pylot/pylot/core/pick/autopick.py

970 lines
44 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Function to run automated picking algorithms using AIC,
HOS and AR prediction. Uses objects CharFuns and Picker and
function conglomerate utils.
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import matplotlib.pyplot as plt
import numpy as np
2017-06-22 11:18:55 +02:00
from pylot.core.io.inputs import PylotParameter
from pylot.core.pick.picker import AICPicker, PragPicker
from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
getSNR, fmpicker, checkPonsets, wadaticheck
from pylot.core.util.utils import getPatternLine, gen_Pool
from pylot.core.io.data import Data
2015-07-01 15:31:02 +02:00
def autopickevent(data, param, iplot=0, fig_dict=None):
stations = []
all_onsets = {}
input_tuples = []
# get some parameters for quality control from
# parameter input file (usually autoPyLoT.in).
wdttolerance = param.get('wdttolerance')
mdttolerance = param.get('mdttolerance')
apverbose = param.get('apverbose')
for n in range(len(data)):
station = data[n].stats.station
if station not in stations:
stations.append(station)
else:
continue
for station in stations:
topick = data.select(station=station)
if not iplot:
input_tuples.append((topick, param, apverbose))
if iplot>0:
all_onsets[station] = autopickstation(topick, param, verbose=apverbose, iplot=iplot, fig_dict=fig_dict)
if iplot>0:
print('iPlot Flag active: NO MULTIPROCESSING possible.')
return all_onsets
pool = gen_Pool()
result = pool.map(call_autopickstation, input_tuples)
pool.close()
for pick in result:
station = pick['station']
pick.pop('station')
all_onsets[station] = pick
return all_onsets
# quality control
# median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot)
# check S-P times (Wadati)
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
def call_autopickstation(input_tuple):
wfstream, pickparam, verbose = input_tuple
#multiprocessing not possible with interactive plotting
return autopickstation(wfstream, pickparam, verbose, iplot=0)
def autopickstation(wfstream, pickparam, verbose=False, iplot=0, fig_dict=None):
"""
:param wfstream: `~obspy.core.stream.Stream` containing waveform
:type wfstream: obspy.core.stream.Stream
:param pickparam: container of picking parameters from input file,
usually autoPyLoT.in
2017-06-22 11:18:55 +02:00
:type pickparam: PylotParameter
:param verbose:
:type verbose: bool
"""
# declaring pickparam variables (only for convenience)
# read your autoPyLoT.in for details!
# special parameters for P picking
iplot = iplot
algoP = pickparam.get('algoP')
pstart = pickparam.get('pstart')
pstop = pickparam.get('pstop')
thosmw = pickparam.get('tlta')
tsnrz = pickparam.get('tsnrz')
hosorder = pickparam.get('hosorder')
bpz1 = pickparam.get('bpz1')
bpz2 = pickparam.get('bpz2')
pickwinP = pickparam.get('pickwinP')
tsmoothP = pickparam.get('tsmoothP')
ausP = pickparam.get('ausP')
nfacP = pickparam.get('nfacP')
tpred1z = pickparam.get('tpred1z')
tdet1z = pickparam.get('tdet1z')
Parorder = pickparam.get('Parorder')
addnoise = pickparam.get('addnoise')
Precalcwin = pickparam.get('Precalcwin')
minAICPslope = pickparam.get('minAICPslope')
minAICPSNR = pickparam.get('minAICPSNR')
timeerrorsP = pickparam.get('timeerrorsP')
# special parameters for S picking
algoS = pickparam.get('algoS')
sstart = pickparam.get('sstart')
sstop = pickparam.get('sstop')
bph1 = pickparam.get('bph1')
bph2 = pickparam.get('bph2')
tsnrh = pickparam.get('tsnrh')
pickwinS = pickparam.get('pickwinS')
tpred1h = pickparam.get('tpred1h')
tdet1h = pickparam.get('tdet1h')
tpred2h = pickparam.get('tpred2h')
tdet2h = pickparam.get('tdet2h')
Sarorder = pickparam.get('Sarorder')
aictsmoothS = pickparam.get('aictsmoothS')
tsmoothS = pickparam.get('tsmoothS')
ausS = pickparam.get('ausS')
minAICSslope = pickparam.get('minAICSslope')
minAICSSNR = pickparam.get('minAICSSNR')
Srecalcwin = pickparam.get('Srecalcwin')
nfacS = pickparam.get('nfacS')
timeerrorsS = pickparam.get('timeerrorsS')
# parameters for first-motion determination
minFMSNR = pickparam.get('minFMSNR')
fmpickwin = pickparam.get('fmpickwin')
minfmweight = pickparam.get('minfmweight')
# parameters for checking signal length
minsiglength = pickparam.get('minsiglength')
minpercent = pickparam.get('minpercent')
nfacsl = pickparam.get('noisefactor')
# parameter to check for spuriously picked S onset
zfac = pickparam.get('zfac')
# path to inventory-, dataless- or resp-files
# initialize output
Pweight = 4 # weight for P onset
