||
# self.manualpicks[traceID] = (mostlikely, earliest, latest)
|
||||
# else:
|
||||
# raise KeyError('MANUAL pick to be set more than once for traceID %s' % traceID)
|
||||
|
||||
def setManualPicksFromFile(self, directory = 'picks'):
|
||||
def setManualPicksFromFile(self, directory='picks'):
|
||||
'''
|
||||
Read manual picks from *.pck file.
|
||||
The * must be identical with the shotnumber.
|
||||
@ -517,8 +522,7 @@ class SeismicShot(object):
|
||||
else:
|
||||
self.setManualPickFlag(traceID, 1)
|
||||
|
||||
|
||||
def setPick(self, traceID, pick): ########## siehe Kommentar ##########
|
||||
def setPick(self, traceID, pick): ########## siehe Kommentar ##########
|
||||
if not traceID in self.picks.keys():
|
||||
self.picks[traceID] = {}
|
||||
self.picks[traceID]['mpp'] = pick
|
||||
@ -568,7 +572,7 @@ class SeismicShot(object):
|
||||
tsignal = self.getTsignal()
|
||||
tnoise = self.getPick(traceID) - tgap
|
||||
|
||||
self.snr[traceID] = getSNR(self.getSingleStream(traceID), (tnoise,tgap,tsignal), self.getPick(traceID))
|
||||
self.snr[traceID] = getSNR(self.getSingleStream(traceID), (tnoise, tgap, tsignal), self.getPick(traceID))
|
||||
|
||||
def setSNRthreshold(self, traceID, snrthreshold):
|
||||
self.snrthreshold[traceID] = snrthreshold
|
||||
@ -583,12 +587,11 @@ class SeismicShot(object):
|
||||
if self.getRecLoc(traceID)[0] > self.getSrcLoc()[0]:
|
||||
distancearray.append(self.getDistance(traceID))
|
||||
elif self.getRecLoc(traceID)[0] <= self.getSrcLoc()[0]:
|
||||
distancearray.append((-1)*self.getDistance(traceID))
|
||||
distancearray.append((-1) * self.getDistance(traceID))
|
||||
|
||||
return distancearray
|
||||
|
||||
|
||||
def plot2dttc(self, ax = None): ########## 2D ##########
|
||||
def plot2dttc(self, ax=None): ########## 2D ##########
|
||||
'''
|
||||
Function to plot the traveltime curve for automated picks of a shot. 2d only! ATM: X DIRECTION!!
|
||||
'''
|
||||
@ -605,15 +608,16 @@ class SeismicShot(object):
|
||||
|
||||
# shotnumbers = [shotnumbers for (shotnumbers, shotnames) in sorted(zip(shotnumbers, shotnames))]
|
||||
plotarray = sorted(zip(self.getDistArray4ttcPlot(), picks))
|
||||
x = []; y = []
|
||||
x = [];
|
||||
y = []
|
||||
for point in plotarray:
|
||||
x.append(point[0])
|
||||
y.append(point[1])
|
||||
ax.plot(x, y,'r', label = "Automatic Picks")
|
||||
ax.text(0.5, 0.9, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes
|
||||
, horizontalalignment = 'center')
|
||||
ax.plot(x, y, 'r', label="Automatic Picks")
|
||||
ax.text(0.5, 0.9, 'shot: %s' % self.getShotnumber(), transform=ax.transAxes
|
||||
, horizontalalignment='center')
|
||||
|
||||
def plotmanual2dttc(self, ax = None): ########## 2D ##########
|
||||
def plotmanual2dttc(self, ax=None): ########## 2D ##########
|
||||
'''
|
||||
Function to plot the traveltime curve for manual picks of a shot. 2D only!
|
||||
'''
|
||||
@ -632,11 +636,12 @@ class SeismicShot(object):
|
||||
ax = fig.add_subplot(111)
|
||||
|
||||
plotarray = sorted(zip(self.getDistArray4ttcPlot(), manualpicktimesarray))
|
||||
x = []; y = []
|
||||
x = [];
|
||||
y = []
|
||||
for point in plotarray:
|
||||
x.append(point[0])
|
||||
y.append(point[1])
|
||||
ax.plot(x, y, 'b', label = "Manual Picks")
|
||||
ax.plot(x, y, 'b', label="Manual Picks")
|
||||
|
||||
# def plotpickwindow(self): ########## 2D ##########
|
||||
# '''
|
||||
@ -656,10 +661,10 @@ class SeismicShot(object):
|
||||
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_lowerb, ':k')
|
||||
# plt.plot(self.getDistArray4ttcPlot(), pickwindowarray_upperb, ':k')
|
||||
|
||||
def plotTrace(self, traceID, plotSNR = True, lw = 1):
|
||||
def plotTrace(self, traceID, plotSNR=True, lw=1):
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
ax = self._drawStream(traceID, ax = ax)
|
||||
ax = self._drawStream(traceID, ax=ax)
|
||||
|
||||
tgap = self.getTgap()
|
||||
tsignal = self.getTsignal()
|
||||
@ -667,31 +672,32 @@ class SeismicShot(object):
|
||||
tnoise = pick - tgap
|
||||
snr, snrdb, noiselevel = self.getSNR(traceID)
|
||||
|
||||
ax.plot([0, tnoise], [noiselevel, noiselevel], 'm', linewidth = lw, label = 'noise level')
|
||||
ax.plot([tnoise, pick], [noiselevel, noiselevel], 'g:', linewidth = lw, label = 'gap')
|
||||
ax.plot([tnoise + tgap, pick + tsignal], [noiselevel * snr, noiselevel * snr], 'b', linewidth = lw, label = 'signal level')
|
||||
ax.plot([0, tnoise], [noiselevel, noiselevel], 'm', linewidth=lw, label='noise level')
|
||||
ax.plot([tnoise, pick], [noiselevel, noiselevel], 'g:', linewidth=lw, label='gap')
|
||||
ax.plot([tnoise + tgap, pick + tsignal], [noiselevel * snr, noiselevel * snr], 'b', linewidth=lw,
|
||||
label='signal level')
|
||||
ax.legend()
|
||||
ax.text(0.05, 0.9, 'SNR: %s' %snr, transform = ax.transAxes)
|
||||
ax.text(0.05, 0.9, 'SNR: %s' % snr, transform=ax.transAxes)
|
||||
|
||||
def plot_traces(self, traceID): ########## 2D, muss noch mehr verbessert werden ##########
|
||||
def plot_traces(self, traceID): ########## 2D, muss noch mehr verbessert werden ##########
|
||||
from matplotlib.widgets import Button
|
||||
|
||||
def onclick(event):
|
||||
self.setPick(traceID, event.xdata)
|
||||
if self.getSNR(traceID)[0] > 1:
|
||||
self.setEarllatepick(traceID)
|
||||
self._drawStream(traceID, refresh = True)
|
||||
self._drawCFs(traceID, folm, refresh = True)
|
||||
self._drawStream(traceID, refresh=True)
|
||||
self._drawCFs(traceID, folm, refresh=True)
|
||||
fig.canvas.mpl_disconnect(self.traces4plot[traceID]['cid'])
|
||||
plt.draw()
|
||||
|
||||
def rmPick(event = None):
|
||||
def rmPick(event=None):
|
||||
self.removePick(traceID)
|
||||
self._drawStream(traceID, refresh = True)
|
||||
self._drawCFs(traceID, folm, refresh = True)
|
||||
self._drawStream(traceID, refresh=True)
|
||||
self._drawCFs(traceID, folm, refresh=True)
|
||||
plt.draw()
|
||||
|
||||
def connectButton(event = None):
|
||||
def connectButton(event=None):
|
||||
cid = fig.canvas.mpl_connect('button_press_event', onclick)
|
||||
self.traces4plot[traceID]['cid'] = cid
|
||||
|
||||
@ -701,13 +707,13 @@ class SeismicShot(object):
|
||||
folm = self.folm
|
||||
|
||||
fig = plt.figure()
|
||||
ax1 = fig.add_subplot(2,1,1)
|
||||
ax2 = fig.add_subplot(2,1,2, sharex = ax1)
|
||||
ax1 = fig.add_subplot(2, 1, 1)
|
||||
ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
|
||||
axb1 = fig.add_axes([0.15, 0.91, 0.05, 0.03])
|
||||
axb2 = fig.add_axes([0.22, 0.91, 0.05, 0.03])
|
||||
button1 = Button(axb1, 'repick', color = 'red', hovercolor = 'grey')
|
||||
button1 = Button(axb1, 'repick', color='red', hovercolor='grey')
|
||||
button1.on_clicked(connectButton)
|
||||
button2 = Button(axb2, 'delete', color = 'green', hovercolor = 'grey')
|
||||
button2 = Button(axb2, 'delete', color='green', hovercolor='grey')
|
||||
button2.on_clicked(rmPick)
|
||||
fig.canvas.mpl_connect('close_event', cleanup)
|
||||
|
||||
@ -717,7 +723,7 @@ class SeismicShot(object):
|
||||
self._drawStream(traceID)
|
||||
self._drawCFs(traceID, folm)
|
||||
|
||||
def _drawStream(self, traceID, refresh = False, ax = None):
|
||||
def _drawStream(self, traceID, refresh=False, ax=None):
|
||||
from pylot.core.util.utils import getGlobalTimes
|
||||
from pylot.core.util.utils import prepTimeAxis
|
||||
|
||||
@ -737,27 +743,27 @@ class SeismicShot(object):
|
||||
ax.set_ylim(ylim)
|
||||
|
||||
ax.set_title('Shot: %s, traceID: %s, pick: %s'
|
||||
%(self.getShotnumber(), traceID, self.getPick(traceID)))
|
||||
ax.plot(timeaxis, stream[0].data, 'k', label = 'trace')
|
||||
% (self.getShotnumber(), traceID, self.getPick(traceID)))
|
||||
ax.plot(timeaxis, stream[0].data, 'k', label='trace')
|
||||
ax.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'r', label = 'most likely')
|
||||
'r', label='most likely')
|
||||
if self.getEarliest(traceID) is not None:
|
||||
ax.plot([self.getEarliest(traceID), self.getEarliest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'g:', label = 'earliest')
|
||||
'g:', label='earliest')
|
||||
if self.getLatest(traceID) is not None:
|
||||
ax.plot([self.getLatest(traceID), self.getLatest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'b:', label = 'latest')
|
||||
'b:', label='latest')
|
||||
|
||||
ax.legend()
|
||||
return ax
|
||||
|
||||
def _drawCFs(self, traceID, folm = None, refresh = False):
|
||||
def _drawCFs(self, traceID, folm=None, refresh=False):
|
||||
hoscf = self.getHOScf(traceID)
|
||||
aiccf = self.getAICcf(traceID)
|
||||
ax = self.traces4plot[traceID]['ax2']
|
||||
@ -769,30 +775,30 @@ class SeismicShot(object):
|
||||
ax.set_xlim(xlim)
|
||||
ax.set_ylim(ylim)
|
||||
|
||||
ax.plot(hoscf.getTimeArray(), hoscf.getCF(), 'b', label = 'HOS')
|
||||
ax.plot(hoscf.getTimeArray(), aiccf.getCF(), 'g', label = 'AIC')
|
||||
ax.plot(hoscf.getTimeArray(), hoscf.getCF(), 'b', label='HOS')
|
||||
ax.plot(hoscf.getTimeArray(), aiccf.getCF(), 'g', label='AIC')
|
||||
ax.plot([self.getPick(traceID), self.getPick(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'r', label = 'most likely')
|
||||
'r', label='most likely')
|
||||
if self.getEarliest(traceID) is not None:
|
||||
ax.plot([self.getEarliest(traceID), self.getEarliest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'g:', label = 'earliest')
|
||||
'g:', label='earliest')
|
||||
if self.getLatest(traceID) is not None:
|
||||
ax.plot([self.getLatest(traceID), self.getLatest(traceID)],
|
||||
[ax.get_ylim()[0],
|
||||
ax.get_ylim()[1]],
|
||||
'b:', label = 'latest')
|
||||
'b:', label='latest')
|
||||
if folm is not None:
|
||||
ax.plot([0, self.getPick(traceID)],
|
||||
[folm * max(hoscf.getCF()), folm * max(hoscf.getCF())],
|
||||
'm:', label = 'folm = %s' %folm)
|
||||
'm:', label='folm = %s' % folm)
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.legend()
|
||||
|
||||
def plot3dttc(self, step = 0.5, contour = False, plotpicks = False, method = 'linear', ax = None):
|
||||
def plot3dttc(self, step=0.5, contour=False, plotpicks=False, method='linear', ax=None):
|
||||
'''
|
||||
Plots a 3D 'traveltime cone' as surface plot by interpolating on a regular grid over the traveltimes, not yet regarding the vertical offset of the receivers.
|
||||
|
||||
@ -824,20 +830,20 @@ class SeismicShot(object):
|
||||
xaxis = np.arange(min(x) + step, max(x), step)
|
||||
yaxis = np.arange(min(y) + step, max(y), step)
|
||||
xgrid, ygrid = np.meshgrid(xaxis, yaxis)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method = method)
|
||||
zgrid = griddata((x, y), z, (xgrid, ygrid), method=method)
|
||||
|
||||
if ax == None:
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
ax = plt.axes(projection='3d')
|
||||
|
||||
xsrc, ysrc, zsrc = self.getSrcLoc()
|
||||
|
||||
if contour == True:
|
||||
ax.contour3D(xgrid,ygrid,zgrid,20)
|
||||
ax.contour3D(xgrid, ygrid, zgrid, 20)
|
||||
else:
|
||||
ax.plot_surface(xgrid, ygrid, zgrid, linewidth = 0, cmap = cm.jet, vmin = min(z), vmax = max(z))
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'k*', markersize = 20) # plot source location
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'r*', markersize = 15) # plot source location
|
||||
ax.plot_surface(xgrid, ygrid, zgrid, linewidth=0, cmap=cm.jet, vmin=min(z), vmax=max(z))
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'k*', markersize=20) # plot source location
|
||||
ax.plot([xsrc], [ysrc], [self.getPick(0)], 'r*', markersize=15) # plot source location
|
||||
|
||||
if plotpicks == True:
|
||||
ax.plot(x, y, z, 'k.')
