general clean-up 2.0 even more checks made and issues resolved
This commit is contained in:
parent
0fa701a878
commit
0a7b02c04a
@ -273,8 +273,7 @@ class MainWindow(QMainWindow):
|
||||
slot=self.autoPick, shortcut='Alt+Ctrl+A',
|
||||
icon=auto_icon, tip='Automatically pick'
|
||||
' the entire dataset'
|
||||
' displayed!',
|
||||
checkable=False)
|
||||
' displayed!')
|
||||
|
||||
autoPickToolBar = self.addToolBar("autoPyLoT")
|
||||
autoPickActions = (auto_pick,)
|
||||
|
@ -437,7 +437,7 @@ class SeismicShot(object):
|
||||
if self.getDistance(traceID) == distance:
|
||||
traceID_list.append(traceID)
|
||||
if distancebin[0] >= 0 and distancebin[1] > 0:
|
||||
if self.getDistance(traceID) > distancebin[0] and self.getDistance(traceID) < distancebin[1]:
|
||||
if distancebin[0] < self.getDistance(traceID) < distancebin[1]:
|
||||
traceID_list.append(traceID)
|
||||
|
||||
if len(traceID_list) > 0:
|
||||
|
@ -185,7 +185,7 @@ class DCfc(Magnitude):
|
||||
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [DCin, Fcin])
|
||||
self.w0 = optspecfit[0]
|
||||
self.fc = optspecfit[1]
|
||||
print ("DCfc: Determined DC-value: %e m/Hz, \n" \
|
||||
print ("DCfc: Determined DC-value: %e m/Hz, \n"
|
||||
"Determined corner frequency: %f Hz" % (self.w0, self.fc))
|
||||
|
||||
|
||||
|
@ -165,12 +165,12 @@ class CharacteristicFunction(object):
|
||||
stop = min([len(self.orig_data[0]), len(self.orig_data[1])])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]), \
|
||||
len(self.orig_data[1])])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
else:
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]), \
|
||||
len(self.orig_data[1])])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1])])
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
@ -181,15 +181,15 @@ class CharacteristicFunction(object):
|
||||
elif len(self.orig_data) == 3:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
start = 0
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]), \
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
elif self.cut[0] == 0 and self.cut[1] is not 0:
|
||||
start = 0
|
||||
stop = self.cut[1] / self.dt
|
||||
else:
|
||||
start = max([0, self.cut[0] / self.dt])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]), \
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
stop = min([self.cut[1] / self.dt, len(self.orig_data[0]),
|
||||
len(self.orig_data[1]), len(self.orig_data[2])])
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
@ -231,7 +231,7 @@ class AICcf(CharacteristicFunction):
|
||||
cumsumcf = np.cumsum(np.power(xnp, 2))
|
||||
i = np.where(cumsumcf == 0)
|
||||
cumsumcf[i] = np.finfo(np.float64).eps
|
||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) * \
|
||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
|
||||
np.log((cumsumcf[datlen - 1] - cumsumcf[k - 1]) / (datlen - k + 1)))
|
||||
cf[0] = cf[1]
|
||||
inf = np.isinf(cf)
|
||||
|
@ -204,27 +204,27 @@ def autopickstation(wfstream, pickparam):
|
||||
if len(ndat) == 0 or len(edat) == 0:
|
||||
print ("One or more horizontal components missing!")
|
||||
print ("Signal length only checked on vertical component!")
|
||||
print ("Decreasing minsiglengh from %f to %f" \
|
||||
% (minsiglength, minsiglength / 2))
|
||||
print ("Decreasing minsiglengh from %f to %f"
|
||||
% (minsiglength, minsiglength / 2))
|
||||
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
|
||||
minsiglength / 2, \
|
||||
minsiglength / 2,
|
||||
nfacsl, minpercent, iplot)
|
||||
else:
|
||||
# filter and taper horizontal traces
|
||||
trH1_filt = edat.copy()
|
||||
trH2_filt = ndat.copy()
|
||||
trH1_filt.filter('bandpass', freqmin=bph1[0],
|
||||
freqmax=bph1[1], \
|
||||
zerophase=False)
|
||||
freqmax=bph1[1],
|
||||
zerophase=False)
|
||||
trH2_filt.filter('bandpass', freqmin=bph1[0],
|
||||
freqmax=bph1[1], \
|
||||
zerophase=False)
|
||||
freqmax=bph1[1],
|
||||
zerophase=False)
|
||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||
zne += trH1_filt
|
||||
zne += trH2_filt
|
||||
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
|
||||
minsiglength, \
|
||||
minsiglength,
|
||||
nfacsl, minpercent, iplot)
|
||||
|
||||
if Pflag == 1:
|
||||
@ -234,7 +234,7 @@ def autopickstation(wfstream, pickparam):
|
||||
print 'One or more horizontal components missing!'