Sweight = 4 # weight for S onset
FM = 'N' # first motion (polarity)
SNRP = None # signal-to-noise ratio of P onset
SNRPdB = None # signal-to-noise ratio of P onset [dB]
SNRS = None # signal-to-noise ratio of S onset
SNRSdB = None # signal-to-noise ratio of S onset [dB]
mpickP = None # most likely P onset
lpickP = None # latest possible P onset
epickP = None # earliest possible P onset
mpickS = None # most likely S onset
lpickS = None # latest possible S onset
epickS = None # earliest possible S onset
Perror = None # symmetrized picking error P onset
Serror = None # symmetrized picking error S onset
aicSflag = 0
aicPflag = 0
Pflag = 0
Sflag = 0
Pmarker = []
Ao = None # Wood-Anderson peak-to-peak amplitude
2017-04-06 13:16:28 +02:00
picker = 'auto' # type of picks
# split components
zdat = wfstream.select(component="Z")
if len(zdat) == 0: # check for other components
zdat = wfstream.select(component="3")
edat = wfstream.select(component="E")
if len(edat) == 0: # check for other components
edat = wfstream.select(component="2")
ndat = wfstream.select(component="N")
if len(ndat) == 0: # check for other components
ndat = wfstream.select(component="1")
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
2017-04-06 13:16:28 +02:00
msg = '##################################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=zdat[0].stats.station,
data=str(zdat))
if verbose: print(msg)
z_copy = zdat.copy()
# filter and taper data
tr_filt = zdat[0].copy()
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1],
zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann')
z_copy[0].data = tr_filt.data
##############################################################
# check length of waveform and compare with cut times
Lc = pstop - pstart
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
Ldiff = Lwf - Lc
if Ldiff < 0:
msg = 'autopickstation: Cutting times are too large for actual ' \
'waveform!\nUsing entire waveform instead!'
if verbose: print(msg)
pstart = 0
pstop = len(zdat[0].data) * zdat[0].stats.delta
cuttimes = [pstart, pstop]
cf1 = None
if algoP == 'HOS':
# calculate HOS-CF using subclass HOScf of class
# CharacteristicFunction
cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) # instance of HOScf
elif algoP == 'ARZ':
# calculate ARZ-CF using subclass ARZcf of class
# CharcteristicFunction
cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z,
addnoise) # instance of ARZcf
##############################################################
# calculate AIC-HOS-CF using subclass AICcf of class
# CharacteristicFunction
# class needs stream object => build it
assert isinstance(cf1, CharacteristicFunction), 'cf2 is not set ' \
'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format(
algoP=algoP)
tr_aic = tr_filt.copy()
tr_aic.data = cf1.getCF()
z_copy[0].data = tr_aic.data
aiccf = AICcf(z_copy, cuttimes) # instance of AICcf
##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking
2017-05-08 16:23:10 +02:00
key = 'aicFig'
if fig_dict:
fig = fig_dict[key]
else:
fig = None
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP, fig=fig)
##############################################################
2015-06-24 15:43:59 +02:00
if aicpick.getpick() is not None:
# check signal length to detect spuriously picked noise peaks
# use all available components to avoid skipping correct picks
# on vertical traces with weak P coda
z_copy[0].data = tr_filt.data
zne = z_copy
if len(ndat) == 0 or len(edat) == 0:
msg = 'One or more horizontal component(s) missing!\nSignal ' \
'length only checked on vertical component!\n' \
'Decreasing minsiglengh from {0} to ' \
'{1}'.format(minsiglength, minsiglength / 2)
if verbose: print(msg)
2017-05-08 16:23:10 +02:00
key = 'slength'
if fig_dict:
fig = fig_dict[key]
else:
fig = None
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength / 2,
nfacsl, minpercent, iplot,
fig)
else:
# filter and taper horizontal traces
trH1_filt = edat.copy()
trH2_filt = ndat.copy()
trH1_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
zne += trH1_filt
zne += trH2_filt
if fig_dict:
fig = fig_dict['slength']
else:
fig = None
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength,
nfacsl, minpercent, iplot,
fig)
if Pflag == 1:
# check for spuriously picked S onset
# both horizontal traces needed
if len(ndat) == 0 or len(edat) == 0:
msg = 'One or more horizontal components missing!\n' \
'Skipping control function checkZ4S.'