|
||||
@ -847,7 +853,7 @@ class SeismicShot(object):
|
||||
|
||||
plotmethod[method](*args)
|
||||
|
||||
def matshow(self, ax = None, step = 0.5, method = 'linear', plotRec = True, annotations = True, colorbar = True, legend = True):
|
||||
def matshow(self, ax=None, step=0.5, method='linear', plotRec=True, annotations=True, colorbar=True, legend=True):
|
||||
'''
|
||||
Plots a 2D matrix of the interpolated traveltimes. This needs less performance than plot3dttc
|
||||
|
||||
@ -868,9 +874,12 @@ class SeismicShot(object):
|
||||
from matplotlib import cm
|
||||
cmap = cm.jet
|
||||
|
||||
x = []; xcut = []
|
||||
y = []; ycut = []
|
||||
z = []; zcut = []
|
||||
x = [];
|
||||
xcut = []
|
||||
y = [];
|
||||
ycut = []
|
||||
z = [];
|
||||
zcut = []
|
||||
|
||||
for traceID in self.picks.keys():
|
||||
if self.getPickFlag(traceID) != 0:
|
||||
@ -882,7 +891,7 @@ class SeismicShot(object):
|
||||
ycut.append(self.getRecLoc(traceID)[1])
|
||||
zcut.append(self.getPickIncludeRemoved(traceID))
|
||||
|
||||
tmin = 0.8 * min(z) # 20% cushion for colorbar
|
||||
tmin = 0.8 * min(z) # 20% cushion for colorbar
|
||||
tmax = 1.2 * max(z)
|
||||
|
||||
xaxis = np.arange(min(x), max(x), step)
|
||||
@ -895,10 +904,11 @@ class SeismicShot(object):
|
||||
ax = plt.axes()
|
||||
|
||||
count = 0
|
||||
ax.imshow(zgrid, extent = [min(x), max(x), min(y), max(y)], vmin = tmin, vmax = tmax, cmap = cmap, origin = 'lower', alpha = 0.85)
|
||||
ax.text(0.5, 0.95, 'shot: %s' %self.getShotnumber(), transform = ax.transAxes
|
||||
, horizontalalignment = 'center')
|
||||
sc = ax.scatter(x, y, c = z, s = 30, label = 'picked shots', vmin = tmin, vmax = tmax, cmap = cmap, linewidths = 1.5)
|
||||
ax.imshow(zgrid, extent=[min(x), max(x), min(y), max(y)], vmin=tmin, vmax=tmax, cmap=cmap, origin='lower',
|
||||
alpha=0.85)
|
||||
ax.text(0.5, 0.95, 'shot: %s' % self.getShotnumber(), transform=ax.transAxes
|
||||
, horizontalalignment='center')
|
||||
sc = ax.scatter(x, y, c=z, s=30, label='picked shots', vmin=tmin, vmax=tmax, cmap=cmap, linewidths=1.5)
|
||||
label = None
|
||||
for xyz in zip(xcut, ycut, zcut):
|
||||
x, y, z = xyz
|
||||
@ -907,7 +917,7 @@ class SeismicShot(object):
|
||||
z = 'w'
|
||||
if count == 1:
|
||||
label = 'cut out shots'
|
||||
ax.scatter(x, y, c = z, s = 30, edgecolor = 'm', label = label, vmin = tmin, vmax = tmax, cmap = cmap, linewidths = 1.5)
|
||||
ax.scatter(x, y, c=z, s=30, edgecolor='m', label=label, vmin=tmin, vmax=tmax, cmap=cmap, linewidths=1.5)
|
||||
if colorbar == True:
|
||||
cbar = plt.colorbar(sc)
|
||||
cbar.set_label('Time [s]')
|
||||
@ -916,17 +926,15 @@ class SeismicShot(object):
|
||||
ax.legend()
|
||||
ax.set_xlabel('X')
|
||||
ax.set_ylabel('Y')
|
||||
ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1],'*k', markersize = 15) # plot source location
|
||||
ax.plot(self.getSrcLoc()[0], self.getSrcLoc()[1], '*k', markersize=15) # plot source location
|
||||
|
||||
if annotations == True:
|
||||
for traceID in self.getTraceIDlist():
|
||||
if self.getPickFlag(traceID) is not 0:
|
||||
ax.annotate(' %s' %traceID , xy = (self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
ax.annotate(' %s' % traceID, xy=(self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize='x-small', color='k')
|
||||
else:
|
||||
ax.annotate(' %s' %traceID , xy = (self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'r')
|
||||
ax.annotate(' %s' % traceID, xy=(self.getRecLoc(traceID)[0], self.getRecLoc(traceID)[1]),
|
||||
fontsize='x-small', color='r')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
@ -2,8 +2,10 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
plt.interactive(True)
|
||||
|
||||
|
||||
class regions(object):
|
||||
'''
|
||||
A class used for manual inspection and processing of all picks for the user.
|
||||
@ -57,10 +59,10 @@ class regions(object):
|
||||
for shot in self.shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
allpicks.append((shot.getDistance(traceID),
|
||||
shot.getPickIncludeRemoved(traceID),
|
||||
shot.getShotnumber(),
|
||||
traceID,
|
||||
shot.getPickFlag(traceID)))
|
||||
shot.getPickIncludeRemoved(traceID),
|
||||
shot.getShotnumber(),
|
||||
traceID,
|
||||
shot.getPickFlag(traceID)))
|
||||
|
||||
allpicks.sort()
|
||||
self._allpicks = allpicks
|
||||
@ -74,9 +76,9 @@ class regions(object):
|
||||
def _onselect_clicks(self, eclick, erelease):
|
||||
'''eclick and erelease are matplotlib events at press and release'''
|
||||
print 'region selected x0, y0 = (%3s, %3s), x1, y1 = (%3s, %3s)' % (eclick.xdata,
|
||||
eclick.ydata,
|
||||
erelease.xdata,
|
||||
erelease.ydata)
|
||||
eclick.ydata,
|
||||
erelease.xdata,
|
||||
erelease.ydata)
|
||||
x0 = min(eclick.xdata, erelease.xdata)
|
||||
x1 = max(eclick.xdata, erelease.xdata)
|
||||
y0 = min(eclick.ydata, erelease.ydata)
|
||||
@ -105,18 +107,18 @@ class regions(object):
|
||||
self.disconnectPoly()
|
||||
self.printOutput('Disconnected polygon selection')
|
||||
|
||||
def addTextfield(self, xpos = 0, ypos = 0.95, width = 1, height = 0.03):
|
||||
def addTextfield(self, xpos=0, ypos=0.95, width=1, height=0.03):
|
||||
'''
|
||||
Adds an ax for text output to the plot.
|
||||
'''
|
||||
self.axtext = self.ax.figure.add_axes([xpos,
|
||||
ypos,
|
||||
width,
|
||||
height])
|
||||
ypos,
|
||||
width,
|
||||
height])
|
||||
self.axtext.xaxis.set_visible(False)
|
||||
self.axtext.yaxis.set_visible(False)
|
||||
|
||||
def writeInTextfield(self, text = None):
|
||||
def writeInTextfield(self, text=None):
|
||||
self.setXYlim(self.ax.get_xlim(), self.ax.get_ylim())
|
||||
self.axtext.clear()
|
||||
self.axtext.text(0.01, 0.5, text, verticalalignment='center', horizontalalignment='left')
|
||||
@ -136,16 +138,16 @@ class regions(object):
|
||||
self.addButton('SelAll', self.setAllActiveRegionsForDeletion, xpos=xpos2 + 2 * dx)
|
||||
self.addButton('DelAll', self.deleteAllMarkedPicks, xpos=xpos2 + 3 * dx, color='red')
|
||||
|
||||
def addButton(self, name, action, xpos, ypos = 0.91, color = None):
|
||||
def addButton(self, name, action, xpos, ypos=0.91, color=None):
|
||||
from matplotlib.widgets import Button
|
||||
self.buttons[name] = {'ax': None,
|
||||
'button': None,
|
||||
'action': action,
|
||||
'xpos': xpos}
|
||||
'button': None,
|
||||
'action': action,
|
||||
'xpos': xpos}
|
||||
ax = self.ax.figure.add_axes([xpos,
|
||||
ypos,
|
||||
0.05,
|
||||
0.03])
|
||||
ypos,
|
||||
0.05,
|
||||
0.03])
|
||||
button = Button(ax, name, color=color, hovercolor='grey')
|
||||
button.on_clicked(action)
|
||||
self.buttons[name]['ax'] = ax
|
||||
@ -179,23 +181,24 @@ class regions(object):
|
||||
self.drawLastPolyLine()
|
||||
x = self._polyx
|
||||
y = self._polyy
|
||||
self._polyx = []; self._polyy = []
|
||||
self._polyx = [];
|
||||
self._polyy = []
|
||||
|
||||
key = self.getKey()
|
||||
self.markPolygon(x, y, key = key)
|
||||
self.markPolygon(x, y, key=key)
|
||||
|
||||
shots, numtraces = self.findTracesInPoly(x, y)
|
||||
self.shots_found[key] = {'shots': shots,
|
||||
'selection': 'poly',
|
||||
'xvalues': x,
|
||||
'yvalues': y}
|
||||
'selection': 'poly',
|
||||
'xvalues': x,
|
||||
'yvalues': y}
|
||||
self.printOutput('Found %d traces in polygon: %s' % (numtraces, shots))
|
||||
|
||||
def printOutput(self, text):
|
||||
print text
|
||||
self.writeInTextfield(text)
|
||||
|
||||
def chooseRectangles(self, event = None):
|
||||
def chooseRectangles(self, event=None):
|
||||
'''
|
||||
Activates matplotlib widget RectangleSelector.
|
||||
'''
|
||||
@ -208,7 +211,7 @@ class regions(object):
|
||||
self._rectangle = RectangleSelector(self.ax, self._onselect_clicks)
|
||||
return self._rectangle
|
||||
|
||||
def choosePolygon(self, event = None):
|
||||
def choosePolygon(self, event=None):
|
||||
'''
|
||||
Activates matplotlib widget LassoSelector.
|
||||
'''
|
||||
@ -221,7 +224,7 @@ class regions(object):
|
||||
self._lasso = LassoSelector(self.ax, self._onselect_verts)
|
||||
return self._lasso
|
||||
|
||||
def disconnectPoly(self, event = None):
|
||||
def disconnectPoly(self, event=None):
|
||||
if not hasattr(self, '_cidPoly'):
|
||||
self.printOutput('no poly selection found')
|
||||
return
|
||||
@ -231,7 +234,7 @@ class regions(object):
|
||||
self._lasso.disconnect_events()
|
||||
print 'disconnected poly selection\n'
|
||||
|
||||
def disconnectRect(self, event = None):
|
||||
def disconnectRect(self, event=None):
|
||||
if not hasattr(self, '_cidRect'):
|
||||
self.printOutput('no rectangle selection found')
|
||||
return
|
||||
@ -240,14 +243,14 @@ class regions(object):
|
||||
self._rectangle.disconnect_events()
|
||||
print 'disconnected rectangle selection\n'
|
||||
|
||||
def deselectLastSelection(self, event = None):
|
||||
def deselectLastSelection(self, event=None):
|
||||
if self.shots_found.keys() == []:
|
||||
self.printOutput('No selection found.')
|
||||
return
|
||||
key = max(self.shots_found.keys())
|
||||
self.deselectSelection(key)
|
||||
|
||||
def deselectSelection(self, key, color = 'green', alpha = 0.1):
|
||||
def deselectSelection(self, key, color='green', alpha=0.1):
|
||||
if key not in self.shots_found.keys():
|
||||
self.printOutput('No selection found.')
|
||||
return
|
||||
@ -255,17 +258,17 @@ class regions(object):
|
||||
if self.shots_found[key]['selection'] == 'rect':
|
||||
self.markRectangle(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'],
|
||||
key = key, color = color, alpha = alpha,
|
||||
linewidth = 1)
|
||||
key=key, color=color, alpha=alpha,
|
||||
linewidth=1)
|
||||
elif self.shots_found[key]['selection'] == 'poly':
|
||||
self.markPolygon(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'],
|
||||
key = key, color = color, alpha = alpha,
|
||||
linewidth = 1)
|
||||
key=key, color=color, alpha=alpha,
|
||||
linewidth=1)
|
||||
value = self.shots_found.pop(key)
|
||||
self.printOutput('Deselected selection number %d' % key)
|
||||
|
||||
def findTracesInPoly(self, x, y, picks = 'normal', highlight = True):
|
||||
def findTracesInPoly(self, x, y, picks='normal', highlight=True):
|
||||
def dotproduct(v1, v2):
|
||||
return sum((a * b for a, b in zip(v1, v2)))
|
||||
|
||||
@ -279,21 +282,26 @@ class regions(object):
|
||||
angle = 0
|
||||
epsilon = 1e-07
|
||||
for index in range(len(x)):
|
||||
xval1 = x[index - 1]; yval1 = y[index - 1]
|
||||
xval2 = x[index]; yval2 = y[index]
|
||||
xval1 = x[index - 1];
|
||||
yval1 = y[index - 1]
|
||||
xval2 = x[index];
|
||||
yval2 = y[index]
|
||||
angle += getangle([xval1 - pickX, yval1 - pickY], [xval2 - pickX, yval2 - pickY])
|
||||
if 360 - epsilon <= angle <= 360 + epsilon: ### IMPROVE THAT??
|
||||
if 360 - epsilon <= angle <= 360 + epsilon: ### IMPROVE THAT??
|
||||
return True
|
||||
|
||||
if len(x) == 0 or len(y) == 0:
|
||||
self.printOutput('No polygon defined.')
|
||||
return
|
||||
|
||||
shots_found = {}; numtraces = 0
|
||||
x0 = min(x); x1 = max(x)
|
||||
y0 = min(y); y1 = max(y)
|
||||
shots_found = {};
|
||||
numtraces = 0
|
||||
x0 = min(x);
|
||||
x1 = max(x)
|
||||
y0 = min(y);
|
||||
y1 = max(y)
|
||||
|
||||
shots, numtracesrect = self.findTracesInShotDict((x0, x1), (y0, y1), highlight = False)
|
||||
shots, numtracesrect = self.findTracesInShotDict((x0, x1), (y0, y1), highlight=False)
|
||||
for shotnumber in shots.keys():
|
||||
shot = self.shot_dict[shotnumber]
|
||||
for traceID in shots[shotnumber]:
|
||||
@ -311,17 +319,20 @@ class regions(object):
|
||||
self.drawFigure()
|
||||
return shots_found, numtraces
|
||||
|
||||
def findTracesInShotDict(self, (x0, x1), (y0, y1), picks = 'normal', highlight = True):
|
||||
def findTracesInShotDict(self, (x0, x1), (y0, y1), picks='normal', highlight=True):
|
||||
'''
|
||||
Returns traces corresponding to a certain area in the plot with all picks over the distances.
|
||||
'''
|
||||
shots_found = {}; numtraces = 0
|
||||
if picks == 'normal': pickflag = 0
|
||||
elif picks == 'includeCutOut': pickflag = None
|
||||
shots_found = {};
|
||||
numtraces = 0
|
||||
if picks == 'normal':
|
||||
pickflag = 0
|
||||
elif picks == 'includeCutOut':
|
||||
pickflag = None
|
||||
|
||||
for line in self._allpicks:
|
||||
dist, pick, shotnumber, traceID, flag = line
|
||||
if flag == pickflag: continue ### IMPROVE THAT
|
||||
if flag == pickflag: continue ### IMPROVE THAT
|
||||
if (x0 <= dist <= x1 and y0 <= pick <= y1):
|
||||
if shotnumber not in shots_found.keys():
|
||||
shots_found[shotnumber] = []
|
||||
@ -333,7 +344,7 @@ class regions(object):
|
||||
self.drawFigure()
|
||||
return shots_found, numtraces
|
||||
|
||||
def highlightPick(self, shot, traceID, annotations = True):
|
||||
def highlightPick(self, shot, traceID, annotations=True):
|
||||
'''
|
||||
Highlights a single pick for a shot(object)/shotnumber and traceID.