|
||||
print 'Skipping control function checkZ4S.'
|
||||
else:
|
||||
Pflag = checkZ4S(zne, aicpick.getpick(), zfac, \
|
||||
Pflag = checkZ4S(zne, aicpick.getpick(), zfac,
|
||||
tsnrz[3], iplot)
|
||||
if Pflag == 0:
|
||||
Pmarker = 'SinsteadP'
|
||||
@ -331,7 +331,7 @@ def autopickstation(wfstream, pickparam):
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
if np.size(zc) == 0:
|
||||
print ("Something is wrong with the waveform, " \
|
||||
print ("Something is wrong with the waveform, "
|
||||
"no zero crossings derived!")
|
||||
print ("Cannot calculate source spectrum!")
|
||||
else:
|
||||
@ -341,7 +341,7 @@ def autopickstation(wfstream, pickparam):
|
||||
w0 = specpara.getw0()
|
||||
fc = specpara.getfc()
|
||||
|
||||
print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, " \
|
||||
print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, "
|
||||
"Polarity: %s" % (Pweight, SNRP, SNRPdB, FM))
|
||||
Sflag = 1
|
||||
|
||||
@ -352,7 +352,7 @@ def autopickstation(wfstream, pickparam):
|
||||
Sflag = 0
|
||||
|
||||
else:
|
||||
print ("autopickstation: No vertical component data available!, " \
|
||||
print ("autopickstation: No vertical component data available!, "
|
||||
"Skipping station!")
|
||||
|
||||
if edat is not None and ndat is not None and len(edat) > 0 and len(
|
||||
@ -593,8 +593,8 @@ def autopickstation(wfstream, pickparam):
|
||||
if restflag == 1:
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# using subclass WApp of superclass Magnitude
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
|
||||
+ sstop)), iplot)
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP
|
||||
+ sstop)), iplot)
|
||||
Ao = wapp.getwapp()
|
||||
|
||||
else:
|
||||
@ -771,14 +771,14 @@ def autopickstation(wfstream, pickparam):
|
||||
# create dictionary
|
||||
# for P phase
|
||||
phase = 'P'
|
||||
phasepick = {'lpp': lpickP, 'epp': epickP, 'mpp': mpickP, 'spe': Perror, \
|
||||
phasepick = {'lpp': lpickP, 'epp': epickP, 'mpp': mpickP, 'spe': Perror,
|
||||
'snr': SNRP, 'snrdb': SNRPdB, 'weight': Pweight, 'fm': FM}
|
||||
picks = {phase: phasepick}
|
||||
# add P marker
|
||||
picks[phase]['marked'] = Pmarker
|
||||
# add S phase
|
||||
phase = 'S'
|
||||
phasepick = {'lpp': lpickS, 'epp': epickS, 'mpp': mpickS, 'spe': Serror, \
|
||||
phasepick = {'lpp': lpickS, 'epp': epickS, 'mpp': mpickS, 'spe': Serror,
|
||||
'snr': SNRS, 'snrdb': SNRSdB, 'weight': Sweight, 'fm': None}
|
||||
picks[phase] = phasepick
|
||||
# add Wood-Anderson amplitude
|
||||
|
@ -6,8 +6,8 @@
|
||||
Only for test purposes!
