6 Commits

10 changed files with 135 additions and 71 deletions

View File

@@ -86,13 +86,13 @@ Current release is still in development progress and has several issues. We are
## Staff
Original author(s): M. Rische, S. Wehling-Benatelli, L. Kueperkoch, M. Bischoff (PILOT)
Developer(s): M. Paffrath, S. Wehling-Benatelli, L. Kueperkoch, D. Arnold, K. Cökerim, K. Olbert, M. Bischoff, C. Wollin, M. Rische, S. Zimmermann
Developer(s): S. Wehling-Benatelli, M. Paffrath, L. Kueperkoch, K. Olbert, M. Bischoff, C. Wollin, M. Rische, D. Arnold, K. Cökerim, S. Zimmermann
Original author(s): M. Rische, S. Wehling-Benatelli, L. Kueperkoch, M. Bischoff (PILOT)
Others: A. Bruestle, T. Meier, W. Friederich
[ObsPy]: http://github.com/obspy/obspy/wiki
September 2024
March 2025

View File

@@ -36,8 +36,17 @@ class Data(object):
loaded event. Container object holding, e.g. phase arrivals, etc.
"""
def __init__(self, parent=None, evtdata=None):
def __init__(self, parent=None, evtdata=None, picking_parameter=None):
self._parent = parent
if not picking_parameter:
if hasattr(parent, '_inputs'):
picking_parameter = parent._inputs
else:
logging.warning('No picking parameters found! Using default input parameters!!!')
picking_parameter = PylotParameter()
self.picking_parameter = picking_parameter
if self.getParent():
self.comp = parent.getComponent()
else:
@@ -403,23 +412,19 @@ class Data(object):
not implemented: {1}'''.format(evtformat, e))
if fnext == '.cnv':
try:
velest.export(picks_copy, fnout + fnext, eventinfo=self.get_evt_data())
velest.export(picks_copy, fnout + fnext, self.picking_parameter, eventinfo=self.get_evt_data())
except KeyError as e:
raise KeyError('''{0} export format
not implemented: {1}'''.format(evtformat, e))
if fnext == '_focmec.in':
try:
parameter = PylotParameter()
logging.warning('Using default input parameter')
focmec.export(picks_copy, fnout + fnext, parameter, eventinfo=self.get_evt_data())
focmec.export(picks_copy, fnout + fnext, self.picking_parameter, eventinfo=self.get_evt_data())
except KeyError as e:
raise KeyError('''{0} export format
not implemented: {1}'''.format(evtformat, e))
if fnext == '.pha':
try:
parameter = PylotParameter()
logging.warning('Using default input parameter')
hypodd.export(picks_copy, fnout + fnext, parameter, eventinfo=self.get_evt_data())
hypodd.export(picks_copy, fnout + fnext, self.picking_parameter, eventinfo=self.get_evt_data())
except KeyError as e:
raise KeyError('''{0} export format
not implemented: {1}'''.format(evtformat, e))

View File

@@ -53,10 +53,16 @@ class PylotParameter(object):
self.__parameter = {}
self._verbosity = verbosity
self._parFileCont = {}
# io from parsed arguments alternatively
for key, val in kwargs.items():
self._parFileCont[key] = val
self.from_file()
# if no filename or kwargs given, use default values
if not fnin and not kwargs:
self.reset_defaults()
if fnout:
self.export2File(fnout)