|
||||
If annotations == True: Displays shotnumber and traceID in the plot.
|
||||
@ -344,9 +355,11 @@ class regions(object):
|
||||
if shot.getPickFlag(traceID) is 0:
|
||||
return
|
||||
|
||||
self.ax.scatter(shot.getDistance(traceID), shot.getPick(traceID), s = 50, marker = 'o', facecolors = 'none', edgecolors = 'm', alpha = 1)
|
||||
self.ax.scatter(shot.getDistance(traceID), shot.getPick(traceID), s=50, marker='o', facecolors='none',
|
||||
edgecolors='m', alpha=1)
|
||||
if annotations == True:
|
||||
self.ax.annotate(s='s%s|t%s' % (shot.getShotnumber(), traceID), xy=(shot.getDistance(traceID), shot.getPick(traceID)), fontsize='xx-small')
|
||||
self.ax.annotate(s='s%s|t%s' % (shot.getShotnumber(), traceID),
|
||||
xy=(shot.getDistance(traceID), shot.getPick(traceID)), fontsize='xx-small')
|
||||
|
||||
def highlightAllActiveRegions(self):
|
||||
'''
|
||||
@ -358,7 +371,7 @@ class regions(object):
|
||||
self.highlightPick(self.shot_dict[shotnumber], traceID)
|
||||
self.drawFigure()
|
||||
|
||||
def plotTracesInActiveRegions(self, event = None, keys = 'all', maxfigures = 20):
|
||||
def plotTracesInActiveRegions(self, event=None, keys='all', maxfigures=20):
|
||||
'''
|
||||
Plots all traces in the active region or for all specified keys.
|
||||
|
||||
@ -382,13 +395,14 @@ class regions(object):
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
count += 1
|
||||
if count > maxfigures:
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' %(maxfigures, count)
|
||||
print 'Maximum number of figures (%s) reached. %sth figure was not opened.' % (
|
||||
maxfigures, count)
|
||||
break
|
||||
shot.plot_traces(traceID)
|
||||
else:
|
||||
self.printOutput('No picks defined in that region(s)')
|
||||
|
||||
def setAllActiveRegionsForDeletion(self, event = None):
|
||||
def setAllActiveRegionsForDeletion(self, event=None):
|
||||
keys = []
|
||||
for key in self.shots_found.keys():
|
||||
keys.append(key)
|
||||
@ -405,7 +419,7 @@ class regions(object):
|
||||
for traceID in self.shots_found[key]['shots'][shotnumber]:
|
||||
if traceID not in self.shots_for_deletion[shotnumber]:
|
||||
self.shots_for_deletion[shotnumber].append(traceID)
|
||||
self.deselectSelection(key, color = 'red', alpha = 0.2)
|
||||
self.deselectSelection(key, color='red', alpha=0.2)
|
||||
|
||||
self.deselectSelection(key, color='red', alpha=0.2)
|
||||
|
||||
@ -415,13 +429,12 @@ class regions(object):
|
||||
for key in self.shots_found.keys():
|
||||
if self.shots_found[key]['selection'] == 'rect':
|
||||
self.markRectangle(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'], key = key)
|
||||
self.shots_found[key]['yvalues'], key=key)
|
||||
if self.shots_found[key]['selection'] == 'poly':
|
||||
self.markPolygon(self.shots_found[key]['xvalues'],
|
||||
self.shots_found[key]['yvalues'], key = key)
|
||||
self.shots_found[key]['yvalues'], key=key)
|
||||
|
||||
|
||||
def markRectangle(self, (x0, x1), (y0, y1), key = None, color = 'grey', alpha = 0.1, linewidth = 1):
|
||||
def markRectangle(self, (x0, x1), (y0, y1), key=None, color='grey', alpha=0.1, linewidth=1):
|
||||
'''
|
||||
Mark a rectangular region on the axes.
|
||||
'''
|
||||
@ -431,7 +444,7 @@ class regions(object):
|
||||
self.ax.text(x0 + (x1 - x0) / 2, y0 + (y1 - y0) / 2, str(key))
|
||||
self.drawFigure()
|
||||
|
||||
def markPolygon(self, x, y, key = None, color = 'grey', alpha = 0.1, linewidth = 1):
|
||||
def markPolygon(self, x, y, key=None, color='grey', alpha=0.1, linewidth=1):
|
||||
from matplotlib.patches import Polygon
|
||||
poly = Polygon(np.array(zip(x, y)), color=color, alpha=alpha, lw=linewidth)
|
||||
self.ax.add_patch(poly)
|
||||
@ -449,7 +462,7 @@ class regions(object):
|
||||
def getShotsForDeletion(self):
|
||||
return self.shots_for_deletion
|
||||
|
||||
def deleteAllMarkedPicks(self, event = None):
|
||||
def deleteAllMarkedPicks(self, event=None):
|
||||
'''
|
||||
Deletes all shots set for deletion.
|
||||
'''
|
||||
@ -462,11 +475,11 @@ class regions(object):
|
||||
if shot.getShotnumber() == shotnumber:
|
||||
for traceID in self.getShotsForDeletion()[shotnumber]:
|
||||
shot.removePick(traceID)
|
||||
print "Deleted the pick for traceID %s on shot number %s" %(traceID, shotnumber)
|
||||
print "Deleted the pick for traceID %s on shot number %s" % (traceID, shotnumber)
|
||||
self.clearShotsForDeletion()
|
||||
self.refreshFigure()
|
||||
|
||||
def highlightPicksForShot(self, shot, annotations = False):
|
||||
def highlightPicksForShot(self, shot, annotations=False):
|
||||
'''
|
||||
Highlight all picks for a given shot.
|
||||
'''
|
||||
@ -482,19 +495,19 @@ class regions(object):
|
||||
def setXYlim(self, xlim, ylim):
|
||||
self._xlim, self._ylim = xlim, ylim
|
||||
|
||||
def refreshLog10SNR(self, event = None):
|
||||
def refreshLog10SNR(self, event=None):
|
||||
cbv = 'log10SNR'
|
||||
self.refreshFigure(self, colorByVal=cbv)
|
||||
|
||||
def refreshPickerror(self, event = None):
|
||||
def refreshPickerror(self, event=None):
|
||||
cbv = 'pickerror'
|
||||
self.refreshFigure(self, colorByVal=cbv)
|
||||
|
||||
def refreshSPE(self, event = None):
|
||||
def refreshSPE(self, event=None):
|
||||
cbv = 'spe'
|
||||
self.refreshFigure(self, colorByVal=cbv)
|
||||
|
||||
def refreshFigure(self, event = None, colorByVal = None):
|
||||
def refreshFigure(self, event=None, colorByVal=None):
|
||||
if colorByVal == None:
|
||||
colorByVal = self.cbv
|
||||
else:
|
||||
@ -508,7 +521,7 @@ class regions(object):
|
||||
self.drawFigure()
|
||||
self.printOutput('Done!')
|
||||
|
||||
def drawFigure(self, resetAxes = True):
|
||||
def drawFigure(self, resetAxes=True):
|
||||
if resetAxes == True:
|
||||
self.ax.set_xlim(self._xlim)
|
||||
self.ax.set_ylim(self._ylim)
|
||||
|
@ -1,6 +1,13 @@
|
||||
import numpy as np
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def readParameters(parfile, parameter):
|
||||
"""
|
||||
|
||||
:param parfile:
|
||||
:param parameter:
|
||||
:return:
|
||||
"""
|
||||
from ConfigParser import ConfigParser
|
||||
parameterConfig = ConfigParser()
|
||||
parameterConfig.read('parfile')
|
||||
@ -9,14 +16,29 @@ def readParameters(parfile, parameter):
|
||||
|
||||
return value
|
||||
|
||||
|
||||
def setArtificialPick(shot_dict, traceID, pick):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:param traceID:
|
||||
:param pick:
|
||||
:return:
|
||||
"""
|
||||
for shot in shot_dict.values():
|
||||
shot.setPick(traceID, pick)
|
||||
shot.setPickwindow(traceID, shot.getCut())
|
||||
|
||||
def fitSNR4dist(shot_dict, shiftdist = 30, shiftSNR = 100):
|
||||
|
||||
def fitSNR4dist(shot_dict, shiftdist=30, shiftSNR=100):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:param shiftdist:
|
||||
:param shiftSNR:
|
||||
:return:
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
dists = []
|
||||
picks = []
|
||||
snrs = []
|
||||
@ -29,54 +51,84 @@ def fitSNR4dist(shot_dict, shiftdist = 30, shiftSNR = 100):
|
||||
dists.append(shot.getDistance(traceID))
|
||||
picks.append(shot.getPickIncludeRemoved(traceID))
|
||||
snrs.append(shot.getSNR(traceID)[0])
|
||||
snr_sqrt_inv.append(1/np.sqrt(shot.getSNR(traceID)[0]))
|
||||
snr_sqrt_inv.append(1 / np.sqrt(shot.getSNR(traceID)[0]))
|
||||
fit = np.polyfit(dists, snr_sqrt_inv, 1)
|
||||
fit_fn = np.poly1d(fit)
|
||||
for dist in dists:
|
||||
snrBestFit.append((1/(fit_fn(dist)**2)))
|
||||
snrBestFit.append((1 / (fit_fn(dist) ** 2)))
|
||||
dist += shiftdist
|
||||
snrthresholds.append((1/(fit_fn(dist)**2)) - shiftSNR * np.exp(-0.05 * dist))
|
||||
snrthresholds.append((1 / (fit_fn(dist) ** 2)) - shiftSNR * np.exp(-0.05 * dist))
|
||||
plotFittedSNR(dists, snrthresholds, snrs, snrBestFit)
|
||||
return fit_fn #### ZU VERBESSERN, sollte fertige funktion wiedergeben
|
||||
return fit_fn #### ZU VERBESSERN, sollte fertige funktion wiedergeben
|
||||
|
||||
|
||||
def plotFittedSNR(dists, snrthresholds, snrs, snrBestFit):
|
||||
"""
|
||||
|
||||
:param dists:
|
||||
:param snrthresholds:
|
||||
:param snrs:
|
||||
:param snrBestFit:
|
||||
:return:
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
fig = plt.figure()
|
||||
plt.plot(dists, snrs, 'b.', markersize = 2.0, label = 'SNR values')
|
||||
plt.plot(dists, snrs, 'b.', markersize=2.0, label='SNR values')
|
||||
dists.sort()
|
||||
snrthresholds.sort(reverse = True)
|
||||
snrBestFit.sort(reverse = True)
|
||||
plt.plot(dists, snrthresholds, 'r', markersize = 1, label = 'Fitted threshold')
|
||||
plt.plot(dists, snrBestFit, 'k', markersize = 1, label = 'Best fitted curve')
|
||||
snrthresholds.sort(reverse=True)
|
||||
snrBestFit.sort(reverse=True)
|
||||
plt.plot(dists, snrthresholds, 'r', markersize=1, label='Fitted threshold')
|
||||
plt.plot(dists, snrBestFit, 'k', markersize=1, label='Best fitted curve')
|
||||
plt.xlabel('Distance[m]')
|
||||
plt.ylabel('SNR')
|
||||
plt.legend()
|
||||
|
||||
def setDynamicFittedSNR(shot_dict, shiftdist = 30, shiftSNR = 100, p1 = 0.004, p2 = -0.0007):
|
||||
|
||||
def setDynamicFittedSNR(shot_dict, shiftdist=30, shiftSNR=100, p1=0.004, p2=-0.0007):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:type shot_dict: dict
|
||||
:param shiftdist:
|
||||
:type shiftdist: int
|
||||
:param shiftSNR:
|
||||
:type shiftSNR: int
|
||||
:param p1:
|
||||
:type p1: float
|
||||
:param p2:
|
||||
:type p2: float
|
||||
:return:
|
||||
"""
|
||||
import numpy as np
|
||||
minSNR = 2.5
|
||||
#fit_fn = fitSNR4dist(shot_dict)
|
||||
# fit_fn = fitSNR4dist(shot_dict)
|
||||
fit_fn = np.poly1d([p1, p2])
|
||||
for shot in shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist(): ### IMPROVE
|
||||
for traceID in shot.getTraceIDlist(): ### IMPROVE
|
||||
dist = shot.getDistance(traceID) + shiftdist
|
||||
snrthreshold = (1/(fit_fn(dist)**2)) - shiftSNR * np.exp(-0.05 * dist)
|
||||
snrthreshold = (1 / (fit_fn(dist) ** 2)) - shiftSNR * np.exp(-0.05 * dist)
|
||||
if snrthreshold < minSNR:
|
||||
print('WARNING: SNR threshold %s lower %s. Set SNR threshold to %s.'
|
||||
%(snrthreshold, minSNR, minSNR))
|
||||
% (snrthreshold, minSNR, minSNR))
|
||||
shot.setSNRthreshold(traceID, minSNR)
|
||||
else:
|
||||
shot.setSNRthreshold(traceID, snrthreshold)
|
||||
print "setDynamicFittedSNR: Finished setting of fitted SNR-threshold"
|
||||
print("setDynamicFittedSNR: Finished setting of fitted SNR-threshold")
|
||||
|
||||
def setConstantSNR(shot_dict, snrthreshold = 2.5):
|
||||
import numpy as np
|
||||
|
||||
def setConstantSNR(shot_dict, snrthreshold=2.5):
|
||||
"""
|
||||
|
||||
:param shot_dict:
|
||||
:param snrthreshold:
|
||||
:return:
|
||||
"""
|
||||
for shot in shot_dict.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
shot.setSNRthreshold(traceID, snrthreshold)
|
||||
print "setConstantSNR: Finished setting of SNR threshold to a constant value of %s"%snrthreshold
|
||||
print("setConstantSNR: Finished setting of SNR threshold to a constant value of %s" % snrthreshold)
|
||||
|
||||
|
||||
def findTracesInRanges(shot_dict, distancebin, pickbin):
|
||||
'''
|
||||
@ -94,8 +146,8 @@ def findTracesInRanges(shot_dict, distancebin, pickbin):
|
||||
'''
|
||||
shots_found = {}
|
||||
for shot in shot_dict.values():
|
||||
if shot.getTraceIDs4Dist(distancebin = distancebin) is not None:
|
||||
for traceID in shot.getTraceIDs4Dist(distancebin = distancebin):
|
||||
if shot.getTraceIDs4Dist(distancebin=distancebin) is not None:
|
||||
for traceID in shot.getTraceIDs4Dist(distancebin=distancebin):
|
||||
if pickbin[0] < shot.getPick(traceID) < pickbin[1]:
|
||||
if shot.getShotnumber() not in shots_found.keys():
|
||||
shots_found[shot.getShotnumber()] = []
|
||||
@ -103,11 +155,17 @@ def findTracesInRanges(shot_dict, distancebin, pickbin):
|
||||
|
||||
return shots_found
|
||||
|
||||
def cleanUp(survey):
|
||||
|
||||
def cleanUp(survey):
|
||||
"""
|
||||
|
||||
:param survey:
|
||||
:return:
|
||||
"""
|
||||
for shot in survey.data.values():
|
||||
shot.traces4plot = {}
|
||||
|
||||
|
||||
# def plotScatterStats(survey, key, ax = None):
|
||||
# import matplotlib.pyplot as plt
|
||||
# x = []; y = []; value = []
|
||||
@ -131,14 +189,19 @@ def cleanUp(survey):
|
||||
# cbar.set_label(key)
|
||||
|
||||
def plotScatterStats4Shots(survey, key):
|
||||
'''
|
||||
"""
|
||||
Statistics, scatter plot.