|
||||
"""
|
||||
|
||||
from obspy.core import read
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import read
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||
from pylot.core.pick.Picker import AutoPicking
|
||||
@ -56,7 +56,7 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
st_copy = st.copy()
|
||||
#filter and taper data
|
||||
tr_filt = st[0].copy()
|
||||
tr_filt.filter('bandpass', freqmin=bpz[0], freqmax=bpz[1], zerophase=False)
|
||||
tr_filt.filter('bandpass', freqmin=bpz[0], freqmax=bpz[1], zerophase=False)
|
||||
tr_filt.taper(max_percentage=0.05, type='hann')
|
||||
st_copy[0].data = tr_filt.data
|
||||
##############################################################
|
||||
@ -120,8 +120,8 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
#filter and taper data
|
||||
trH1_filt = H[0].copy()
|
||||
trH2_filt = H[1].copy()
|
||||
trH1_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
trH2_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
trH1_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
trH2_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||
H_copy[0].data = trH1_filt.data
|
||||
@ -167,9 +167,9 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
All1_filt = AllC[0].copy()
|
||||
All2_filt = AllC[1].copy()
|
||||
All3_filt = AllC[2].copy()
|
||||
All1_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
All2_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
All3_filt.filter('bandpass', freqmin=bpz[0], freqmax=bpz[1], zerophase=False)
|
||||
All1_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
All2_filt.filter('bandpass', freqmin=bph[0], freqmax=bph[1], zerophase=False)
|
||||
All3_filt.filter('bandpass', freqmin=bpz[0], freqmax=bpz[1], zerophase=False)
|
||||
All1_filt.taper(max_percentage=0.05, type='hann')
|
||||
All2_filt.taper(max_percentage=0.05, type='hann')
|
||||
All3_filt.taper(max_percentage=0.05, type='hann')
|
||||
@ -209,19 +209,19 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.ylim([-1.5, 1.5])
|
||||
plt.xlabel('Time [s]')
|
||||
plt.ylabel('Normalized Counts')
|
||||
plt.title('%s, %s, CF-SNR=%7.2f, CF-Slope=%12.2f' % (tr.stats.station, \
|
||||
tr.stats.channel, aicpick.getSNR(), aicpick.getSlope()))
|
||||
plt.title('%s, %s, CF-SNR=%7.2f, CF-Slope=%12.2f' % (tr.stats.station,
|
||||
tr.stats.channel, aicpick.getSNR(), aicpick.getSlope()))
|
||||
plt.suptitle(tr.stats.starttime)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'HOS-CF', 'HOSAIC-CF', 'ARZ-CF', 'ARZAIC-CF'])
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'HOS-CF', 'HOSAIC-CF', 'ARZ-CF', 'ARZAIC-CF'])
|
||||
#plot horizontal traces
|
||||
plt.figure(2)
|
||||
plt.subplot(2,1,1)
|
||||
tsteph = tpredh / 4
|
||||
tsteph = tpredh / 4
|
||||
th1data = np.arange(0, trH1_filt.stats.npts / trH1_filt.stats.sampling_rate, trH1_filt.stats.delta)
|
||||
th2data = np.arange(0, trH2_filt.stats.npts / trH2_filt.stats.sampling_rate, trH2_filt.stats.delta)
|
||||
tarhcf = np.arange(0, len(arhcf.getCF()) * tsteph, tsteph) + cuttimes[0] + tdeth +tpredh
|
||||
p21, = plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k')
|
||||
p22, = plt.plot(arhcf.getTimeArray(), arhcf.getCF()/max(arhcf.getCF()), 'r')
|
||||
p22, = plt.plot(arhcf.getTimeArray(), arhcf.getCF()/max(arhcf.getCF()), 'r')
|
||||
p23, = plt.plot(arhaiccf.getTimeArray(), arhaiccf.getCF()/max(arhaiccf.getCF()))
|
||||
plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'b')
|
||||
plt.plot([aicarhpick.getpick()-0.5, aicarhpick.getpick()+0.5], [1, 1], 'b')
|
||||
@ -238,10 +238,10 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.ylabel('Normalized Counts')
|
||||