if verbose: print(msg)
else:
2017-05-08 16:23:10 +02:00
if iplot>1:
if fig_dict:
fig = fig_dict['checkZ4s']
else:
fig = None
Pflag = checkZ4S(zne, aicpick.getpick(), zfac,
tsnrz[2], iplot, fig)
if Pflag == 0:
Pmarker = 'SinsteadP'
Pweight = 9
else:
Pmarker = 'shortsignallength'
Pweight = 9
##############################################################
# go on with processing if AIC onset passes quality control
if (aicpick.getSlope() >= minAICPslope and
aicpick.getSNR() >= minAICPSNR and Pflag == 1):
aicPflag = 1
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering vertical trace ' \
'...'.format(aicpick.getSlope(), aicpick.getSNR())
if verbose: print(msg)
# re-filter waveform with larger bandpass
z_copy = zdat.copy()
tr_filt = zdat[0].copy()
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1],
zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann')
z_copy[0].data = tr_filt.data
#############################################################
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])),
round(min([len(zdat[0].data) * zdat[0].stats.delta,
aicpick.getpick() + Precalcwin]))]
cf2 = None
if algoP == 'HOS':
# calculate HOS-CF using subclass HOScf of class
# CharacteristicFunction
cf2 = HOScf(z_copy, cuttimes2, thosmw,
hosorder) # instance of HOScf
elif algoP == 'ARZ':
# calculate ARZ-CF using subclass ARZcf of class
# CharcteristicFunction
cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z,
addnoise) # instance of ARZcf
##############################################################
# get refined onset time from CF2 using class Picker
assert isinstance(cf2, CharacteristicFunction), 'cf2 is not set ' \
'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format(
algoP=algoP)
if fig_dict:
fig = fig_dict['refPpick']
else:
fig = None
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP,
aicpick.getpick(), fig)
mpickP = refPpick.getpick()
#############################################################
2015-06-22 16:01:16 +02:00
if mpickP is not None:
# quality assessment
# get earliest/latest possible pick and symmetrized uncertainty
if iplot:
if fig_dict:
fig = fig_dict['el_Ppick']
else:
fig = None
epickP, lpickP, Perror = earllatepicker(z_copy, nfacP, tsnrz,
mpickP, iplot, fig=fig)
else:
epickP, lpickP, Perror = earllatepicker(z_copy, nfacP, tsnrz,
mpickP, iplot)
# get SNR
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP)
# weight P-onset using symmetric error
if Perror <= timeerrorsP[0]:
Pweight = 0
elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
Pweight = 1
elif timeerrorsP[1] < Perror <= timeerrorsP[2]:
Pweight = 2
elif timeerrorsP[2] < Perror <= timeerrorsP[3]:
Pweight = 3
elif Perror > timeerrorsP[3]:
Pweight = 4
##############################################################
# get first motion of P onset
# certain quality required
if Pweight <= minfmweight and SNRP >= minFMSNR:
if iplot:
if fig_dict:
fig = fig_dict['fm_picker']
else:
fig = None
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot, fig)
else:
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot)
else:
FM = 'N'
msg = "autopickstation: P-weight: {0}, " \
"SNR: {1}, SNR[dB]: {2}, Polarity: {3}".format(Pweight,
SNRP,
SNRPdB,
FM)
print(msg)
Sflag = 1
else:
msg = 'Bad initial (AIC) P-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)'.format(aicpick.getSNR(),
aicpick.getSlope(),
minAICPSNR,
minAICPslope)
if verbose: print(msg)
Sflag = 0
else:
2015-12-03 15:25:04 +01:00
print('autopickstation: No vertical component data available!, '
'Skipping station!')
if edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4:
2015-12-03 15:25:04 +01:00
msg = 'Go on picking S onset ...\n' \
'##################################################\n' \
'Working on S onset of station {0}\nFiltering horizontal ' \
'traces ...'.format(edat[0].stats.station)
if verbose: print(msg)
# determine time window for calculating CF after P onset
cuttimesh = [round(max([mpickP + sstart, 0])),
round(min([mpickP + sstop, Lwf]))]
if algoS == 'ARH':
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
h_copy = hdat.copy()
# filter and taper data
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
elif algoS == 'AR3':
# re-create stream object including all components
hdat = zdat.copy()
hdat += edat
hdat += ndat
h_copy = hdat.copy()
# filter and taper data
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy()
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
trH3_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
##############################################################
if algoS == 'ARH':
# calculate ARH-CF using subclass ARHcf of class
# CharcteristicFunction
arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
addnoise) # instance of ARHcf
elif algoS == 'AR3':
# calculate ARH-CF using subclass AR3cf of class
# CharcteristicFunction
arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
addnoise) # instance of ARHcf
##############################################################
# calculate AIC-ARH-CF using subclass AICcf of class
# CharacteristicFunction
# class needs stream object => build it
tr_arhaic = trH1_filt.copy()
tr_arhaic.data = arhcf1.getCF()
h_copy[0].data = tr_arhaic.data
# calculate ARH-AIC-CF
haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf
##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking
if fig_dict:
fig = fig_dict['aicARHfig']
else:
fig = None
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None,
aictsmoothS, fig=fig)
###############################################################
# go on with processing if AIC onset passes quality control
if (aicarhpick.getSlope() >= minAICSslope and
aicarhpick.getSNR() >= minAICSSNR and
aicarhpick.getpick() is not None):
aicSflag = 1
msg = 'AIC S-pick passes quality control: Slope: {0} counts/s, ' \
'SNR: {1}\nGo on with refined picking ...\n' \
'autopickstation: re-filtering horizontal traces ' \
'...'.format(aicarhpick.getSlope(), aicarhpick.getSNR())
if verbose: print(msg)
# re-calculate CF from re-filtered trace in vicinity of initial
# onset
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin),
round(aicarhpick.getpick() + Srecalcwin)]
# re-filter waveform with larger bandpass
h_copy = hdat.copy()
# filter and taper data
if algoS == 'ARH':
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
#############################################################
arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
addnoise) # instance of ARHcf
elif algoS == 'AR3':
trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy()
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False)
trH1_filt.taper(max_percentage=0.05, type='hann')
trH2_filt.taper(max_percentage=0.05, type='hann')
trH3_filt.taper(max_percentage=0.05, type='hann')
h_copy[0].data = trH1_filt.data
h_copy[1].data = trH2_filt.data
h_copy[2].data = trH3_filt.data
#############################################################
arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
addnoise) # instance of ARHcf