|
||||
key can be 'mean SNR', 'median SNR', 'mean SPE', 'median SPE', or 'picked traces'
|
||||
'''
|
||||
:param survey:
|
||||
:param key:
|
||||
:return:
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
statsShot = {}
|
||||
x = []; y = []; value = []
|
||||
x = []
|
||||
y = []
|
||||
value = []
|
||||
for shot in survey.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if not shot in statsShot.keys():
|
||||
@ -171,7 +234,7 @@ def plotScatterStats4Shots(survey, key):
|
||||
for val in value:
|
||||
size.append(100 * val / max(value))
|
||||
|
||||
sc = ax.scatter(x, y, s = size, c = value)
|
||||
sc = ax.scatter(x, y, s=size, c=value)
|
||||
plt.title('Plot of all shots')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
@ -179,18 +242,24 @@ def plotScatterStats4Shots(survey, key):
|
||||
cbar.set_label(key)
|
||||
|
||||
for shot in statsShot.keys():
|
||||
ax.annotate(' %s' %shot.getShotnumber() , xy = (shot.getSrcLoc()[0], shot.getSrcLoc()[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
ax.annotate(' %s' % shot.getShotnumber(), xy=(shot.getSrcLoc()[0], shot.getSrcLoc()[1]),
|
||||
fontsize='x-small', color='k')
|
||||
|
||||
|
||||
def plotScatterStats4Receivers(survey, key):
|
||||
'''
|
||||
"""
|
||||
Statistics, scatter plot.
|
||||
key can be 'mean SNR', 'median SNR', 'mean SPE', 'median SPE', or 'picked traces'
|
||||
'''
|
||||
:param survey:
|
||||
:param key:
|
||||
:return:
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
statsRec = {}
|
||||
x = []; y = []; value = []
|
||||
x = []
|
||||
y = []
|
||||
value = []
|
||||
for shot in survey.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if not traceID in statsRec.keys():
|
||||
@ -205,7 +274,6 @@ def plotScatterStats4Receivers(survey, key):
|
||||
statsRec[traceID]['picked traces'] += 1
|
||||
statsRec[traceID]['SPE'].append(shot.getSymmetricPickError(traceID))
|
||||
|
||||
|
||||
for traceID in statsRec.keys():
|
||||
statsRec[traceID]['mean SNR'] = np.mean(statsRec[traceID]['SNR'])
|
||||
statsRec[traceID]['median SNR'] = np.median(statsRec[traceID]['SNR'])
|
||||
@ -224,7 +292,7 @@ def plotScatterStats4Receivers(survey, key):
|
||||
for val in value:
|
||||
size.append(100 * val / max(value))
|
||||
|
||||
sc = ax.scatter(x, y, s = size, c = value)
|
||||
sc = ax.scatter(x, y, s=size, c=value)
|
||||
plt.title('Plot of all receivers')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
@ -233,5 +301,5 @@ def plotScatterStats4Receivers(survey, key):
|
||||
|
||||
shot = survey.data.values()[0]
|
||||
for traceID in shot.getTraceIDlist():
|
||||
ax.annotate(' %s' %traceID , xy = (shot.getRecLoc(traceID)[0], shot.getRecLoc(traceID)[1]),
|
||||
fontsize = 'x-small', color = 'k')
|
||||
ax.annotate(' %s' % traceID, xy=(shot.getRecLoc(traceID)[0], shot.getRecLoc(traceID)[1]),
|
||||
fontsize='x-small', color='k')
|
||||
|
@ -5,9 +5,7 @@ from obspy.core import read
|
||||
from obspy.signal.trigger import coincidenceTrigger
|
||||
|
||||
|
||||
|
||||
class CoincidenceTimes(object):
|
||||
|
||||
def __init__(self, st, comp='Z', coinum=4, sta=1., lta=10., on=5., off=1.):
|
||||
_type = 'recstalta'
|
||||
self.coinclist = self.createCoincTriggerlist(data=st, trigcomp=comp,
|
||||
|
@ -15,6 +15,7 @@ from scipy.optimize import curve_fit
|
||||
from scipy import integrate, signal
|
||||
from pylot.core.read.data import Data
|
||||
|
||||
|
||||
class Magnitude(object):
|
||||
'''
|
||||
Superclass for calculating Wood-Anderson peak-to-peak
|
||||
@ -72,7 +73,6 @@ class Magnitude(object):
|
||||
self.calcsourcespec()
|
||||
self.run_calcMoMw()
|
||||
|
||||
|
||||
def getwfstream(self):
|
||||
return self.wfstream
|
||||
|
||||
@ -154,6 +154,7 @@ class Magnitude(object):
|
||||
def run_calcMoMw(self):
|
||||
self.pickdic = None
|
||||
|
||||
|
||||
class WApp(Magnitude):
|
||||
'''
|
||||
Method to derive peak-to-peak amplitude as seen on a Wood-Anderson-
|
||||
@ -222,44 +223,45 @@ class M0Mw(Magnitude):
|
||||
self.picdic = None
|
||||
|
||||
for key in picks:
|
||||
if picks[key]['P']['weight'] < 4:
|
||||
# select waveform
|
||||
selwf = wfdat.select(station=key)
|
||||
if len(key) > 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) == 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) < 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
nllocline = getPatternLine(nllocfile, Ppattern)
|
||||
# get hypocentral distance, station azimuth and
|
||||
# angle of incidence from NLLoc-location file
|
||||
delta = float(nllocline.split(None)[21])
|
||||
az = float(nllocline.split(None)[22])
|
||||
inc = float(nllocline.split(None)[24])
|
||||
# call subfunction to estimate source spectrum
|
||||
# and to derive w0 and fc
|
||||
[w0, fc] = calcsourcespec(selwf, picks[key]['P']['mpp'], \
|
||||
self.getinvdir(), self.getvp(), delta, az, \
|
||||
inc, self.getQp(), self.getiplot())
|
||||
if picks[key]['P']['weight'] < 4:
|
||||
# select waveform
|
||||
selwf = wfdat.select(station=key)
|
||||
if len(key) > 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) == 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
elif len(key) < 4:
|
||||
Ppattern = '%s ? ? ? P' % key
|
||||
nllocline = getPatternLine(nllocfile, Ppattern)
|
||||
# get hypocentral distance, station azimuth and
|
||||
# angle of incidence from NLLoc-location file
|
||||
delta = float(nllocline.split(None)[21])
|
||||
az = float(nllocline.split(None)[22])
|
||||
inc = float(nllocline.split(None)[24])
|
||||
# call subfunction to estimate source spectrum
|
||||
# and to derive w0 and fc
|
||||
[w0, fc] = calcsourcespec(selwf, picks[key]['P']['mpp'], \
|
||||
self.getinvdir(), self.getvp(), delta, az, \
|
||||
inc, self.getQp(), self.getiplot())
|
||||
|
||||
if w0 is not None:
|
||||
# call subfunction to calculate Mo and Mw
|
||||
zdat = selwf.select(component="Z")
|
||||
if len(zdat) == 0: # check for other components
|
||||
zdat = selwf.select(component="3")
|
||||
[Mo, Mw] = calcMoMw(zdat, w0, self.getrho(), self.getvp(), \
|
||||
delta, self.getinvdir())
|
||||
else:
|
||||
Mo = None
|
||||
Mw = None
|
||||
if w0 is not None:
|
||||
# call subfunction to calculate Mo and Mw
|
||||
zdat = selwf.select(component="Z")
|
||||
if len(zdat) == 0: # check for other components
|
||||
zdat = selwf.select(component="3")
|
||||
[Mo, Mw] = calcMoMw(zdat, w0, self.getrho(), self.getvp(), \
|
||||
delta, self.getinvdir())
|
||||
else:
|
||||
Mo = None
|
||||
Mw = None
|
||||
|
||||
# add w0, fc, Mo and Mw to dictionary
|
||||
picks[key]['P']['w0'] = w0
|
||||
picks[key]['P']['fc'] = fc
|
||||
picks[key]['P']['Mo'] = Mo
|
||||
picks[key]['P']['Mw'] = Mw
|
||||
self.picdic = picks
|
||||
|
||||
# add w0, fc, Mo and Mw to dictionary
|
||||
picks[key]['P']['w0'] = w0
|
||||
picks[key]['P']['fc'] = fc
|
||||
picks[key]['P']['Mo'] = Mo
|
||||
picks[key]['P']['Mw'] = Mw
|
||||
self.picdic = picks
|
||||
|
||||
def calcMoMw(wfstream, w0, rho, vp, delta, inv):
|
||||
'''
|
||||
@ -283,26 +285,25 @@ def calcMoMw(wfstream, w0, rho, vp, delta, inv):
|
||||
'''
|
||||
|
||||
tr = wfstream[0]
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
|
||||
print("calcMoMw: Calculating seismic moment Mo and moment magnitude Mw for station %s ..." \
|
||||
% tr.stats.station)
|
||||
% tr.stats.station)
|
||||
|
||||
# additional common parameters for calculating Mo
|
||||
rP = 2 / np.sqrt(15) # average radiation pattern of P waves (Aki & Richards, 1980)
|
||||
freesurf = 2.0 # free surface correction, assuming vertical incidence
|
||||
rP = 2 / np.sqrt(15) # average radiation pattern of P waves (Aki & Richards, 1980)
|
||||
freesurf = 2.0 # free surface correction, assuming vertical incidence
|
||||
|
||||
Mo = w0 * 4 * np.pi * rho * np.power(vp, 3) * delta / (rP * freesurf)
|
||||
|
||||
#Mw = np.log10(Mo * 1e07) * 2 / 3 - 10.7 # after Hanks & Kanamori (1979), defined for [dyn*cm]!