plt.title([trH1_filt.stats.station, trH1_filt.stats.channel])
|
||||
plt.suptitle(trH1_filt.stats.starttime)
|
||||
plt.legend([p21, p22, p23], ['Data', 'ARH-CF', 'ARHAIC-CF'])
|
||||
plt.legend([p21, p22, p23], ['Data', 'ARH-CF', 'ARHAIC-CF'])
|
||||
plt.subplot(2,1,2)
|
||||
plt.plot(th2data, trH2_filt.data/max(trH2_filt.data), 'k')
|
||||
plt.plot(arhcf.getTimeArray(), arhcf.getCF()/max(arhcf.getCF()), 'r')
|
||||
plt.plot(arhcf.getTimeArray(), arhcf.getCF()/max(arhcf.getCF()), 'r')
|
||||
plt.plot(arhaiccf.getTimeArray(), arhaiccf.getCF()/max(arhaiccf.getCF()))
|
||||
plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'b')
|
||||
plt.plot([aicarhpick.getpick()-0.5, aicarhpick.getpick()+0.5], [1, 1], 'b')
|
||||
@ -271,7 +271,7 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.ylabel('Normalized Counts')
|
||||
plt.title([tr.stats.station, tr.stats.channel])
|
||||
plt.suptitle(trH1_filt.stats.starttime)
|
||||
plt.legend([p31, p32], ['Data', 'AR3C-CF'])
|
||||
plt.legend([p31, p32], ['Data', 'AR3C-CF'])
|
||||
plt.subplot(3,1,2)
|
||||
plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k')
|
||||
plt.plot(ar3ccf.getTimeArray(), ar3ccf.getCF()/max(ar3ccf.getCF()), 'r')
|
||||
|
@ -110,7 +110,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
markersize=14)
|
||||
plt.legend([p1, p2, p3, p4, p5],
|
||||
['Data', 'Noise Window', 'Signal Window', 'Noise Level',
|
||||
'Zero Crossings'], \
|
||||
'Zero Crossings'],
|
||||
loc='best')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([Pick1, Pick1], [max(x), -max(x)], 'b', linewidth=2)
|
||||
@ -183,10 +183,10 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
i = 0
|
||||
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
||||
i = i + 1
|
||||
if xraw[j - 1] <= 0 and xraw[j] >= 0:
|
||||
if xraw[j - 1] <= 0 <= xraw[j]:
|
||||
zc1.append(t[ipick][i])
|
||||
index1.append(i)
|
||||
elif xraw[j - 1] > 0 and xraw[j] <= 0:
|
||||
elif xraw[j - 1] > 0 >= xraw[j]:
|
||||
zc1.append(t[ipick][i])
|
||||
index1.append(i)
|
||||
if len(zc1) == 3:
|
||||
@ -225,10 +225,10 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
i = 0
|
||||
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
||||
i = i + 1
|
||||
if xfilt[j - 1] <= 0 and xfilt[j] >= 0:
|
||||
if xfilt[j - 1] <= 0 <= xfilt[j]:
|
||||
zc2.append(t[ipick][i])
|
||||
index2.append(i)
|
||||
elif xfilt[j - 1] > 0 and xfilt[j] <= 0:
|
||||
elif xfilt[j - 1] > 0 >= xfilt[j]:
|
||||
zc2.append(t[ipick][i])
|
||||
index2.append(i)
|
||||
if len(zc2) == 3:
|
||||
@ -263,15 +263,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
if P1 is not None and P2 is not None:
|
||||
if P1[0] < 0 and P2[0] < 0:
|
||||
FM = 'D'
|
||||
elif P1[0] >= 0 and P2[0] < 0:
|
||||
elif P1[0] >= 0 > P2[0]:
|
||||
FM = '-'
|
||||
elif P1[0] < 0 and P2[0] >= 0:
|
||||
elif P1[0] < 0 <= P2[0]:
|
||||
FM = '-'
|
||||
elif P1[0] > 0 and P2[0] > 0:
|
||||
FM = 'U'
|
||||
elif P1[0] <= 0 and P2[0] > 0:
|
||||
elif P1[0] <= 0 < P2[0]:
|
||||
FM = '+'
|
||||
elif P1[0] > 0 and P2[0] <= 0:
|
||||
elif P1[0] > 0 >= P2[0]:
|
||||
FM = '+'
|
||||
|
||||
print ("fmpicker: Found polarity %s" % FM)
|
||||
@ -286,7 +286,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
p3, = plt.plot(zc1, np.zeros(len(zc1)), '*g', markersize=14)
|
||||
p4, = plt.plot(t[islope1], datafit1, '--g', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4],
|
||||
['Pick', 'Slope Window', 'Zero Crossings', 'Slope'], \
|
||||
['Pick', 'Slope Window', 'Zero Crossings', 'Slope'],
|
||||
loc='best')
|
||||
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
|
||||
ax = plt.gca()
|
||||
@ -563,8 +563,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1',