# get refined onset time from CF2 using class Picker
if fig_dict:
fig = fig_dict['refSpick']
else:
fig = None
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS,
tsmoothS, aicarhpick.getpick(), fig)
mpickS = refSpick.getpick()
#############################################################
2015-06-22 16:01:16 +02:00
if mpickS is not None:
# quality assessment
# get earliest/latest possible pick and symmetrized uncertainty
h_copy[0].data = trH1_filt.data
if iplot:
if fig_dict:
fig = fig_dict['el_S1pick']
else:
fig = None
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot,
fig=fig)
else:
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot)
h_copy[0].data = trH2_filt.data
if iplot:
if fig_dict:
fig = fig_dict['el_S2pick']
else:
fig = None
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot,
fig=fig)
else:
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot)
if epickS1 is not None and epickS2 is not None:
if algoS == 'ARH':
# get earliest pick of both earliest possible picks
epick = [epickS1, epickS2]
lpick = [lpickS1, lpickS2]
pickerr = [Serror1, Serror2]
if epickS1 is None and epickS2 is not None:
ipick = 1
elif epickS1 is not None and epickS2 is None:
ipick = 0
elif epickS1 is not None and epickS2 is not None:
ipick = np.argmin([epickS1, epickS2])
elif algoS == 'AR3':
[epickS3, lpickS3, Serror3] = earllatepicker(h_copy,
nfacS,
tsnrh,
mpickS,
iplot)
# get earliest pick of all three picks
epick = [epickS1, epickS2, epickS3]
lpick = [lpickS1, lpickS2, lpickS3]
pickerr = [Serror1, Serror2, Serror3]
if epickS1 is None and epickS2 is not None \
and epickS3 is not None:
ipick = np.argmin([epickS2, epickS3])
elif epickS1 is not None and epickS2 is None \
and epickS3 is not None:
ipick = np.argmin([epickS2, epickS3])
elif epickS1 is not None and epickS2 is not None \
and epickS3 is None:
ipick = np.argmin([epickS1, epickS2])
elif epickS1 is not None and epickS2 is not None \
and epickS3 is not None:
ipick = np.argmin([epickS1, epickS2, epickS3])
epickS = epick[ipick]
lpickS = lpick[ipick]
Serror = pickerr[ipick]
# get SNR
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, mpickS)
# weight S-onset using symmetric error
if Serror <= timeerrorsS[0]:
Sweight = 0
elif timeerrorsS[0] < Serror <= timeerrorsS[1]:
Sweight = 1
elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]:
Sweight = 2
elif timeerrorsS[2] < Serror <= timeerrorsS[3]:
Sweight = 3
elif Serror > timeerrorsS[3]:
Sweight = 4
print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n'
2017-04-06 13:16:28 +02:00
'##################################################'
''.format(Sweight, SNRS, SNRSdB))
################################################################
# get Wood-Anderson peak-to-peak amplitude
# initialize Data object
data = Data()
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
else:
msg = 'Bad initial (AIC) S-pick, skipping this onset!\n' \
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)\n' \
2017-04-06 13:16:28 +02:00
'##################################################' \
''.format(aicarhpick.getSNR(),
aicarhpick.getSlope(),
minAICSSNR,
minAICSslope)
if verbose: print(msg)
############################################################
# get Wood-Anderson peak-to-peak amplitude
# initialize Data object
data = Data()
# re-create stream object including both horizontal components
hdat = edat.copy()
hdat += ndat
else:
print('autopickstation: No horizontal component data available or ' \
'bad P onset, skipping S picking!')