|
||||
Mw = np.log10(Mo) * 2 / 3 - 6.7 # for metric units
|
||||
# Mw = np.log10(Mo * 1e07) * 2 / 3 - 10.7 # after Hanks & Kanamori (1979), defined for [dyn*cm]!
|
||||
Mw = np.log10(Mo) * 2 / 3 - 6.7 # for metric units
|
||||
|
||||
print("calcMoMw: Calculated seismic moment Mo = %e Nm => Mw = %3.1f " % (Mo, Mw))
|
||||
|
||||
return Mo, Mw
|
||||
|
||||
|
||||
|
||||
def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp, iplot):
|
||||
'''
|
||||
Subfunction to calculate the source spectrum and to derive from that the plateau
|
||||
@ -346,7 +347,7 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
Q = int(qu[0])
|
||||
# A, i.e. power of frequency
|
||||
A = float(qu[1])
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
delta = delta * 1000 # hypocentral distance in [m]
|
||||
|
||||
fc = None
|
||||
w0 = None
|
||||
@ -385,7 +386,7 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
# L: P-wave direction
|
||||
# Q: SV-wave direction
|
||||
# T: SH-wave direction
|
||||
LQT=cordat_copy.rotate('ZNE->LQT',azimuth, incidence)
|
||||
LQT = cordat_copy.rotate('ZNE->LQT', azimuth, incidence)
|
||||
ldat = LQT.select(component="L")
|
||||
if len(ldat) == 0:
|
||||
# if horizontal channels are 2 and 3
|
||||
@ -398,30 +399,30 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
# integrate to displacement
|
||||
# unrotated vertical component (for copmarison)
|
||||
inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None, \
|
||||
zdat[0].stats.delta))
|
||||
zdat[0].stats.delta))
|
||||
# rotated component Z => L
|
||||
Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None, \
|
||||
ldat[0].stats.delta))
|
||||
ldat[0].stats.delta))
|
||||
|
||||
# get window after P pulse for
|
||||
# calculating source spectrum
|
||||
if zdat[0].stats.sampling_rate <= 100:
|
||||
winzc = zdat[0].stats.sampling_rate
|
||||
elif zdat[0].stats.sampling_rate > 100 and \
|
||||
zdat[0].stats.sampling_rate <= 200:
|
||||
winzc = 0.5 * zdat[0].stats.sampling_rate
|
||||
zdat[0].stats.sampling_rate <= 200:
|
||||
winzc = 0.5 * zdat[0].stats.sampling_rate
|
||||
elif zdat[0].stats.sampling_rate > 200 and \
|
||||
zdat[0].stats.sampling_rate <= 400:
|
||||
winzc = 0.2 * zdat[0].stats.sampling_rate
|
||||
zdat[0].stats.sampling_rate <= 400:
|
||||
winzc = 0.2 * zdat[0].stats.sampling_rate
|
||||
elif zdat[0].stats.sampling_rate > 400:
|
||||
winzc = zdat[0].stats.sampling_rate
|
||||
winzc = zdat[0].stats.sampling_rate
|
||||
tstart = UTCDateTime(zdat[0].stats.starttime)
|
||||
tonset = onset.timestamp -tstart.timestamp
|
||||
tonset = onset.timestamp - tstart.timestamp
|
||||
impickP = tonset * zdat[0].stats.sampling_rate
|
||||
wfzc = Ldat[impickP : impickP + winzc]
|
||||
wfzc = Ldat[impickP: impickP + winzc]
|
||||
# get time array
|
||||
t = np.arange(0, len(inttrz) * zdat[0].stats.delta, \
|
||||
zdat[0].stats.delta)
|
||||
zdat[0].stats.delta)
|
||||
# calculate spectrum using only first cycles of
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
@ -446,9 +447,9 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
m = pow(2, np.ceil(np.log(len(xdat)) / np.log(2)))
|
||||
N = int(np.power(m, 2))
|
||||
y = zdat[0].stats.delta * np.fft.fft(xdat, N)
|
||||
Y = abs(y[: N/2])
|
||||
Y = abs(y[: N / 2])
|
||||
L = (N - 1) / zdat[0].stats.sampling_rate
|
||||
f = np.arange(0, fny, 1/L)
|
||||
f = np.arange(0, fny, 1 / L)
|
||||
|
||||
# remove zero-frequency and frequencies above
|
||||
# corner frequency of seismometer (assumed
|
||||
@ -458,9 +459,9 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
YY = Y[fi]
|
||||
|
||||
# correction for attenuation
|
||||
wa = 2 * np.pi * F #angular frequency
|
||||
D = np.exp((wa * delta) / (2 * vp * Q*F**A))
|
||||
YYcor = YY.real*D
|
||||
wa = 2 * np.pi * F # angular frequency
|
||||
D = np.exp((wa * delta) / (2 * vp * Q * F ** A))
|
||||
YYcor = YY.real * D
|
||||
|
||||
# get plateau (DC value) and corner frequency
|
||||
# initial guess of plateau
|
||||
@ -493,8 +494,8 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
if iplot > 1:
|
||||
f1 = plt.figure()
|
||||
tLdat = np.arange(0, len(Ldat) * zdat[0].stats.delta, \
|
||||
zdat[0].stats.delta)
|
||||
plt.subplot(2,1,1)
|
||||
zdat[0].stats.delta)
|
||||
plt.subplot(2, 1, 1)
|
||||
# show displacement in mm
|
||||
p1, = plt.plot(t, np.multiply(inttrz, 1000), 'k')
|
||||
p2, = plt.plot(tLdat, np.multiply(Ldat, 1000))
|
||||
@ -502,26 +503,26 @@ def calcsourcespec(wfstream, onset, inventory, vp, delta, azimuth, incidence, Qp
|
||||
if plotflag == 1:
|
||||
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
|
||||
plt.title('Seismogram and P Pulse, Station %s-%s' \
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
else:
|
||||
plt.title('Seismogram, Station %s-%s' \
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
% (zdat[0].stats.station, zdat[0].stats.channel))
|
||||
plt.xlabel('Time since %s' % zdat[0].stats.starttime)
|
||||
plt.ylabel('Displacement [mm]')
|
||||
|
||||
if plotflag == 1:
|
||||
plt.subplot(2,1,2)
|
||||
plt.subplot(2, 1, 2)
|
||||
p1, = plt.loglog(f, Y.real, 'k')
|
||||
p2, = plt.loglog(F, YY.real)
|
||||
p3, = plt.loglog(F, YYcor, 'r')
|
||||
p4, = plt.loglog(F, fit, 'g')
|
||||
plt.loglog([fc, fc], [w0/100, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0 / 100, w0], 'g')
|
||||
plt.legend([p1, p2, p3, p4], ['Raw Spectrum', \
|
||||
'Used Raw Spectrum', \
|
||||
'Q-Corrected Spectrum', \
|
||||
'Fit to Spectrum'])
|
||||
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
|
||||
% (w0, fc))
|
||||
% (w0, fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
plt.grid()
|
||||
@ -547,7 +548,7 @@ def synthsourcespec(f, omega0, fcorner):
|
||||
:type: float
|
||||
'''
|
||||
|
||||
#ssp = omega0 / (pow(2, (1 + f / fcorner)))
|
||||
# ssp = omega0 / (pow(2, (1 + f / fcorner)))
|
||||
ssp = omega0 / (1 + pow(2, (f / fcorner)))
|
||||
|
||||
return ssp
|
||||
@ -569,7 +570,7 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
:type: float
|
||||
'''
|
||||
|
||||
w0 = []
|
||||
w0 = []
|
||||
stdw0 = []
|
||||
fc = []
|
||||
stdfc = []
|
||||
@ -577,17 +578,17 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
|
||||
# get window around initial corner frequency for trials
|
||||
fcstopl = fc0 - max(1, len(f) / 10)
|
||||
il = np.argmin(abs(f-fcstopl))
|
||||
il = np.argmin(abs(f - fcstopl))
|
||||
fcstopl = f[il]
|
||||
fcstopr = fc0 + min(len(f), len(f) /10)
|
||||
ir = np.argmin(abs(f-fcstopr))
|
||||
fcstopr = fc0 + min(len(f), len(f) / 10)
|
||||
ir = np.argmin(abs(f - fcstopr))
|
||||
fcstopr = f[ir]
|
||||
iF = np.where((f >= fcstopl) & (f <= fcstopr))
|
||||
|
||||
# vary corner frequency around initial point
|
||||
for i in range(il, ir):
|
||||
FC = f[i]
|
||||
indexdc = np.where((f > 0 ) & (f <= FC))
|
||||
indexdc = np.where((f > 0) & (f <= FC))
|
||||
dc = np.mean(S[indexdc])
|
||||
stddc = np.std(dc - S[indexdc])
|
||||
w0.append(dc)
|
||||
@ -595,7 +596,7 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
fc.append(FC)
|
||||
# slope
|
||||
indexfc = np.where((f >= FC) & (f <= fcstopr))
|
||||
yi = dc/(1+(f[indexfc]/FC)**2)
|
||||
yi = dc / (1 + (f[indexfc] / FC) ** 2)
|
||||
stdFC = np.std(yi - S[indexfc])
|
||||
stdfc.append(stdFC)
|
||||
STD.append(stddc + stdFC)
|
||||
@ -609,29 +610,29 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
w0 = max(S)
|
||||
|
||||
print("fitSourceModel: best fc: %fHz, best w0: %e m/Hz" \
|
||||
% (fc, w0))
|
||||
% (fc, w0))
|
||||
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
plt.loglog(f, S, 'k')
|
||||
plt.loglog([f[0], fc], [w0, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0/100, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0 / 100, w0], 'g')
|
||||
plt.title('Calculated Source Spectrum, Omega0=%e m/Hz, fc=%6.2f Hz' \
|
||||
% (w0, fc))
|
||||
% (w0, fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
plt.grid()
|
||||
plt.figure(iplot+1)
|
||||
plt.figure(iplot + 1)
|
||||
plt.subplot(311)
|
||||
plt.plot(f[il:ir], STD,'*')
|
||||
plt.plot(f[il:ir], STD, '*')
|
||||
plt.title('Common Standard Deviations')
|
||||
plt.xticks([])
|
||||
plt.subplot(312)
|
||||
plt.plot(f[il:ir], stdw0,'*')
|
||||
plt.plot(f[il:ir], stdw0, '*')
|
||||
plt.title('Standard Deviations of w0-Values')
|
||||
plt.xticks([])
|
||||
plt.subplot(313)
|
||||
plt.plot(f[il:ir],stdfc,'*')
|
||||
plt.plot(f[il:ir], stdfc, '*')
|
||||
plt.title('Standard Deviations of Corner Frequencies')
|
||||
plt.xlabel('Corner Frequencies [Hz]')
|
||||
plt.show()
|
||||
@ -639,10 +640,3 @@ def fitSourceModel(f, S, fc0, iplot):
|
||||
plt.close()
|
||||
|
||||
return w0, fc
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from obspy.signal.trigger import recSTALTA, triggerOnset
|
||||
from obspy.signal.trigger import recursive_sta_lta, trigger_onset
|
||||
|
||||
|
||||
def createSingleTriggerlist(st, station='ZV01', trigcomp='Z', stalta=(1, 10),
|
||||
@ -24,8 +24,8 @@ def createSingleTriggerlist(st, station='ZV01', trigcomp='Z', stalta=(1, 10),
|
||||
tr = st.copy().select(component=trigcomp, station=station)[0]
|
||||
df = tr.stats.sampling_rate
|
||||
|
||||
cft = recSTALTA(tr.data, int(stalta[0] * df), int(stalta[1] * df))
|
||||
triggers = triggerOnset(cft, trigonoff[0], trigonoff[1])
|
||||
cft = recursive_sta_lta(tr.data, int(stalta[0] * df), int(stalta[1] * df))
|
||||
triggers = trigger_onset(cft, trigonoff[0], trigonoff[1])
|
||||
trigg = []
|
||||
for time in triggers:
|
||||
trigg.append(tr.stats.starttime + time[0] / df)
|
||||
|
@ -9,6 +9,7 @@ from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
||||
__version__ = _getVersionString()
|
||||
|
||||
|
||||
def picksExport(picks, locrt, phasefile):
|
||||
'''
|
||||
Take <picks> dictionary and exports picking data to a NLLOC-obs
|
||||
@ -26,6 +27,7 @@ def picksExport(picks, locrt, phasefile):
|
||||
# write phases to NLLoc-phase file
|
||||
writephases(picks, locrt, phasefile)
|
||||
|
||||
|
||||
def modifyInputFile(ctrfn, root, nllocoutn, phasefn, tttn):
|
||||
'''
|
||||
:param ctrfn: name of NLLoc-control file
|
||||
@ -46,7 +48,7 @@ def modifyInputFile(ctrfn, root, nllocoutn, phasefn, tttn):
|
||||
# For locating the event the NLLoc-control file has to be modified!
|
||||
# create comment line for NLLoc-control file NLLoc-output file
|
||||
ctrfile = os.path.join(root, 'run', ctrfn)
|
||||
nllocout = os.path.join(root,'loc', nllocoutn)
|
||||
nllocout = os.path.join(root, 'loc', nllocoutn)
|
||||
phasefile = os.path.join(root, 'obs', phasefn)
|
||||
tttable = os.path.join(root, 'time', tttn)
|
||||
locfiles = 'LOCFILES %s NLLOC_OBS %s %s 0\n' % (phasefile, tttable, nllocout)
|
||||
@ -63,6 +65,7 @@ def modifyInputFile(ctrfn, root, nllocoutn, phasefn, tttn):
|
||||
nllfile.write(filedata)
|
||||
nllfile.close()
|
||||
|
||||
|
||||
def locate(call, fnin):
|
||||
'''
|
||||
Takes paths to NLLoc executable <call> and input parameter file <fnin>
|
||||
@ -78,8 +81,10 @@ def locate(call, fnin):
|
||||
# locate the event
|
||||
subprocess.call([call, fnin])
|
||||
|
||||
|
||||
def readLocation(fn):
|
||||
pass
|
||||
|
||||
if __name__=='__main__':
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
|
@ -144,7 +144,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
|
||||
Sflag = 0
|
||||
Pmarker = []
|
||||
Ao = None # Wood-Anderson peak-to-peak amplitude
|
||||
picker = 'autoPyLoT' # name of the picking programm
|
||||
picker = 'autoPyLoT' # name of the picking programm
|
||||
|
||||
# split components
|
||||
zdat = wfstream.select(component="Z")
|
||||
@ -867,19 +867,19 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
|
||||
pickparameter.setParam(noisefactor=1.0)
|
||||
pickparameter.setParam(zfac=1.0)
|
||||
print(
|
||||
"iteratepicker: The following picking parameters have been modified for iterative picking:")
|
||||
"iteratepicker: The following picking parameters have been modified for iterative picking:")
|
||||
print(
|
||||
"pstart: %fs => %fs" % (pstart_old, pickparameter.getParam('pstart')))
|
||||
"pstart: %fs => %fs" % (pstart_old, pickparameter.getParam('pstart')))
|
||||
print(
|
||||
"pstop: %fs => %fs" % (pstop_old, pickparameter.getParam('pstop')))
|
||||
"pstop: %fs => %fs" % (pstop_old, pickparameter.getParam('pstop')))
|
||||
print(
|
||||
"sstop: %fs => %fs" % (sstop_old, pickparameter.getParam('sstop')))
|
||||
"sstop: %fs => %fs" % (sstop_old, pickparameter.getParam('sstop')))
|
||||
print("pickwinP: %fs => %fs" % (
|
||||
pickwinP_old, pickparameter.getParam('pickwinP')))
|
||||
pickwinP_old, pickparameter.getParam('pickwinP')))
|
||||
print("Precalcwin: %fs => %fs" % (
|
||||
Precalcwin_old, pickparameter.getParam('Precalcwin')))
|
||||
Precalcwin_old, pickparameter.getParam('Precalcwin')))
|
||||
print("noisefactor: %f => %f" % (
|
||||
noisefactor_old, pickparameter.getParam('noisefactor')))
|
||||
noisefactor_old, pickparameter.getParam('noisefactor')))
|
||||
print("zfac: %f => %f" % (zfac_old, pickparameter.getParam('zfac')))
|
||||
|
||||
# repick station
|
||||
|
@ -21,10 +21,12 @@ import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from obspy.core import Stream
|
||||
|
||||
|
||||
class CharacteristicFunction(object):
|
||||
'''
|
||||
SuperClass for different types of characteristic functions.
|
||||
'''
|
||||
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None, stealthMode=False):
|
||||
'''
|
||||
Initialize data type object with information from the original
|
||||
@ -103,9 +105,9 @@ class CharacteristicFunction(object):
|
||||
|
||||
def setARdetStep(self, t1):
|
||||
if t1:
|
||||
self.ARdetStep = []
|
||||
self.ARdetStep.append(t1 / 4)
|
||||
self.ARdetStep.append(int(np.ceil(self.getTime2() / self.getIncrement()) / 4))
|
||||
self.ARdetStep = []
|
||||
self.ARdetStep.append(t1 / 4)
|
||||
self.ARdetStep.append(int(np.ceil(self.getTime2() / self.getIncrement()) / 4))
|
||||
|
||||
def getOrder(self):
|
||||
return self.order
|
||||
@ -150,14 +152,14 @@ class CharacteristicFunction(object):
|
||||
if cut is not None:
|
||||
if len(self.orig_data) == 1:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = len(self.orig_data[0])
|
||||
start = 0
|
||||
stop = len(self.orig_data[0])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
else:
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
zz = self.orig_data.copy()
|
||||
z1 = zz[0].copy()
|
||||
zz[0].data = z1.data[int(start):int(stop)]
|
||||
@ -165,16 +167,16 @@ class CharacteristicFunction(object):
|
||||
return data
|
||||
elif len(self.orig_data) == 2:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = min([len(self.orig_data[0]), len(self.orig_data[1])])
|
||||
start = 0
|
||||
stop = min([len(self.orig_data[0]), len(self.orig_data[1])])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
else:
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
@ -184,16 +186,16 @@ class CharacteristicFunction(object):
|
||||
return data
|
||||
elif len(self.orig_data) == 3:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
else:
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
@ -223,13 +225,13 @@ class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
#if self._getStealthMode() is False:
|
||||
# if self._getStealthMode() is False:
|
||||
# print 'Calculating AIC ...'
|
||||
x = self.getDataArray()
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
xnp[nn] = 0
|
||||
datlen = len(xnp)
|
||||
k = np.arange(1, datlen)
|
||||
cf = np.zeros(datlen)
|
||||
@ -247,6 +249,7 @@ class AICcf(CharacteristicFunction):
|
||||
self.cf = cf - np.mean(cf)
|
||||
self.xcf = x
|
||||
|
||||
|
||||
class HOScf(CharacteristicFunction):
|
||||
'''
|
||||
Function to calculate skewness (statistics of order 3) or kurtosis
|
||||
@ -257,38 +260,38 @@ class HOScf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
x = self.getDataArray(self.getCut())
|
||||
xnp =x[0].data
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
xnp[nn] = 0
|
||||
if self.getOrder() == 3: # this is skewness
|
||||
#if self._getStealthMode() is False:
|
||||
# if self._getStealthMode() is False:
|
||||
# print 'Calculating skewness ...'
|
||||
y = np.power(xnp, 3)
|
||||
y1 = np.power(xnp, 2)
|
||||
elif self.getOrder() == 4: # this is kurtosis
|
||||
#if self._getStealthMode() is False:
|
||||
# if self._getStealthMode() is False:
|
||||
# print 'Calculating kurtosis ...'
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
#Initialisation
|
||||
#t2: long term moving window
|
||||
# Initialisation
|
||||
# t2: long term moving window
|
||||
ilta = int(round(self.getTime2() / self.getIncrement()))
|
||||
lta = y[0]
|
||||
lta1 = y1[0]
|
||||
#moving windows
|
||||
# moving windows
|
||||
LTA = np.zeros(len(xnp))
|
||||
for j in range(0, len(xnp)):
|
||||
if j < 4:
|
||||
LTA[j] = 0
|
||||
elif j <= ilta:
|
||||
lta = (y[j] + lta * (j-1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j-1)) / j
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j - 1)) / j
|
||||
else:
|
||||
lta = (y[j] - y[j - ilta]) / ilta + lta
|
||||
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
|
||||
#define LTA
|
||||
# define LTA
|
||||
if self.getOrder() == 3:
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
@ -296,13 +299,12 @@ class HOScf(CharacteristicFunction):
|
||||
|
||||
nn = np.isnan(LTA)
|
||||
if len(nn) > 1:
|
||||
LTA[nn] = 0
|
||||
LTA[nn] = 0
|
||||
self.cf = LTA
|
||||
self.xcf = x
|
||||
|
||||
|
||||
class ARZcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from single trace ...'