View File

@@ -278,7 +278,6 @@ def picksdict_from_picks(evt, parameter=None):
weight = phase.get('weight')
if not weight:
if not parameter:
logging.warning('Using ')
logging.warning('Using default input parameter')
parameter = PylotParameter()
pick.phase_hint = identifyPhase(pick.phase_hint)
@@ -513,7 +512,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
# write header
fid.write('# EQEVENT: %s Label: EQ%s Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n' %
(parameter.get('datapath'), parameter.get('eventID')))
arrivals = chooseArrivals(arrivals) # MP MP what is chooseArrivals? It is not defined anywhere
arrivals = chooseArrivals(arrivals)
for key in arrivals:
# P onsets
if 'P' in arrivals[key]:
@@ -666,7 +665,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
fid = open("%s" % filename, 'w')
# write header
fid.write('%s, event %s \n' % (parameter.get('datapath'), parameter.get('eventID')))
arrivals = chooseArrivals(arrivals) # MP MP what is chooseArrivals? It is not defined anywhere
arrivals = chooseArrivals(arrivals)
for key in arrivals:
# P onsets
if 'P' in arrivals[key] and arrivals[key]['P']['mpp'] is not None:
@@ -757,11 +756,11 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
cns, eventsource['longitude'], cew, eventsource['depth'], eventinfo.magnitudes[0]['mag'], ifx))
n = 0
# check whether arrivals are dictionaries (autoPyLoT) or pick object (PyLoT)
if isinstance(arrivals, dict) == False:
if isinstance(arrivals, dict) is False:
# convert pick object (PyLoT) into dictionary
evt = ope.Event(resource_id=eventinfo['resource_id'])
evt.picks = arrivals
arrivals = picksdict_from_picks(evt)
arrivals = picksdict_from_picks(evt, parameter=parameter)
# check for automatic and manual picks
# prefer manual picks
usedarrivals = chooseArrivals(arrivals)
@@ -822,7 +821,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
# convert pick object (PyLoT) into dictionary
evt = ope.Event(resource_id=eventinfo['resource_id'])
evt.picks = arrivals
arrivals = picksdict_from_picks(evt)
arrivals = picksdict_from_picks(evt, parameter=parameter)
# check for automatic and manual picks
# prefer manual picks
usedarrivals = chooseArrivals(arrivals)
@@ -873,7 +872,7 @@ def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
# convert pick object (PyLoT) into dictionary
evt = ope.Event(resource_id=eventinfo['resource_id'])
evt.picks = arrivals
arrivals = picksdict_from_picks(evt)
arrivals = picksdict_from_picks(evt, parameter=parameter)
# check for automatic and manual picks
# prefer manual picks
usedarrivals = chooseArrivals(arrivals)

View File

@@ -220,9 +220,9 @@ class Metadata(object):
network_name = network.code
if not station_name in self.stations_dict.keys():
st_id = '{}.{}'.format(network_name, station_name)
self.stations_dict[st_id] = {'latitude': station[0].latitude,
'longitude': station[0].longitude,
'elevation': station[0].elevation}
self.stations_dict[st_id] = {'latitude': station.latitude,
'longitude': station.longitude,
'elevation': station.elevation}
read_stat = {'xml': stat_info_from_inventory,
'dless': stat_info_from_parser}

View File

@@ -51,7 +51,6 @@ def readDefaultFilterInformation():
:rtype: dict
"""
pparam = PylotParameter()
pparam.reset_defaults()
return readFilterInformation(pparam)

View File

@@ -59,6 +59,9 @@ P:
filter_type: bandpass
sampfreq: 20.0
# ignore if autopylot fails to pick master-trace (not recommended if absolute onset times matter)
ignore_autopylot_fail_on_master: True
# S-phase
S:
min_corr_stacking: 0.7
@@ -93,3 +96,6 @@ S:
filter_type: bandpass
sampfreq: 20.0
# ignore if autopylot fails to pick master-trace (not recommended if absolute onset times matter)
ignore_autopylot_fail_on_master: True