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
else:
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
|
||||
@ -653,12 +653,12 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]],
|
||||
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
||||
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window', \
|
||||
'RMS Signal Window', 'Minimum Signal Level', \
|
||||
'Onset'], loc='best')
|
||||
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window',
|
||||
'RMS Signal Window', 'Minimum Signal Level',
|
||||
'Onset'], loc='best')
|
||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
plt.title('Check for Signal Length, Station %s' % X[0].stats.station)
|
||||
@ -747,15 +747,15 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
if iplot > 1:
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
|
||||
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \
|
||||
linewidth=2)
|
||||
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g',
|
||||
linewidth=2)
|
||||
for i in range(0, len(Ppicks)):
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
|
||||
plt.xlabel('Number of P Picks')
|
||||
plt.ylabel('Onset Time [s] from 1.1.1970')
|
||||
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'], \
|
||||
loc='best')
|
||||
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'],
|
||||
loc='best')
|
||||
plt.title('Check P Onsets')
|
||||
plt.show()
|
||||
raw_input()
|
||||
@ -916,13 +916,13 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
|
||||
plt.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k')
|
||||
plt.plot(tn[isignal], ndat[0].data[isignal] / max(ndat[0].data) + 2, 'r')
|
||||
plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]], \
|
||||
[minsiglevel / max(z), minsiglevel / max(z)], 'g', \
|
||||
linewidth=2)
|
||||
plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]],
|
||||
[minsiglevel / max(z), minsiglevel / max(z)], 'g',
|
||||
linewidth=2)
|
||||
plt.xlabel('Time [s] since %s' % zdat[0].stats.starttime)
|
||||
plt.ylabel('Normalized Counts')
|
||||
plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel, \
|
||||
ndat[0].stats.channel])
|
||||
plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel,
|
||||
ndat[0].stats.channel])
|
||||
plt.title('CheckZ4S, Station %s' % zdat[0].stats.station)
|
||||
plt.show()
|
||||
raw_input()
|
||||
|
@ -73,8 +73,8 @@ def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
|
||||
stations = [stat for stat in phases['stat'][0:-1:3]]
|
||||
|
||||
event = createEvent(eventDate, loccinfo, None, 'earthquake', eventNum,
|
||||
authority_id)
|
||||
event = createEvent(eventDate, loccinfo, etype='earthquake', resID=eventNum,
|
||||
authority_id=authority_id)
|
||||
|
||||
lat = float(loc['LAT'])
|
||||
lon = float(loc['LON'])
|
||||
@ -130,7 +130,7 @@ def readPILOTEvent(phasfn=None, locfn=None, authority_id=None, **kwargs):
|
||||
event.magnitudes.append(magnitude)
|
||||
return event
|
||||
|
||||
except AttributeError, e:
|
||||
except AttributeError as e:
|
||||
raise AttributeError('{0} - Matlab LOC files {1} and {2} contains \
|
||||
insufficient data!'.format(e, phasfn, locfn))
|
||||
|
||||
|
@ -814,9 +814,10 @@ class PropertiesDlg(QDialog):
|
||||
if values is not None:
|
||||
self.setValues(values)
|
||||
|
||||
def setValues(self, tabValues):
|
||||
@staticmethod
|
||||
def setValues(tabValues):
|
||||
settings = QSettings()
|
||||
for setting, value in tabValues.iteritems():
|
||||
for setting, value in tabValues.items():
|
||||
settings.setValue(setting, value)
|
||||
settings.sync()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user