|
||||
@ -310,33 +312,33 @@ class ARZcf(CharacteristicFunction):
|
||||
xnp = x[0].data
|
||||
nn = np.isnan(xnp)
|
||||
if len(nn) > 1:
|
||||
xnp[nn] = 0
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xnp[nn] = 0
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
xnoise = xnp + np.random.normal(0.0, 1.0, len(xnp)) * self.getFnoise() * max(abs(xnp))
|
||||
tend = len(xnp)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
|
||||
cf = np.zeros(len(xnp))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() #AR-calculation index
|
||||
arcalci = ldet + self.getOrder() # AR-calculation index
|
||||
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
# determination of AR coefficients
|
||||
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetZ(xnoise, self.getOrder(), i - ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
cf[i + lpred-1] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred-1] - xnp[i:i + lpred-1], 2)) / lpred)
|
||||
# prediction error = CF
|
||||
cf[i + lpred - 1] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred - 1] - xnp[i:i + lpred - 1], 2)) / lpred)
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
#remove zeros and artefacts
|
||||
cf[nn] = 0
|
||||
# remove zeros and artefacts
|
||||
tap = np.hanning(len(cf))
|
||||
cf = tap * cf
|
||||
io = np.where(cf == 0)
|
||||
@ -366,25 +368,25 @@ class ARZcf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet+1):
|
||||
for i in range(rind, ldet + 1):
|
||||
ki = k + 1
|
||||
rhs[k] = rhs[k] + data[i] * data[i - ki]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((self.getOrder(),self.getOrder()))
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((self.getOrder(), self.getOrder()))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet+1):
|
||||
for i in range(rind, ldet + 1):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[i - j] * data[i - k]
|
||||
A[ki, ji] = A[ki, ji] + data[i - j] * data[i - k]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
A[ji, ki] = A[ki, ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPredZ(self, data, arpara, rind, lpred):
|
||||
@ -406,10 +408,10 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
Output: predicted waveform z
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
# be sure of the summation indeces
|
||||
if rind < len(arpara):
|
||||
rind = len(arpara)
|
||||
if rind > len(data) - lpred :
|
||||
if rind > len(data) - lpred:
|
||||
rind = len(data) - lpred
|
||||
if lpred < 1:
|
||||
lpred = 1
|
||||
@ -426,7 +428,6 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
|
||||
class ARHcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from both horizontal traces ...'
|
||||
@ -434,41 +435,42 @@ class ARHcf(CharacteristicFunction):
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
xnp[0].data[n0] = 0
|
||||
xnp[0].data[n0] = 0
|
||||
n1 = np.isnan(xnp[1].data)
|
||||
if len(n1) > 1:
|
||||
xnp[1].data[n1] = 0
|
||||
xnp[1].data[n1] = 0
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
||||
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist()] )
|
||||
Xnoise = np.array([xenoise.tolist(), xnnoise.tolist()])
|
||||
tend = len(xnp[0].data)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = lpred + self.getOrder() - 1 #AR-calculation index
|
||||
#arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
arcalci = lpred + self.getOrder() - 1 # AR-calculation index
|
||||
# arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
for i in range(lpred + self.getOrder() - 1, tend - 2 * lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
# determination of AR coefficients
|
||||
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetH(Xnoise, self.getOrder(), i - ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredH(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
# prediction error = CF
|
||||
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (2 * lpred))
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (
|
||||
2 * lpred))
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
#remove zeros and artefacts
|
||||
cf[nn] = 0
|
||||
# remove zeros and artefacts
|
||||
tap = np.hanning(len(cf))
|
||||
cf = tap * cf
|
||||
io = np.where(cf == 0)
|
||||
@ -500,24 +502,24 @@ class ARHcf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k]
|
||||
rhs[k] = rhs[k] + data[0, i] * data[0, i - k] + data[1, i] * data[1, i - k]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4,4))
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4, 4))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki]
|
||||
A[ki, ji] = A[ki, ji] + data[0, i - ji] * data[0, i - ki] + data[1, i - ji] * data[1, i - ki]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
A[ji, ki] = A[ki, ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPredH(self, data, arpara, rind, lpred):
|
||||
@ -540,7 +542,7 @@ class ARHcf(CharacteristicFunction):
|
||||
Output: predicted waveform z
|
||||
:type: structured array
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
# be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data[0]) - lpred + 1:
|
||||
@ -558,11 +560,11 @@ class ARHcf(CharacteristicFunction):
|
||||
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
|
||||
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
||||
|
||||
z = np.array( [z1.tolist(), z2.tolist()] )
|
||||
z = np.array([z1.tolist(), z2.tolist()])
|
||||
self.xpred = z
|
||||
|
||||
class AR3Ccf(CharacteristicFunction):
|
||||
|
||||
class AR3Ccf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from all 3 components ...'
|
||||
@ -570,46 +572,47 @@ class AR3Ccf(CharacteristicFunction):
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
xnp[0].data[n0] = 0
|
||||
xnp[0].data[n0] = 0
|
||||
n1 = np.isnan(xnp[1].data)
|
||||
if len(n1) > 1:
|
||||
xnp[1].data[n1] = 0
|
||||
xnp[1].data[n1] = 0
|
||||
n2 = np.isnan(xnp[2].data)
|
||||
if len(n2) > 1:
|
||||
xnp[2].data[n2] = 0
|
||||
xnp[2].data[n2] = 0
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
||||
xznoise = xnp[2].data + np.random.normal(0.0, 1.0, len(xnp[2].data)) * self.getFnoise() * max(abs(xnp[2].data))
|
||||
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist(), xznoise.tolist()] )
|
||||
Xnoise = np.array([xenoise.tolist(), xnnoise.tolist(), xznoise.tolist()])
|
||||
tend = len(xnp[0].data)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
arcalci = ldet + self.getOrder() - 1 # AR-calculation index
|
||||
for i in range(ldet + self.getOrder() - 1, tend - 2 * lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
|
||||
# determination of AR coefficients
|
||||
# to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDet3C(Xnoise, self.getOrder(), i - ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPred3C(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
# prediction error = CF
|
||||
cf[i + lpred] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (3 * lpred))
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (
|
||||
3 * lpred))
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
#remove zeros and artefacts
|
||||
cf[nn] = 0
|
||||
# remove zeros and artefacts
|
||||
tap = np.hanning(len(cf))
|
||||
cf = tap * cf
|
||||
io = np.where(cf == 0)
|
||||
@ -641,26 +644,26 @@ class AR3Ccf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k] \
|
||||
+ data[2,i] * data[2,i - k]
|
||||
rhs[k] = rhs[k] + data[0, i] * data[0, i - k] + data[1, i] * data[1, i - k] \
|
||||
+ data[2, i] * data[2, i - k]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4,4))
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4, 4))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki] \
|
||||
+ data[2,i - ji] *data[2,i - ki]
|
||||
A[ki, ji] = A[ki, ji] + data[0, i - ji] * data[0, i - ki] + data[1, i - ji] * data[1, i - ki] \
|
||||
+ data[2, i - ji] * data[2, i - ki]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
A[ji, ki] = A[ki, ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPred3C(self, data, arpara, rind, lpred):
|
||||
@ -683,7 +686,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
Output: predicted waveform z
|
||||
:type: structured array
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
# be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data[0]) - lpred + 1:
|
||||
@ -703,5 +706,5 @@ class AR3Ccf(CharacteristicFunction):
|
||||
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
||||
z3[i] = z3[i] + arpara[ji] * z3[i - ji]
|
||||
|
||||
z = np.array( [z1.tolist(), z2.tolist(), z3.tolist()] )
|
||||
z = np.array([z1.tolist(), z2.tolist(), z3.tolist()])
|
||||
self.xpred = z
|
||||
|
@ -25,6 +25,7 @@ from pylot.core.pick.utils import getnoisewin, getsignalwin
|
||||
from pylot.core.pick.charfuns import CharacteristicFunction
|
||||
import warnings
|
||||
|
||||
|
||||
class AutoPicker(object):
|
||||
'''
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
@ -87,7 +88,6 @@ class AutoPicker(object):
|
||||
Tsmooth=self.getTsmooth(),
|
||||
Pick1=self.getpick1())
|
||||
|
||||
|
||||
def getTSNR(self):
|
||||
return self.TSNR
|
||||
|
||||
@ -152,14 +152,14 @@ class AICPicker(AutoPicker):
|
||||
self.Pick = None
|
||||
self.slope = None
|
||||
self.SNR = None
|
||||
#find NaN's
|
||||
# find NaN's
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
self.cf[nn] = 0
|
||||
#taper AIC-CF to get rid off side maxima
|
||||
# taper AIC-CF to get rid off side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
#smooth AIC-CF
|
||||
# smooth AIC-CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
aicsmooth = np.zeros(len(aic))
|
||||
if len(aic) < ismooth:
|
||||
@ -171,32 +171,32 @@ class AICPicker(AutoPicker):
|
||||
ii1 = i - ismooth
|
||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
||||
else:
|
||||
aicsmooth[i] = np.mean(aic[1 : i])
|
||||
#remove offset
|
||||
aicsmooth[i] = np.mean(aic[1: i])
|
||||
# remove offset
|
||||
offset = abs(min(aic) - min(aicsmooth))
|
||||
aicsmooth = aicsmooth - offset
|
||||
#get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
||||
# get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
||||
diffcf = np.diff(aicsmooth)
|
||||
#find NaN's
|
||||
# find NaN's
|
||||
nn = np.isnan(diffcf)
|
||||
if len(nn) > 1:
|
||||
diffcf[nn] = 0
|
||||
#taper CF to get rid off side maxima
|
||||
# taper CF to get rid off side maxima
|
||||
tap = np.hanning(len(diffcf))
|
||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||
icfmax = np.argmax(diffcf)
|
||||
|
||||
#find minimum in AIC-CF front of maximum
|
||||
# find minimum in AIC-CF front of maximum
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
#if no minimum could be found:
|
||||
#search in 1st derivative of AIC-CF
|
||||
# if no minimum could be found:
|
||||
# search in 1st derivative of AIC-CF
|
||||
if self.Pick is None:
|
||||
for i in range(icfmax -1, max([icfmax -lpickwindow, 2]), -1):
|
||||
if diffcf[i -1] >= diffcf[i]:
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if diffcf[i - 1] >= diffcf[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
|
||||
@ -215,7 +215,7 @@ class AICPicker(AutoPicker):
|
||||
max(abs(aic[inoise] - np.mean(aic[inoise])))
|
||||
# calculate slope from CF after initial pick
|
||||
# get slope window
|
||||
tslope = self.TSNR[3] #slope determination window
|
||||
tslope = self.TSNR[3] # slope determination window
|
||||
islope = np.where((self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)])) \
|
||||
& (self.Tcf >= self.Pick))
|
||||
# find maximum within slope determination window
|
||||
@ -237,7 +237,7 @@ class AICPicker(AutoPicker):
|
||||
raw_input()
|
||||
plt.close(p)
|
||||
return
|
||||
islope = islope[0][0 :imax]
|
||||
islope = islope[0][0:imax]
|
||||
dataslope = self.Data[0].data[islope]
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope = np.arange(0, len(dataslope), 1)
|
||||
@ -258,7 +258,7 @@ class AICPicker(AutoPicker):
|
||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||
if self.Pick is not None:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1 , 0.5], 'b', linewidth=2)
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||
else:
|
||||
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
||||
@ -273,7 +273,8 @@ class AICPicker(AutoPicker):
|
||||
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r')
|
||||
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'],
|
||||
plt.legend([p11, p12, p13, p14, p15],
|
||||
['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'],
|
||||
loc='best')
|
||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
|
||||
self.SNR, self.slope))
|
||||
@ -303,7 +304,7 @@ class PragPicker(AutoPicker):
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
pickflag = 0
|
||||
#smooth CF
|
||||
# smooth CF
|
||||
ismooth = int(round(self.Tsmooth / self.dt))
|
||||
cfsmooth = np.zeros(len(self.cf))
|
||||
if len(self.cf) < ismooth:
|
||||
@ -315,28 +316,28 @@ class PragPicker(AutoPicker):
|
||||
ii1 = i - ismooth
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
||||
cfsmooth[i] = np.mean(self.cf[1: i])
|
||||
|
||||
#select picking window
|
||||
#which is centered around tpick1
|
||||
# select picking window
|
||||
# which is centered around tpick1
|
||||
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
||||
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
||||
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
||||
Tcfpick = self.Tcf[ipick]
|
||||
cfsmoothipick = cfsmooth[ipick]- np.mean(self.cf[ipick])
|
||||
cfsmoothipick = cfsmooth[ipick] - np.mean(self.cf[ipick])
|
||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||
cfpick1 = 2 * self.cf[ipick1]
|
||||
|
||||
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
#prominent trend: decrease aus
|
||||
#flat: use given aus
|
||||
# check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
# prominent trend: decrease aus
|
||||
# flat: use given aus
|
||||
cfdiff = np.diff(cfipick)
|
||||
i0diff = np.where(cfdiff > 0)
|
||||
cfdiff = cfdiff[i0diff]
|
||||
minaus = min(cfdiff * (1 + self.aus))
|
||||
aus1 = max([minaus, self.aus])
|
||||
|
||||
#at first we look to the right until the end of the pick window is reached
|
||||
# at first we look to the right until the end of the pick window is reached
|
||||
flagpick_r = 0
|
||||
flagpick_l = 0
|
||||
cfpick_r = 0
|
||||
@ -380,8 +381,8 @@ class PragPicker(AutoPicker):
|
||||
|
||||
if self.getiplot() > 1:
|
||||
p = plt.figure(self.getiplot())
|
||||
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
||||
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
||||
p1, = plt.plot(Tcfpick, cfipick, 'k')
|
||||
p2, = plt.plot(Tcfpick, cfsmoothipick, 'r')
|
||||
if pickflag > 0:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||
|
@ -15,7 +15,7 @@ from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode=False):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||
@ -70,7 +70,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
|
||||
# get earliest possible pick
|
||||
|
||||
EPick = np.nan; count = 0
|
||||
EPick = np.nan;
|
||||
count = 0
|
||||
pis = isignal
|
||||
|
||||
# if EPick stays NaN the signal window size will be doubled
|
||||
@ -78,10 +79,10 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
if count > 0:
|
||||
if stealthMode is False:
|
||||
print("\nearllatepicker: Doubled signal window size %s time(s) "
|
||||
"because of NaN for earliest pick." %count)
|
||||
"because of NaN for earliest pick." % count)
|
||||
isigDoubleWinStart = pis[-1] + 1
|
||||
isignalDoubleWin = np.arange(isigDoubleWinStart,
|
||||
isigDoubleWinStart + len(pis))
|
||||
isigDoubleWinStart + len(pis))
|
||||
if (isigDoubleWinStart + len(pis)) < X[0].data.size:
|
||||
pis = np.concatenate((pis, isignalDoubleWin))
|
||||
else:
|
||||
@ -92,8 +93,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealthMode = False):
|
||||
zc = crossings_nonzero_all(x[pis] - x[pis].mean())
|
||||
# calculate mean half period T0 of signal as the average of the
|
||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length!