View File

@@ -436,6 +436,7 @@ def correlation_main(database_path_dmt: str, pylot_infile_path: str, params: dic
# iterate over all events in "database_path_dmt"
for eventindex, eventdir in enumerate(eventdirs):
eventindex += 1
if not istart <= eventindex < istop:
continue
@@ -443,7 +444,7 @@ def correlation_main(database_path_dmt: str, pylot_infile_path: str, params: dic
continue
logging.info('\n' + 100 * '#')
logging.info('Working on event {} ({}/{})'.format(eventdir, eventindex + 1, len(eventdirs)))
logging.info('Working on event {} ({}/{})'.format(eventdir, eventindex, len(eventdirs)))
if event_blacklist and get_event_id(eventdir) in event_blacklist:
logging.info('Event on blacklist. Continue')
@@ -526,7 +527,7 @@ def cut_stream_to_same_length(wfdata: Stream) -> None:
st.trim(tstart, tend, pad=True, fill_value=0.)
# check for stream length
if len(st) < 3:
logging.info('Not enough traces in stream, remove it from dataset:', str(st))
logging.info(f'Not enough traces in stream, remove it from dataset: {st}')
remove(wfdata, st)
continue
if st[0].stats.starttime != st[1].stats.starttime or st[1].stats.starttime != st[2].stats.starttime:
@@ -639,10 +640,19 @@ def correlate_event(eventdir: str, pylot_parameter: PylotParameter, params: dict
if len(picks) < params[phase_type]['min_picks_autopylot']:
logging.info('Not enough automatic picks for correlation. Continue!')
continue
# calculate corrected taupy picks and remove strong outliers
taupypicks_corr_initial, median_diff = get_corrected_taupy_picks(picks, taupypicks_orig)
picks = remove_outliers(picks, taupypicks_corr_initial,
params[phase_type]['initial_pick_outlier_threshold'])
## calculate corrected taupy picks and remove strong outliers - part commented out for now. Maybe make this
## another option but I think it is not worth it
# taupypicks_corr_initial, median_diff = get_corrected_taupy_picks(picks, taupypicks_orig)
# picks = remove_outliers(picks, taupypicks_corr_initial,
# params[phase_type]['initial_pick_outlier_threshold'])
# use mean/median corrected picks from taupy as the new reference picks. This largely increases the yield
# of final picks since every station has a decent reference onset now for a correlation
taupypicks, time_shift = get_corrected_taupy_picks(picks, taupypicks_orig, all_available=True)
picks = copy.deepcopy(taupypicks)
for pick in picks:
pick.method_id.id = 'auto'
if phase_type == 'S':
# check whether rotation to ZNE is possible (to get rid of horizontal channel 1,2,3)
@@ -675,19 +685,56 @@ def correlate_event(eventdir: str, pylot_parameter: PylotParameter, params: dict
if not params[phase_type]['use_stacked_trace']:
# first stack mastertrace by using stations with high correlation on that station in station list with the
# highest correlation coefficient
stack_result = stack_mastertrace(wfdata_lowf, wfdata_highf, wfdata, picks, params=params[phase_type],
channels=channels_list, method=method, fig_dir=fig_dir)
else:
stack_result = load_stacked_trace(eventdir, params[phase_type]['min_corr_stacking'])
logging.info('Searching for master trace. ' + 20 * '-')
best_result = None
for stack_result in stack_mastertrace(wfdata_lowf, wfdata_highf, wfdata, picks, params=params[phase_type],
channels=channels_list, method=method, fig_dir=fig_dir):
if not stack_result:
continue
# save best result in case it is still needed
if not best_result:
best_result = stack_result
# extract stack result
correlations_dict, nwst_id, trace_master, nstack = stack_result
# now pick stacked trace with PyLoT for a more precise pick (use raw trace, gets filtered by autoPyLoT)
pick_stacked = repick_master_trace(wfdata_lowf, trace_master, pylot_parameter, event, event_id, metadata,
phase_type, correlation_out_dir)
if not pick_stacked or not pick_stacked.time_errors.uncertainty:
logging.info(f'Invalid autoPyLoT pick on master trace. Try next one.')
continue
else:
break
else:
logging.info('Did not find autoPyLoT pick for any stacked trace.')
if params[phase_type]['ignore_autopylot_fail_on_master'] is True:
# Fallback in case autopylot failed
logging.warning(f'Could not pick stacked trace. Using reference pick instead. If you need '
f'absolute onsets you need to account for a time-shift.')
correlations_dict, nwst_id, trace_master, nstack = best_result
pick_stacked = get_pick4station(picks, network_code=trace_master.stats.network,
station_code=trace_master.stats.station, method='auto')
else:
pick_stacked = None
if not pick_stacked:
logging.info('Could not find reference pick also. Continue with next phase.')
continue
else:
raise NotImplementedError('Loading stacked trace currently not implemented')