##############################################################
if iplot > 0:
# plot vertical trace
if not fig_dict:
fig = plt.figure()
else:
fig = fig_dict['mainFig']
ax1 = fig.add_subplot(311)
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
tr_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(tr_filt.data) - len(tdata)
if wfldiff < 0:
tdata = tdata[0:len(tdata) - abs(wfldiff)]
ax1.plot(tdata, tr_filt.data / max(tr_filt.data), 'k', label='Data')
if Pweight < 4:
ax1.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
'b', label='CF1')
if aicPflag == 1:
ax1.plot(cf2.getTimeArray(),
cf2.getCF() / max(cf2.getCF()), 'm', label='CF2')
ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
'r', label='Initial P Onset')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[1, 1], 'r')
ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[-1, -1], 'r')
ax1.plot([refPpick.getpick(), refPpick.getpick()],
[-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[1.3, 1.3], 'r', linewidth=2)
ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[-1.3, -1.3], 'r', linewidth=2)
ax1.plot([lpickP, lpickP], [-1.1, 1.1], 'r--', label='lpp')
ax1.plot([epickP, epickP], [-1.1, 1.1], 'r--', label='epp')
ax1.set_title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
'Polarity: %s' % (tr_filt.stats.station,
tr_filt.stats.channel,
Pweight,
SNRP,
SNRPdB,
FM))
else:
ax1.set_title('%s, P Weight=%d, SNR=None, '
'SNRdB=None' % (tr_filt.stats.channel, Pweight))
else:
ax1.set_title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
tr_filt.stats.channel,
Pweight))
ax1.legend()
ax1.set_yticks([])
ax1.set_ylim([-1.5, 1.5])
ax1.set_ylabel('Normalized Counts')
#fig.suptitle(tr_filt.stats.starttime)
2015-06-23 16:24:10 +02:00
if len(edat[0]) > 1 and len(ndat[0]) > 1 and Sflag == 1:
# plot horizontal traces
ax2 = fig.add_subplot(3,1,2,sharex=ax1)
th1data = np.arange(0,
trH1_filt.stats.npts /
trH1_filt.stats.sampling_rate,
trH1_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(trH1_filt.data) - len(th1data)
if wfldiff < 0:
th1data = th1data[0:len(th1data) - abs(wfldiff)]
ax2.plot(th1data, trH1_filt.data / max(trH1_filt.data), 'k', label='Data')
if Pweight < 4:
ax2.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1:
ax2.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
ax2.plot(
[aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g', label='Initial S Onset')
ax2.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[1, 1], 'g')
ax2.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[-1, -1], 'g')
ax2.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2)
ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2)
ax2.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
ax2.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
ax2.set_title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
trH1_filt.stats.channel,
Sweight, SNRS, SNRSdB))
else:
ax2.set_title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
trH1_filt.stats.channel, Sweight))
ax2.legend()
ax2.set_yticks([])
ax2.set_ylim([-1.5, 1.5])
ax2.set_ylabel('Normalized Counts')
#fig.suptitle(trH1_filt.stats.starttime)
ax3 = fig.add_subplot(3,1,3, sharex=ax1)
th2data = np.arange(0,
trH2_filt.stats.npts /
trH2_filt.stats.sampling_rate,
trH2_filt.stats.delta)
# check equal length of arrays, sometimes they are different!?
wfldiff = len(trH2_filt.data) - len(th2data)
if wfldiff < 0:
th2data = th2data[0:len(th2data) - abs(wfldiff)]
ax3.plot(th2data, trH2_filt.data / max(trH2_filt.data), 'k', label='Data')
if Pweight < 4:
p22, = ax3.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1:
ax3.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
ax3.plot(
[aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g', label='Initial S Onset')
ax3.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[1, 1], 'g')
ax3.plot(
[aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5],
[-1, -1], 'g')
ax3.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2)
ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2)
ax3.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
ax3.legend()
ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5])
ax3.set_xlabel('Time [s] after %s' % tr_filt.stats.starttime)
ax3.set_ylabel('Normalized Counts')
ax3.set_title(trH2_filt.stats.channel)
##########################################################################
# calculate "real" onset times
if lpickP is not None and lpickP == mpickP:
lpickP += timeerrorsP[0]
if epickP is not None and epickP == mpickP:
epickP -= timeerrorsP[0]
if mpickP is not None and epickP is not None and lpickP is not None:
lpickP = zdat[0].stats.starttime + lpickP
epickP = zdat[0].stats.starttime + epickP
mpickP = zdat[0].stats.starttime + mpickP