|
||||
EPick = Pick1 - T0 # half wavelength as suggested by Diehl et al.
|
||||
|
||||
EPick = Pick1 - T0 # half wavelength as suggested by Diehl et al.
|
||||
|
||||
# get symmetric pick error as mean from earliest and latest possible pick
|
||||
# by weighting latest possible pick two times earliest possible pick
|
||||
@ -395,7 +395,7 @@ def getnoisewin(t, t1, tnoise, tgap):
|
||||
|
||||
# get noise window
|
||||
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||
if np.size(inoise) < 1:
|
||||
print ("getnoisewin: Empty array inoise, check noise window!")
|
||||
|
||||
@ -419,7 +419,7 @@ def getsignalwin(t, t1, tsignal):
|
||||
|
||||
# get signal window
|
||||
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
||||
& (t >= t1))
|
||||
& (t >= t1))
|
||||
if np.size(isignal) < 1:
|
||||
print ("getsignalwin: Empty array isignal, check signal window!")
|
||||
|
||||
@ -460,7 +460,7 @@ def getResolutionWindow(snr):
|
||||
else:
|
||||
time_resolution = res_wins['HRW']
|
||||
|
||||
return time_resolution/2
|
||||
return time_resolution / 2
|
||||
|
||||
|
||||
def wadaticheck(pickdic, dttolerance, iplot):
|
||||
@ -488,17 +488,16 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
SPtimes = []
|
||||
for key in pickdic:
|
||||
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
||||
# calculate S-P time
|
||||
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
# add S-P time to dictionary
|
||||
pickdic[key]['SPt'] = spt
|
||||
# add P onsets and corresponding S-P times to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
Spicks.append(UTCSpick.timestamp)
|
||||
SPtimes.append(spt)
|
||||
|
||||
# calculate S-P time
|
||||
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
# add S-P time to dictionary
|
||||
pickdic[key]['SPt'] = spt
|
||||
# add P onsets and corresponding S-P times to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
Spicks.append(UTCSpick.timestamp)
|
||||
SPtimes.append(spt)
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
@ -530,7 +529,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
ibad += 1
|
||||
else:
|
||||
marker = 'goodWadatiCheck'
|
||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
checkedPpicks.append(checkedPpick.timestamp)
|
||||
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
checkedSpicks.append(checkedSpick.timestamp)
|
||||
@ -642,7 +641,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
# calculate minimum adjusted signal level
|
||||
minsiglevel = max(rms[inoise]) * nfac
|
||||
# minimum adjusted number of samples over minimum signal level
|
||||
minnum = len(isignal) * minpercent/100
|
||||
minnum = len(isignal) * minpercent / 100
|
||||
# get number of samples above minimum adjusted signal level
|
||||
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
|
||||
|
||||
@ -657,10 +656,10 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p1, = plt.plot(t, rms, 'k')
|
||||
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]],
|
||||
p3, = plt.plot(t[isignal], rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
||||
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
||||
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window',
|
||||
@ -701,15 +700,15 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
stations = []
|
||||
for key in pickdic:
|
||||
if pickdic[key]['P']['weight'] < 4:
|
||||
# add P onsets to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
stations.append(key)
|
||||
# add P onsets to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
stations.append(key)
|
||||
|
||||
# apply jackknife bootstrapping on variance of P onsets
|
||||
print ("###############################################")
|
||||
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
|
||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
# get pseudo variances smaller than average variances
|
||||
# (times safety factor), these picks passed jackknife test
|
||||
ij = np.where(PHI_pseudo <= 2 * xjack)
|
||||
@ -730,7 +729,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
|
||||
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
|
||||
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
|
||||
+ len(badjkstations), len(stations)))
|
||||
+ len(badjkstations), len(stations)))
|
||||
|
||||
goodmarker = 'goodPonsetcheck'
|
||||
badmarker = 'badPonsetcheck'
|
||||
@ -881,10 +880,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
if len(ndat) == 0: # check for other components
|
||||
ndat = X.select(component="1")
|
||||
|
||||
|
||||
z = zdat[0].data
|
||||
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
|
||||
zdat[0].stats.delta)
|
||||
zdat[0].stats.delta)
|
||||
|
||||
# calculate RMS trace from vertical component
|
||||
absz = np.sqrt(np.power(z, 2))
|
||||
@ -916,9 +914,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
|
||||
if iplot > 1:
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
edat[0].stats.delta)
|
||||
edat[0].stats.delta)
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
ndat[0].stats.delta)
|
||||
ndat[0].stats.delta)
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
|
||||
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
||||
@ -960,65 +958,64 @@ def writephases(arrivals, fformat, filename):
|
||||
:type: string
|
||||
'''
|
||||
|
||||
|
||||
if fformat == 'NLLoc':
|
||||
print ("Writing phases to %s for NLLoc" % filename)
|
||||
fid = open("%s" % filename, 'w')
|
||||
# write header
|
||||
fid.write('# EQEVENT: Label: EQ001 Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n')
|
||||
for key in arrivals:
|
||||
# P onsets
|
||||
if arrivals[key]['P']:
|
||||
fm = arrivals[key]['P']['fm']
|
||||
if fm == None:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['P']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['P']['weight'] < 4:
|
||||
pweight = 1 # use pick
|
||||
else:
|
||||
pweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? P %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
pweight))
|
||||
# S onsets
|
||||
if arrivals[key]['S']:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['S']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['S']['weight'] < 4:
|
||||
sweight = 1 # use pick
|
||||
else:
|
||||
sweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? S %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
sweight))
|
||||
# P onsets
|
||||
if arrivals[key]['P']:
|
||||
fm = arrivals[key]['P']['fm']
|
||||
if fm == None:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['P']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['P']['weight'] < 4:
|
||||
pweight = 1 # use pick
|
||||
else:
|
||||
pweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? P %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
pweight))
|
||||
# S onsets
|
||||
if arrivals[key]['S']:
|
||||
fm = '?'
|
||||
onset = arrivals[key]['S']['mpp']
|
||||
year = onset.year
|
||||
month = onset.month
|
||||
day = onset.day
|
||||
hh = onset.hour
|
||||
mm = onset.minute
|
||||
ss = onset.second
|
||||
ms = onset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if arrivals[key]['S']['weight'] < 4:
|
||||
sweight = 1 # use pick
|
||||
else:
|
||||
sweight = 0 # do not use pick
|
||||
fid.write('%s ? ? ? S %s %d%02d%02d %02d%02d %7.4f GAU 0 0 0 0 %d \n' % (key,
|
||||
fm,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
sweight))
|
||||
|
||||
fid.close()
|
||||
|
||||
@ -1043,9 +1040,9 @@ def writephases(arrivals, fformat, filename):
|
||||
Ao = str('%7.2f' % Ao)
|
||||
year = Ponset.year
|
||||
if year >= 2000:
|
||||
year = year -2000
|
||||
year = year - 2000
|
||||
else:
|
||||
year = year - 1900
|
||||
year = year - 1900
|
||||
month = Ponset.month
|
||||
day = Ponset.day
|
||||
hh = Ponset.hour
|
||||
@ -1054,9 +1051,9 @@ def writephases(arrivals, fformat, filename):
|
||||
ms = Ponset.microsecond
|
||||
ss_ms = ss + ms / 1000000.0
|
||||
if pweight < 2:
|
||||
pstr = 'I'
|
||||
pstr = 'I'
|
||||
elif pweight >= 2:
|
||||
pstr = 'E'
|
||||
pstr = 'E'
|
||||
if arrivals[key]['S']['weight'] < 4:
|
||||
Sss = Sonset.second
|
||||
Sms = Sonset.microsecond
|
||||
@ -1067,35 +1064,36 @@ def writephases(arrivals, fformat, filename):
|
||||
elif sweight >= 2:
|
||||
sstr = 'E'
|
||||
fid.write('%s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s%sS %d %s\n' % (key,
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Sss_ms,
|
||||
sstr,
|
||||
sweight,
|
||||
Ao))
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Sss_ms,
|
||||
sstr,
|
||||
sweight,
|
||||
Ao))
|
||||
else:
|
||||
fid.write('%s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s\n' % (key,
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Ao))
|
||||
pstr,
|
||||
fm,
|
||||
pweight,
|
||||
year,
|
||||
month,
|
||||
day,
|
||||
hh,
|
||||
mm,
|
||||
ss_ms,
|
||||
Ao))
|
||||
|
||||
fid.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -81,7 +81,6 @@ class Data(object):
|
||||
picks_str += str(pick) + '\n'
|
||||
return picks_str
|
||||
|
||||
|
||||
def getParent(self):
|
||||
"""
|
||||
|
||||
|
@ -3,6 +3,7 @@
|
||||
|
||||
from pylot.core.util.errors import ParameterError
|
||||
|
||||
|
||||
class AutoPickParameter(object):
|
||||
'''
|
||||
AutoPickParameters is a parameter type object capable to read and/or write
|
||||
@ -50,7 +51,7 @@ class AutoPickParameter(object):
|
||||
parFileCont[key] = val
|
||||
|
||||
if self.__filename is not None:
|
||||
inputFile = open(self.__filename, 'r')
|
||||
inputFile = open(self.__filename, 'r')
|
||||
else:
|
||||
return
|
||||
try:
|
||||
@ -148,7 +149,7 @@ class AutoPickParameter(object):
|
||||
def setParam(self, **kwargs):
|
||||
for param, value in kwargs.items():
|
||||
self.__setitem__(param, value)
|
||||
#print(self)
|
||||
# print(self)
|
||||
|
||||
@staticmethod
|
||||
def _printParameterError(errmsg):
|
||||
@ -193,6 +194,7 @@ class FilterOptions(object):
|
||||
``'highpass'``
|
||||
Butterworth-Highpass
|
||||
'''
|
||||
|
||||
def __init__(self, filtertype='bandpass', freq=[2., 5.], order=3,
|
||||
**kwargs):
|
||||
self._order = order
|
||||
|
@ -7,9 +7,10 @@ import scipy.io as sio
|
||||
import obspy.core.event as ope
|
||||
from obspy.core import UTCDateTime
|
||||
|
||||
from pylot.core.util.utils import getOwner, createPick, createArrival,\
|
||||
from pylot.core.util.utils import getOwner, createPick, createArrival, \
|
||||
createEvent, createOrigin, createMagnitude
|
||||
|
||||
|
||||
def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
"""
|
||||
readPILOTEvent - function
|
||||
@ -133,5 +134,3 @@ def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
except AttributeError as e:
|
||||
raise AttributeError('{0} - Matlab LOC files {1} and {2} contains \
|
||||
insufficient data!'.format(e, phasfn, locfn))
|
||||
|
||||
|
||||
|
@ -14,11 +14,12 @@ import argparse
|
||||
import obspy
|
||||
from pylot.core.pick.utils import earllatepicker
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--X', type=~obspy.core.stream.Stream, help='time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--nfac', type=int, help='(noise factor), nfac times noise level to calculate latest possible pick')
|
||||
parser.add_argument('--X', type=~obspy.core.stream.Stream,
|
||||
help='time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--nfac', type=int,
|
||||
help='(noise factor), nfac times noise level to calculate latest possible pick')
|
||||
parser.add_argument('--TSNR', type=tuple, help='length of time windows around pick used to determine SNR \
|
||||
[s] (Tnoise, Tgap, Tsignal)')
|
||||
parser.add_argument('--Pick1', type=float, help='Onset time of most likely pick')
|
||||
|
@ -13,11 +13,12 @@ from pylot.core.pick.utils import fmpicker
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--Xraw', type=obspy.core.stream.Stream, help='unfiltered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xfilt', type=obspy.core.stream.Stream, help='filtered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xraw', type=obspy.core.stream.Stream,
|
||||
help='unfiltered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xfilt', type=obspy.core.stream.Stream,
|
||||
help='filtered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--pickwin', type=float, help='length of pick window [s] for first motion determination')
|
||||
parser.add_argument('--Pick', type=float, help='Onset time of most likely pick')
|
||||
parser.add_argument('--iplot', type=int, help='if set, figure no. iplot occurs')
|
||||
args = parser.parse_args()
|
||||
fmpicker(args.Xraw, args.Xfilt, args.pickwin, args.Pick, args.iplot)
|
||||
|
||||
|
@ -11,6 +11,7 @@ from pylot.core.loc import nll