# stack_result = load_stacked_trace(eventdir, params[phase_type]['min_corr_stacking'])
if not stack_result:
logging.info('No stack result. Continue.')
continue
#############################################
# NOW DO THE FINAL CORRELATION
# extract stack result
correlations_dict, nwst_id, trace_master, nstack = stack_result
if params[phase_type]['plot']:
# plot correlations of traces used to generate stacked trace
@@ -704,11 +751,6 @@ def correlate_event(eventdir: str, pylot_parameter: PylotParameter, params: dict
# write unfiltered trace
trace_master.write(os.path.join(correlation_out_dir, '{}_stacked.mseed'.format(trace_master.id)))
# now pick stacked trace with PyLoT for a more precise pick (use raw trace, gets filtered by autoPyLoT)
pick_stacked = repick_master_trace(wfdata_lowf, trace_master, pylot_parameter, event, event_id, metadata,
phase_type, correlation_out_dir)
if not pick_stacked:
continue
# correlate stations with repicked and stacked master trace
fig_dir_traces = make_figure_dirs(fig_dir, trace_master.id)
@@ -830,7 +872,7 @@ def get_picks_mean(picks: list) -> UTCDateTime:
def get_corrected_taupy_picks(picks: list, taupypicks: list, all_available: bool = False) -> tuple:
""" get mean/median from picks taupy picks, correct latter for the difference """
""" get mean/median from picks relative to taupy picks, correct latter for the difference """
def nwst_id_from_wfid(wfid):
return '{}.{}'.format(wfid.network_code if wfid.network_code else '',
@@ -1169,38 +1211,38 @@ def stack_mastertrace(wfdata_lowf: Stream, wfdata_highf: Stream, wfdata_raw: Str
A master trace will be created by stacking well correlating traces onto this station.
"""
def get_best_station4stack(sta_result):
""" return station with maximum mean_ccc"""
def get_best_stations4stack(sta_result, n_max=4):
""" return stations sorted after maximum mean_ccc"""
ccc_means = {nwst_id: value['mean_ccc'] for nwst_id, value in sta_result.items() if
not np.isnan(value['mean_ccc'])}
if len(ccc_means) < 1:
logging.warning('No valid station found for stacking! Return.')
return
best_station_id = max(ccc_means, key=ccc_means.get)
logging.info(
'Found highest mean correlation for station {} ({})'.format(best_station_id, max(ccc_means.values())))
return best_station_id
best_station_ids = sorted(ccc_means, key=ccc_means.get, reverse=True)[:n_max]
logging.info(f'Found mean correlations for stations: {ccc_means}')
return best_station_ids, ccc_means
station_results = iterate_correlation(wfdata_lowf, wfdata_highf, channels, picks, method, params, fig_dir=fig_dir)
nwst_id_master = get_best_station4stack(station_results)
nwst_ids_master, ccc_means = get_best_stations4stack(station_results)
# in case no stream with a valid pick is found
if not nwst_id_master:
logging.info('No mastertrace found! Will skip this event.')
if not nwst_ids_master:
logging.info('No mastertrace found! Continue with next.')
return None
trace_master = station_results[nwst_id_master]['trace']
stations4stack = station_results[nwst_id_master]['stations4stack']
correlations_dict = station_results[nwst_id_master]['correlations_dict']
for nwst_id_master in nwst_ids_master:
trace_master = station_results[nwst_id_master]['trace']
stations4stack = station_results[nwst_id_master]['stations4stack']
correlations_dict = station_results[nwst_id_master]['correlations_dict']
wfdata_highf += trace_master
wfdata_highf += trace_master
dt_pre, dt_post = params['dt_stacking']
trace_master, nstack = apply_stacking(trace_master, stations4stack, wfdata_raw, picks, method=method,
do_rms_check=params['check_RMS'], plot=params['plot'], fig_dir=fig_dir,
dt_pre=dt_pre, dt_post=dt_post)
dt_pre, dt_post = params['dt_stacking']
trace_master, nstack = apply_stacking(trace_master, stations4stack, wfdata_raw, picks, method=method,
do_rms_check=params['check_RMS'], plot=params['plot'], fig_dir=fig_dir,
dt_pre=dt_pre, dt_post=dt_post)
return correlations_dict, nwst_id_master, trace_master, nstack
yield correlations_dict, nwst_id_master, trace_master, nstack
def iterate_correlation(wfdata_lowf: Stream, wfdata_highf: Stream, channels: list, picks: list, method: str,
@@ -1988,4 +2030,5 @@ if __name__ == "__main__":
# MAIN +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
correlation_main(ARGS.dmt_path, ARGS.pylot_infile, params=CORR_PARAMS, istart=int(ARGS.istart),
istop=int(ARGS.istop),
channel_config=CHANNELS, update=ARGS.update, event_blacklist=ARGS.blacklist)
channel_config=CHANNELS, update=ARGS.update, event_blacklist=ARGS.blacklist,
select_events=None) # can add a list of event ids if only specific events shall be picked