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
lpickP = zdat[0].stats.starttime + timeerrorsP[3]
epickP = zdat[0].stats.starttime - timeerrorsP[3]
mpickP = zdat[0].stats.starttime
if lpickS is not None and lpickS == mpickS:
lpickS += timeerrorsS[0]
if epickS is not None and epickS == mpickS:
epickS -= timeerrorsS[0]
if mpickS is not None and epickS is not None and lpickS is not None:
lpickS = edat[0].stats.starttime + lpickS
epickS = edat[0].stats.starttime + epickS
mpickS = edat[0].stats.starttime + mpickS
else:
# dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking
lpickS = edat[0].stats.starttime + timeerrorsS[3]
epickS = edat[0].stats.starttime - timeerrorsS[3]
mpickS = edat[0].stats.starttime
# create dictionary
# for P phase
2017-04-06 13:16:28 +02:00
ccode = zdat[0].stats.channel
ncode = zdat[0].stats.network
ppick = dict(channel=ccode, network=ncode, lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP,
snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None,
Mw=None, picker=picker, marked=Pmarker)
# add S phase
2017-04-06 13:16:28 +02:00
ccode = edat[0].stats.channel
ncode = edat[0].stats.network
spick = dict(channel=ccode, network=ncode, lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS,
snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao)
# merge picks into returning dictionary
picks = dict(P=ppick, S=spick, station=zdat[0].stats.station)
return picks
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter, fig_dict=None):
'''
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
:param wf: waveform, obspy stream object
:param NLLocfile: path/name of NLLoc-location file
:param picks: dictionary of available onset times
:param badpicks: picks to be repicked
:param pickparameter: picking parameters from autoPyLoT-input file
'''
2017-04-06 13:16:28 +02:00
msg = '##################################################\n' \
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
'starting re-picking them ...'.format(len(badpicks), badpicks)
print(msg)
2015-11-20 16:02:25 +01:00
newpicks = {}
for i in range(0, len(badpicks)):
if len(badpicks[i][0]) > 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) == 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
elif len(badpicks[i][0]) < 4:
Ppattern = '%s ? ? ? P' % badpicks[i][0]
nllocline = getPatternLine(NLLocfile, Ppattern)
res = nllocline.split(None)[16]
# get theoretical P-onset time from residuum
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
# get corresponding waveform stream
2017-04-06 13:16:28 +02:00
msg = '##################################################\n' \
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
print(msg)
wf2pick = wf.select(station=badpicks[i][0])
# modify some picking parameters
pstart_old = pickparameter.get('pstart')
pstop_old = pickparameter.get('pstop')
sstop_old = pickparameter.get('sstop')
pickwinP_old = pickparameter.get('pickwinP')
Precalcwin_old = pickparameter.get('Precalcwin')
noisefactor_old = pickparameter.get('noisefactor')
zfac_old = pickparameter.get('zfac')
pickparameter.setParam(
pstart=max([0, badpicks[i][1] - wf2pick[0].stats.starttime \
- pickparameter.get('tlta')]))
pickparameter.setParam(pstop=pickparameter.get('pstart') + \
(3 * pickparameter.get('tlta')))
pickparameter.setParam(sstop=pickparameter.get('sstop') / 2)
pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2)
pickparameter.setParam(
Precalcwin=pickparameter.get('Precalcwin') / 2)
pickparameter.setParam(noisefactor=1.0)
pickparameter.setParam(zfac=1.0)
print(
2016-03-30 08:14:58 +02:00
"iteratepicker: The following picking parameters have been modified for iterative picking:")
print(
"pstart: %fs => %fs" % (pstart_old, pickparameter.get('pstart')))
print(
"pstop: %fs => %fs" % (pstop_old, pickparameter.get('pstop')))
print(
"sstop: %fs => %fs" % (sstop_old, pickparameter.get('sstop')))
print("pickwinP: %fs => %fs" % (
pickwinP_old, pickparameter.get('pickwinP')))
print("Precalcwin: %fs => %fs" % (
Precalcwin_old, pickparameter.get('Precalcwin')))
print("noisefactor: %f => %f" % (
noisefactor_old, pickparameter.get('noisefactor')))
print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac')))
# repick station
newpicks = autopickstation(wf2pick, pickparameter, fig_dict=fig_dict)
# replace old dictionary with new one
picks[badpicks[i][0]] = newpicks
# reset temporary change of picking parameters
print("iteratepicker: Resetting picking parameters ...")
pickparameter.setParam(pstart=pstart_old)
pickparameter.setParam(pstop=pstop_old)
pickparameter.setParam(sstop=sstop_old)
pickparameter.setParam(pickwinP=pickwinP_old)
pickparameter.setParam(Precalcwin=Precalcwin_old)
pickparameter.setParam(noisefactor=noisefactor_old)
pickparameter.setParam(zfac=zfac_old)
return picks