|
||||
from pylot.core.loc import hsat
|
||||
from pylot.core.loc import velest
|
||||
|
||||
|
||||
def readFilterInformation(fname):
|
||||
def convert2FreqRange(*args):
|
||||
if len(args) > 1:
|
||||
@ -18,6 +19,7 @@ def readFilterInformation(fname):
|
||||
elif len(args) == 1:
|
||||
return float(args[0])
|
||||
return None
|
||||
|
||||
filter_file = open(fname, 'r')
|
||||
filter_information = dict()
|
||||
for filter_line in filter_file.readlines():
|
||||
@ -26,14 +28,14 @@ def readFilterInformation(fname):
|
||||
if pos == '\n':
|
||||
filter_line[n] = ''
|
||||
filter_information[filter_line[0]] = {'filtertype': filter_line[1]
|
||||
if filter_line[1]
|
||||
else None,
|
||||
if filter_line[1]
|
||||
else None,
|
||||
'order': int(filter_line[2])
|
||||
if filter_line[1]
|
||||
else None,
|
||||
if filter_line[1]
|
||||
else None,
|
||||
'freq': convert2FreqRange(*filter_line[3:])
|
||||
if filter_line[1]
|
||||
else None}
|
||||
if filter_line[1]
|
||||
else None}
|
||||
return filter_information
|
||||
|
||||
|
||||
@ -41,15 +43,15 @@ FILTERDEFAULTS = readFilterInformation(os.path.join(os.path.expanduser('~'),
|
||||
'.pylot',
|
||||
'filter.in'))
|
||||
|
||||
OUTPUTFORMATS = {'.xml':'QUAKEML',
|
||||
'.cnv':'CNV',
|
||||
'.obs':'NLLOC_OBS'}
|
||||
OUTPUTFORMATS = {'.xml': 'QUAKEML',
|
||||
'.cnv': 'CNV',
|
||||
'.obs': 'NLLOC_OBS'}
|
||||
|
||||
LOCTOOLS = dict(nll = nll, hsat = hsat, velest = velest)
|
||||
LOCTOOLS = dict(nll=nll, hsat=hsat, velest=velest)
|
||||
|
||||
COMPPOSITION_MAP = dict(Z = 2, N = 1, E = 0)
|
||||
COMPPOSITION_MAP = dict(Z=2, N=1, E=0)
|
||||
COMPPOSITION_MAP['1'] = 1
|
||||
COMPPOSITION_MAP['2'] = 0
|
||||
COMPPOSITION_MAP['3'] = 2
|
||||
|
||||
COMPNAME_MAP = dict(Z = '3', N = '1', E = '2')
|
||||
COMPNAME_MAP = dict(Z='3', N='1', E='2')
|
||||
|
@ -21,5 +21,6 @@ class DatastructureError(Exception):
|
||||
class OverwriteError(IOError):
|
||||
pass
|
||||
|
||||
|
||||
class ParameterError(Exception):
|
||||
pass
|
@ -2,6 +2,7 @@
|
||||
import sys
|
||||
from PySide.QtCore import QThread, Signal
|
||||
|
||||
|
||||
class AutoPickThread(QThread):
|
||||
message = Signal(str)
|
||||
finished = Signal()
|
||||
@ -28,6 +29,5 @@ class AutoPickThread(QThread):
|
||||
sys.stdout = sys.__stdout__
|
||||
self.finished.emit()
|
||||
|
||||
|
||||
def write(self, text):
|
||||
self.message.emit(text)
|
||||
|
@ -10,6 +10,7 @@ import numpy as np
|
||||
from obspy.core import UTCDateTime
|
||||
import obspy.core.event as ope
|
||||
|
||||
|
||||
def createAmplitude(pickID, amp, unit, category, cinfo):
|
||||
'''
|
||||
|
||||
@ -28,6 +29,7 @@ def createAmplitude(pickID, amp, unit, category, cinfo):
|
||||
amplitude.pick_id = pickID
|
||||
return amplitude
|
||||
|
||||
|
||||
def createArrival(pickresID, cinfo, phase, azimuth=None, dist=None):
|
||||
'''
|
||||
createArrival - function to create an Obspy Arrival
|
||||
@ -56,6 +58,7 @@ def createArrival(pickresID, cinfo, phase, azimuth=None, dist=None):
|
||||
arrival.distance = dist
|
||||
return arrival
|
||||
|
||||
|
||||
def createCreationInfo(agency_id=None, creation_time=None, author=None):
|
||||
'''
|
||||
|
||||
@ -71,6 +74,7 @@ def createCreationInfo(agency_id=None, creation_time=None, author=None):
|
||||
return ope.CreationInfo(agency_id=agency_id, author=author,
|
||||
creation_time=creation_time)
|
||||
|
||||
|
||||
def createEvent(origintime, cinfo, originloc=None, etype=None, resID=None,
|
||||
authority_id=None):
|
||||
'''
|
||||
@ -115,6 +119,7 @@ def createEvent(origintime, cinfo, originloc=None, etype=None, resID=None,
|
||||
event.origins = [o]
|
||||
return event
|
||||
|
||||
|
||||
def createMagnitude(originID, cinfo):
|
||||
'''
|
||||
createMagnitude - function to create an ObsPy Magnitude object
|
||||
@ -129,6 +134,7 @@ def createMagnitude(originID, cinfo):
|
||||
magnitude.origin_id = originID
|
||||
return magnitude
|
||||
|
||||
|
||||
def createOrigin(origintime, cinfo, latitude, longitude, depth):
|
||||
'''
|
||||
createOrigin - function to create an ObsPy Origin
|
||||
@ -158,6 +164,7 @@ def createOrigin(origintime, cinfo, latitude, longitude, depth):
|
||||
origin.depth = depth
|
||||
return origin
|
||||
|
||||
|
||||
def createPick(origintime, picknum, picktime, eventnum, cinfo, phase, station,
|
||||
wfseedstr, authority_id):
|
||||
'''
|
||||
@ -196,6 +203,7 @@ def createPick(origintime, picknum, picktime, eventnum, cinfo, phase, station,
|
||||
pick.waveform_id = ope.ResourceIdentifier(id=wfseedstr, prefix='file:/')
|
||||
return pick
|
||||
|
||||
|
||||
def createResourceID(timetohash, restype, authority_id=None, hrstr=None):
|
||||
'''
|
||||
|
||||
@ -220,6 +228,7 @@ def createResourceID(timetohash, restype, authority_id=None, hrstr=None):
|
||||
resID.convertIDToQuakeMLURI(authority_id=authority_id)
|
||||
return resID
|
||||
|
||||
|
||||
def demeanTrace(trace, window):
|
||||
"""
|
||||
returns the DATA where each trace is demean by the average value within
|
||||
@ -234,6 +243,7 @@ def demeanTrace(trace, window):
|
||||
trace.data -= trace.data[window].mean()
|
||||
return trace
|
||||
|
||||
|
||||
def findComboBoxIndex(combo_box, val):
|
||||
"""
|
||||
Function findComboBoxIndex takes a QComboBox object and a string and
|
||||
@ -246,6 +256,7 @@ def findComboBoxIndex(combo_box, val):
|
||||
"""
|
||||
return combo_box.findText(val) if combo_box.findText(val) is not -1 else 0
|
||||
|
||||
|
||||
def find_nearest(array, value):
|
||||
'''
|
||||
Function find_nearest takes an array and a value and returns the
|
||||
@ -254,7 +265,8 @@ def find_nearest(array, value):
|
||||
:param value:
|
||||
:return:
|
||||
'''
|
||||
return (np.abs(array-value)).argmin()
|
||||
return (np.abs(array - value)).argmin()
|
||||
|
||||
|
||||
def fnConstructor(s):
|
||||
'''
|
||||
@ -277,6 +289,7 @@ def fnConstructor(s):
|
||||
fn = '_' + fn
|
||||
return fn
|
||||
|
||||
|
||||
def getGlobalTimes(stream):
|
||||
'''
|
||||
|
||||
@ -293,6 +306,7 @@ def getGlobalTimes(stream):
|
||||
max_end = trace.stats.endtime
|
||||
return min_start, max_end
|
||||
|
||||
|
||||
def getHash(time):
|
||||
'''
|
||||
:param time: time object for which a hash should be calculated
|
||||
@ -303,6 +317,7 @@ def getHash(time):
|
||||
hg.update(time.strftime('%Y-%m-%d %H:%M:%S.%f'))
|
||||
return hg.hexdigest()
|
||||
|
||||
|
||||
def getLogin():
|
||||
'''
|
||||
|
||||
@ -310,6 +325,7 @@ def getLogin():
|
||||
'''
|
||||
return pwd.getpwuid(os.getuid())[0]
|
||||
|
||||
|
||||
def getOwner(fn):
|
||||
'''
|
||||
|
||||
@ -319,6 +335,7 @@ def getOwner(fn):
|
||||
'''
|
||||
return pwd.getpwuid(os.stat(fn).st_uid).pw_name
|
||||
|
||||
|
||||
def getPatternLine(fn, pattern):
|
||||
"""
|
||||
Takes a file name and a pattern string to search for in the file and
|
||||
@ -343,6 +360,7 @@ def getPatternLine(fn, pattern):
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def isSorted(iterable):
|
||||
'''
|
||||
|
||||
@ -352,6 +370,7 @@ def isSorted(iterable):
|
||||
'''
|
||||
return sorted(iterable) == iterable
|
||||
|
||||
|
||||
def prepTimeAxis(stime, trace):
|
||||
'''
|
||||
|
||||
@ -378,6 +397,7 @@ def prepTimeAxis(stime, trace):
|
||||
'delta: {2}'.format(nsamp, len(time_ax), tincr))
|
||||
return time_ax
|
||||
|
||||
|
||||
def scaleWFData(data, factor=None, components='all'):
|
||||
"""
|
||||
produce scaled waveforms from given waveform data and a scaling factor,
|
||||
@ -409,6 +429,7 @@ def scaleWFData(data, factor=None, components='all'):
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def runProgram(cmd, parameter=None):
|
||||
"""
|
||||
run an external program specified by cmd with parameters input returning the
|
||||
@ -427,8 +448,10 @@ def runProgram(cmd, parameter=None):
|
||||
cmd += ' %s 2>&1' % parameter
|
||||
|
||||
output = subprocess.check_output('{} | tee /dev/stderr'.format(cmd),
|
||||
shell = True)
|
||||
shell=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
@ -31,16 +31,19 @@
|
||||
#
|
||||
# include RELEASE-VERSION
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
__all__ = "get_git_version"
|
||||
|
||||
# NO IMPORTS FROM PYLOT IN THIS FILE! (file gets used at installation time)
|
||||
import os
|
||||
import inspect
|
||||
from subprocess import Popen, PIPE
|
||||
|
||||
# NO IMPORTS FROM PYLOT IN THIS FILE! (file gets used at installation time)
|
||||
|
||||
script_dir = os.path.abspath(os.path.dirname(inspect.getfile(
|
||||
inspect.currentframe())))
|
||||
inspect.currentframe())))
|
||||
PYLOT_ROOT = os.path.abspath(os.path.join(script_dir, os.pardir,
|
||||
os.pardir, os.pardir))
|
||||
VERSION_FILE = os.path.join(PYLOT_ROOT, "pylot", "RELEASE-VERSION")
|
||||
@ -108,4 +111,4 @@ def get_git_version(abbrev=4):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print get_git_version()
|
||||
print(get_git_version())
|
||||
|
@ -9,6 +9,7 @@ import datetime
|
||||
import numpy as np
|
||||
|
||||
from matplotlib.figure import Figure
|
||||
|
||||
try:
|
||||
from matplotlib.backends.backend_qt4agg import FigureCanvas
|
||||
except ImportError:
|
||||
@ -23,9 +24,9 @@ from PySide.QtCore import QSettings, Qt, QUrl, Signal, Slot
|
||||
from PySide.QtWebKit import QWebView
|
||||
from obspy import Stream, UTCDateTime
|
||||
from pylot.core.read.inputs import FilterOptions
|
||||
from pylot.core.pick.utils import getSNR, earllatepicker, getnoisewin,\
|
||||
from pylot.core.pick.utils import getSNR, earllatepicker, getnoisewin, \
|
||||
getResolutionWindow
|
||||
from pylot.core.util.defaults import OUTPUTFORMATS, FILTERDEFAULTS, LOCTOOLS,\
|
||||
from pylot.core.util.defaults import OUTPUTFORMATS, FILTERDEFAULTS, LOCTOOLS, \
|
||||
COMPPOSITION_MAP
|
||||
from pylot.core.util.utils import prepTimeAxis, getGlobalTimes, scaleWFData, \
|
||||
demeanTrace, isSorted, findComboBoxIndex
|
||||
@ -164,9 +165,10 @@ class MPLWidget(FigureCanvas):
|
||||
def insertLabel(self, pos, text):
|
||||
pos = pos / max(self.getAxes().ylim)
|
||||
axann = self.getAxes().annotate(text, xy=(.03, pos),
|
||||
xycoords='axes fraction')
|
||||
xycoords='axes fraction')
|
||||
axann.set_bbox(dict(facecolor='lightgrey', alpha=.6))
|
||||
|
||||
|
||||
class PickDlg(QDialog):
|
||||
def __init__(self, parent=None, data=None, station=None, picks=None,
|
||||
rotate=False):
|
||||
@ -263,8 +265,8 @@ class PickDlg(QDialog):
|
||||
tip='Zoom into waveform',
|
||||
checkable=True)
|
||||
self.resetZoomAction = createAction(parent=self, text='Home',
|
||||
slot=self.resetZoom, icon=home_icon,
|
||||
tip='Reset zoom to original limits')
|
||||
slot=self.resetZoom, icon=home_icon,
|
||||
tip='Reset zoom to original limits')
|
||||
self.resetPicksAction = createAction(parent=self, text='Delete Picks',
|
||||
slot=self.delPicks, icon=del_icon,
|
||||
tip='Delete current picks.')
|
||||
@ -516,7 +518,6 @@ class PickDlg(QDialog):
|
||||
inoise = getnoisewin(t, ini_pick, noise_win, gap_win)
|
||||
trace = demeanTrace(trace=trace, window=inoise)
|
||||
|
||||
|
||||
self.setXLims([ini_pick - x_res, ini_pick + x_res])
|
||||
self.setYLims(np.array([-noiselevel * 2.5, noiselevel * 2.5]) +
|
||||
trace_number)
|
||||
@ -575,8 +576,8 @@ class PickDlg(QDialog):
|
||||
traces = self.getTraceID(horiz_comp)
|
||||
traces.sort()
|
||||
self.setYLims(tuple(np.array([-0.5, +0.5]) +
|
||||
np.array(traces)))
|
||||
noiselevels = [trace + 1 / (2.5 * 2) for trace in traces] +\
|
||||
np.array(traces)))
|
||||
noiselevels = [trace + 1 / (2.5 * 2) for trace in traces] + \
|
||||
[trace - 1 / (2.5 * 2) for trace in traces]
|
||||
|
||||
self.getPlotWidget().plotWFData(wfdata=data,
|
||||
@ -757,7 +758,6 @@ class PickDlg(QDialog):
|
||||
self.drawPicks()
|
||||
self.draw()
|
||||
|
||||
|
||||
def setPlotLabels(self):
|
||||
|
||||
# get channel labels
|
||||
@ -1041,7 +1041,7 @@ class LocalisationTab(PropTab):
|
||||
self.binlabel.setText("{0} bin directory".format(curtool))
|
||||
|
||||
def selectDirectory(self, edit):
|
||||
selected_directory = QFileDialog.getExistingDirectory()
|
||||
selected_directory = QFileDialog.getExistingDirectory()
|
||||
edit.setText(selected_directory)
|
||||
|
||||
def getValues(self):
|
||||
@ -1052,7 +1052,6 @@ class LocalisationTab(PropTab):
|
||||
return values
|
||||
|
||||
|
||||
|
||||
class NewEventDlg(QDialog):
|
||||
def __init__(self, parent=None, titleString="Create a new event"):
|
||||
"""
|
||||
@ -1293,6 +1292,8 @@ class HelpForm(QDialog):
|
||||
def updatePageTitle(self):
|
||||
self.pageLabel.setText(self.webBrowser.documentTitle())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
Loading…
Reference in New Issue
Block a user