View File

@@ -32,9 +32,10 @@ export PYTHONPATH="$PYTHONPATH:/home/marcel/git/pylot/"
#python pick_correlation_correction.py '/data/AlpArray_Data/dmt_database_mantle_M5.8-6.0' '/home/marcel/.pylot/pylot_alparray_mantle_corr_stack_0.03-0.5.in' -pd -n ${NSLOTS:=1} -istart 100 -istop 200
#python pick_correlation_correction.py 'H:\sciebo\dmt_database' 'H:\Sciebo\dmt_database\pylot_alparray_mantle_corr_S_0.01-0.2.in' -pd -n 4 -t
pylot_infile='/home/marcel/.pylot/pylot_alparray_syn_fwi_mk6_it3.in'
#pylot_infile='/home/marcel/.pylot/pylot_adriaarray_corr_P_and_S.in'
#pylot_infile='/home/marcel/.pylot/pylot_alparray_syn_fwi_mk6_it3.in'
pylot_infile='/home/marcel/.pylot/pylot_adriaarray_corr_P_and_S.in'
# THIS SCRIPT SHOLD BE CALLED BY "submit_to_grid_engine.py" using the following line:
python pick_correlation_correction.py $1 $pylot_infile -pd -n ${NSLOTS:=1} -istart $2 --params 'parameters_fwi_mk6_it3.yaml'
# use -pd for detailed plots in eventdir/correlation_XX_XX/figures
python pick_correlation_correction.py $1 $pylot_infile -n ${NSLOTS:=1} -istart $2 --params 'parameters_adriaarray.yaml' # -pd
#--event_blacklist eventlist.txt

View File

@@ -3,21 +3,26 @@
import subprocess
fnames = [
('/data/AlpArray_Data/dmt_database_synth_model_mk6_it3_no_rotation', 0),
('/data/AdriaArray_Data/dmt_database_mantle_M5.0-5.4', 0),
('/data/AdriaArray_Data/dmt_database_mantle_M5.4-5.7', 0),
('/data/AdriaArray_Data/dmt_database_mantle_M5.7-6.0', 0),
('/data/AdriaArray_Data/dmt_database_mantle_M6.0-6.3', 0),
('/data/AdriaArray_Data/dmt_database_mantle_M6.3-10.0', 0),
# ('/data/AdriaArray_Data/dmt_database_ISC_mantle_M5.0-5.4', 0),
# ('/data/AdriaArray_Data/dmt_database_ISC_mantle_M5.4-5.7', 0),
# ('/data/AdriaArray_Data/dmt_database_ISC_mantle_M5.7-6.0', 0),
# ('/data/AdriaArray_Data/dmt_database_ISC_mantle_M6.0-10.0', 0),
]
#fnames = [('/data/AlpArray_Data/dmt_database_mantle_0.01-0.2_SKS-phase', 0),
# ('/data/AlpArray_Data/dmt_database_mantle_0.01-0.2_S-phase', 0),]
####
script_location = '/home/marcel/VersionCtrl/git/code_base/correlation_picker/submit_pick_corr_correction.sh'
script_location = '/home/marcel/VersionCtrl/git/pylot/pylot/correlation/submit_pick_corr_correction.sh'
####
for fnin, istart in fnames:
input_cmds = f'qsub -q low.q@minos15,low.q@minos14,low.q@minos13,low.q@minos12,low.q@minos11 {script_location} {fnin} {istart}'
print(input_cmds)
print(subprocess.check_output(input_cmds.split()))
print(subprocess.check_output(input_cmds.split()))